化工原理第一章流体流动PPT
合集下载
化工原理(流体流动) PPT
![化工原理(流体流动) PPT](https://img.taocdn.com/s3/m/28f69277fc4ffe473268ab00.png)
气体混合物的组成通常以体积分率表示。
对于理想气体,体积分率与摩尔分率、压力分率是相等的。
液体混合物: 液体混合时,体积往往有所改变。若混合前
后体积不变,则1kg混合液的体积等于各组分单独存在时的体 积之和,则可由下式求出混合液体的密度ρm。
1
a1
a2
an
m
1 2
n
式中 α1、α2、…,αn —— 液体混合物中各组分的质量分率; ρ1、ρ2、…,ρn —— 液体混合物中各组分的密度,kg/m3;
愈大,所以应该使用两种密度接近的指示液。
二、液面测定
1—容器; 2—平衡器的小室; 3—U形管压差计
说明: 1. 图中平衡器的小室2中所装的液体与容器里的液体相同。 2. 平衡器里的液面高度维持在容器液面容许到达的最大高度处。 3. 容器里的液面高度可根据压差计的读数R求得。液面越高,
读数越小。当液面达到最大高度时,压差计的读数为零。
指示液密度ρ0,被测流体密度 为ρ,图中a、b两点的压力是相 等的,因为这两点都在同一种静 止液体(指示液)的同一水平面 上。通过这个关系,便可求出p1
-p2的值。
注:指示剂的选择
根据流体静力学基本方程式则有:
U型管右侧 U型管左侧
pa=p1+(m+R)ρg pb=p2+mρg+Rρ0g
pa=pb
内容提要
1. 流体静力学 2. 流体在管内的流动 3. 流体的流动现象 4. 流动阻力 5. 管路计算 6. 流量测量 * 7. 习题
要求 掌握连续性方程和能量方程 能进行管路的设计计算
第一节 概 述 流体: 在剪应力作用下能产生连续变形的物体称
为流体。如气体和液体。
化工原理液体流动ppt课件
![化工原理液体流动ppt课件](https://img.taocdn.com/s3/m/a53b26cda8114431b80dd80a.png)
常见的液柱压差计有以下几种。
.
26
a) 普通 U 型管压差计 b) 倒 U 型管压差计 c) 倾斜 U 型管压差计 d) 微差压差计
p1 p2
0
p1
a
b
R
Ra b
a
0
(a)
p1 p2 (b)
0
(c)
p1 p2
p2
02
b R1
a
b
01
(d)
常见液柱压差计
.
27
(a)普通 U 型管压差计
U 型管内位于同一水平面上的 a、b 两点在相连通 的同一静止流体内,两点处静压强相等*
化工中的介质大部分为流体(便于连续生产过程工业); 流动对传热、传质及化学反应的影 响;
.
4
煤气洗涤装置示意图
流体动力学问题:流体(水 和煤气)在泵(或鼓风机)、流 量计以及管道中流动等;
流体静力学问题:压差计中
流体、水封箱中的水 确定流体输
送管路的直径,计算流动过程产
生的阻力和输送流体所需的动力。
方程式推导
(1)向上作用于薄层下底的总压力,PA (2)向下作用于薄层上底的总压力,(P+dp)A (3)向下作用的重力, gAdz
由于流体处于静止,其
垂直方向所受到的各力代数
和应等于零,简化可得:
dp
gdz
.
z
o
流体静力学基本方程推导
20
流体静力学基本方程式推 导:
在右图中的两个垂直位置2 和 1 之间对上式作定积分
化工原理
Principles of Chemical Engineering
朱德春 合肥学院化学与材料工程系
.
1
.
26
a) 普通 U 型管压差计 b) 倒 U 型管压差计 c) 倾斜 U 型管压差计 d) 微差压差计
p1 p2
0
p1
a
b
R
Ra b
a
0
(a)
p1 p2 (b)
0
(c)
p1 p2
p2
02
b R1
a
b
01
(d)
常见液柱压差计
.
27
(a)普通 U 型管压差计
U 型管内位于同一水平面上的 a、b 两点在相连通 的同一静止流体内,两点处静压强相等*
化工中的介质大部分为流体(便于连续生产过程工业); 流动对传热、传质及化学反应的影 响;
.
4
煤气洗涤装置示意图
流体动力学问题:流体(水 和煤气)在泵(或鼓风机)、流 量计以及管道中流动等;
流体静力学问题:压差计中
流体、水封箱中的水 确定流体输
送管路的直径,计算流动过程产
生的阻力和输送流体所需的动力。
方程式推导
(1)向上作用于薄层下底的总压力,PA (2)向下作用于薄层上底的总压力,(P+dp)A (3)向下作用的重力, gAdz
由于流体处于静止,其
垂直方向所受到的各力代数
和应等于零,简化可得:
dp
gdz
.
z
o
流体静力学基本方程推导
20
流体静力学基本方程式推 导:
在右图中的两个垂直位置2 和 1 之间对上式作定积分
化工原理
Principles of Chemical Engineering
朱德春 合肥学院化学与材料工程系
.
1
化工原理ppt-第一章流体流动
![化工原理ppt-第一章流体流动](https://img.taocdn.com/s3/m/2ed5e204974bcf84b9d528ea81c758f5f61f29e5.png)
其单位为J/kg。
2022/8/11
34
二、流体系统的质量守恒与能量守恒
2. 柏努利方程
(1) 总能量衡算
4)外加能量 流体输送机械(如泵或风机)向流体作功。单位质量流体所获得
的机械能。用We表示,单位J/kg。 5)能量损失
液体流动克服自身粘度而产生摩擦阻力,同时由于管路局部装置 引起的流动干扰、突然变化而产生的阻力。流体流动时必然要消耗 部分机械能来克服这些阻力。单位质量流体克服各种阻力消耗的机 械能称为能量损失。用Σhf ,单位J/kg。
2022/8/11
27
知识运用
【1-3】某自来水厂要求安装一根输水量为30m3/h的管道,试选择一合 适的管子。
解:水的密度:1000kg/m3, 体积流量:Vs=30000/(3600×1000)=0.0083(m3/s)
查表水流速范围,取u=1.8m3/s
根据d 4Vs
u
d 4Vs 4 30 / 3600 0.077 m 77mm
22
一、流体流量和流速
2.流速
单位时间内流体质点在流动方向上所流经的距离。
(1)平均流速:u=Vs/A (m/s)
关系:G =u
(2)质量流速:G=Ws/A (kg/(m2·s))
2022/8/11
23
一、流体流量和流速
3.圆形管道直径的选定
2022/8/11
24
一、流体流量和流速
3.圆形管道直径的选定
2022/8/11
8
二、流体压力
2.表压与真空度
表压和真空度
p 当地大气压,
表压强=绝对压强-大气压强
p 当地大气压,
真空度=大气压强-绝对压强
化工原理第一章管内流体流动的基本方程式-PPT精品
![化工原理第一章管内流体流动的基本方程式-PPT精品](https://img.taocdn.com/s3/m/1e51b0b1192e45361166f50f.png)
作用力F=pA,流体推入管内所走的距离V/A,故与 此功相当的静压能:
静压能 pAVpV A
1kg的流体所具有的静压能为 :
pV p 单位为J/kg。 m
2020/5/30
2、理想流体稳定流动过程中的机械能衡算式 ——柏努利(Bernalli)方程
对于理想流体:
g1Zu2 12p 1g2 Zu2 22p 2
2020/5/30
【例】2英寸的普通管子,其外径为60mm,壁厚为 3.5mm,故内径为53mm,而:
2英寸=50.8mm 4分管子的近似内径为:
4 分 4 11英1 寸 2.4 5 1.7 2 (m)m 82 2
6分管子的近似内径为: 6 分 6 13英3 寸 2.4 5 1.0 9(m 5)m 84 4
ΣHf ——损失压头,流动阻力; H——输送设备对流体所提供的有效压头(外加压 头)。
2020/5/30
(6)计算过程中,静压强项P可以用绝对压强值代 入,也可以用表压强值代入。 (7)对于可压缩流体的流动,当所取系统两截面之 间的绝对压强变化小于原来压强的20%,即:
p1 p2 <20% p1
对于流动系统,由于在某一截面处流体具有一定 的静压力,流体要通过该截面进入系统,就需要对 流体做一定的功,以克服这个静压力。
流体
静压力F
【结论】流体要通过该截面进入系统,必须具有与 此功相当的能量,这种能量称为静压能或流动功。
2020/5/30
③静压能的计算 质量为m、体积为V的流体,通过某一截面所需的
2020/5/30
【例】今用一台水泵将水池中的水输送 到一高位槽内,要求每小时输送10000kg ,水的密度近似为1000kg/m3,试确定输 水管的规格。
静压能 pAVpV A
1kg的流体所具有的静压能为 :
pV p 单位为J/kg。 m
2020/5/30
2、理想流体稳定流动过程中的机械能衡算式 ——柏努利(Bernalli)方程
对于理想流体:
g1Zu2 12p 1g2 Zu2 22p 2
2020/5/30
【例】2英寸的普通管子,其外径为60mm,壁厚为 3.5mm,故内径为53mm,而:
2英寸=50.8mm 4分管子的近似内径为:
4 分 4 11英1 寸 2.4 5 1.7 2 (m)m 82 2
6分管子的近似内径为: 6 分 6 13英3 寸 2.4 5 1.0 9(m 5)m 84 4
ΣHf ——损失压头,流动阻力; H——输送设备对流体所提供的有效压头(外加压 头)。
2020/5/30
(6)计算过程中,静压强项P可以用绝对压强值代 入,也可以用表压强值代入。 (7)对于可压缩流体的流动,当所取系统两截面之 间的绝对压强变化小于原来压强的20%,即:
p1 p2 <20% p1
对于流动系统,由于在某一截面处流体具有一定 的静压力,流体要通过该截面进入系统,就需要对 流体做一定的功,以克服这个静压力。
流体
静压力F
【结论】流体要通过该截面进入系统,必须具有与 此功相当的能量,这种能量称为静压能或流动功。
2020/5/30
③静压能的计算 质量为m、体积为V的流体,通过某一截面所需的
2020/5/30
【例】今用一台水泵将水池中的水输送 到一高位槽内,要求每小时输送10000kg ,水的密度近似为1000kg/m3,试确定输 水管的规格。
化工原理第一章 流体流动.ppt
![化工原理第一章 流体流动.ppt](https://img.taocdn.com/s3/m/8d497e79a6c30c2259019eca.png)
z1 g
1 2
u1
2
p1
We
z2 g
1 2
u
2
2
p2
W f
(1)
式中各项单位为J/kg。
下午5时49分
24喻国华
(2)以单位重量流体为基准
将(1)式各项同除重力加速度g :
z1
1 2g
u12
p1
g
We g
z2
1 2g
u22
p2
g
Wf g
令
He
We g
1~3 m/s 0.5~1 m/s 8~15 m/s 15~25 m/s
下午5时49分
14喻国华
稳定流动与不稳定流动
稳定流动:各截面上的温度、压力、流速等物理量 仅随位置变化,而不随时间变化;
T, p,u f (x, y, z)
不稳定流动:流体在各截面上的有关物理量既随位 置变化,也随时间变化。
(4)各物理量的单位应保持一致,压力表示方法也 应一致,即同为绝压或同为表压。
下午5时49分
35喻国华
例 如附图所示,从高位槽向塔内进料,高位槽中液
位恒定,高位槽和塔内的压力均为大气压。送液
管 为 φ45×2.5mm 的 钢 管 , 要 求
pa
送液量为 3.6m3/h。设料液在管 内的压头损失为1.2m(不包括出 h
下午5时49分
4喻国华
例1-2
如附图所示,蒸汽锅炉上装一复式压力计,指示 液为水银,两U形压差计间充满水。相对于某一基准 面,各指示液界面高度分别为
Z0=2.1m, Z2=0.9m, Z4=2.0m, Z6=0.7m, Z7=2.5m。
化工原理总结(第一章)ppt课件
![化工原理总结(第一章)ppt课件](https://img.taocdn.com/s3/m/3ee57d54c5da50e2524d7ff8.png)
)hf
u2
.
(3)de4 润 流 湿 通 周 截 边 面 长 积、uqAv A A: 真 4 1实 d面 e2 积
圆形套管的环隙:de d2d1
.
l le)u2
d
2
le d
( 1 ) 管 管 进 出 口 口 : : 外 外 侧 侧 1 0 .5 u 2 u 1 0 、 0 、 内 内 侧 侧 0 0 u u 1 2 u u
Re2000层流=6R4ehf u
(2)Re
du
Re4000湍流一 完般 全湍 湍流 流 =fRd(ed
③有效功率: Pe、 轴功率: P
pf hf gHf
WgH、Pe
qmW、
.
Pe P
④应用要点: •确定上、下游截面及截面的选取; •位能基准面的选取; •单位的选取:即压力应同为绝压或表压; •外加能量(泵):W(J/kg)、Pe=qmW、η=Pe/P;
.
6、阻力损失
h fhf h , f (
第一章 流体流动
1、流体定义: 由无数流体质点所组成的连续介质
2、流体参数
① 流体的静压强
p P A
单位:N/m2或Pa、atm、mmHg、mH2O或
以流体柱高度表示 p gh
基准:P表 = P绝 -P大、P真=P大-P绝 = - P表
.
② 密度
(1)流体的密度: m f (p,T)
V
(2)气体的密度:
A A1 2 dd1 22
.
5、流体的机械能衡算式:
z1g12u12
p1
Wz2g12u22
p2
hf
(J/kg)
z121gu12 pg1 Hz221gu22pg2 Hf (J/N=m)
化工原理第一章第四节流体流动现象-PPT
![化工原理第一章第四节流体流动现象-PPT](https://img.taocdn.com/s3/m/7b5ada49a31614791711cc7931b765ce05087aee.png)
p2
gz3
u32 2
p3
gz4
u42 2
p4
gz5
u52 2
p5
gz6
u62 2
p6
4
4' 3 3'
1
1' 5 5'
6 6' 2 2'
【例6】水经变径管从上向下流动,粗细管径分别为d2=184mm,
d1=100mm,水在粗管内的流速为u2=2m/s,两测压口垂直距离
h=1.5m,由1-1 至 2-2 截面间能量损失hf1-2=11.38J/kg,问:U
第四节 流体在管内的流动阻力
流体具有粘性,流动时存在内部摩擦力. ——流动阻力产生的根源
直管阻力 :流体流经一定管径的直管时由
管路中的阻力
hf
于流体的内摩擦而产生的阻力
hf
局部阻力:流体流经管路中的管件、阀门及
hf 管截面的突然扩大及缩小等局部
32
h f h f hf 地方所引起的阻力。
h f : 单位质量流体流动时所损失的机械能,J/kg。
14
即Pa。
F u
S y
du
dy
——牛顿粘性定律
式中:
du :速度梯度 dy
:比例系数,它的值随流体的不同而不同,流
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简
称粘度。
15
2、流体的粘度
1)物理意义
du dy
促使流体流动产生单位速度梯度的剪应力。 粘度总是与速度梯度相联系,只有在运动时才显现出来
P2= 6.15×104Pa(表压) hf1-2= 160J/kg
u2
Vs
d2
34.5 0.072 3600
化工原理第一章流体流动课件
![化工原理第一章流体流动课件](https://img.taocdn.com/s3/m/2479fc2bcbaedd3383c4bb4cf7ec4afe05a1b118.png)
流体静力学基本方程
STEP 02
STEP 01
流体静力学基本方程是流 体静压强与其密度和重力 加速度的关系式。
STEP 03
该方程是流体静力学中的 基础方程,对于理解流体 静力学中的各种现象非常 重要。
该方程可以用来计算流体 的静压强、流体的密度和 重力加速度之间的关系。
静压力对流体的作用力
流体在静压力作用下会产生压缩或膨 胀,这与其弹性有关。
Part
04
流体流动的阻力
流动阻力的产生与分类
流动阻力
流体在管道中流动时,由于流体内部及 流体与管壁之间的摩擦而产生的阻力。
VS
阻力分类
直管阻力和局部阻力。直管阻力是流体在 管道中流动时,由于流体的粘性和管壁的 粗糙度引起的摩擦阻力;局部阻力则是流 体流经管路中的阀门、弯头等局部结构时 ,由于流体的方向和速度发生急剧变化而 引起的阻力。
流体微团的运动分析
流体微团的定义
流体微团是指流体中无限接近的、密合在一起的若干分子组成的微小团体。
流体微团的运动分析
通过对流体微团的运动分析,可以研究流体的宏观运动规律,如速度场、加速 度、角速度等。这些参数对于理解流体动力学的基本原理和工程应用非常重要 。
牛顿粘性定律及流体的分类
牛顿粘性定律的定义
绝对压力
以完全真空为零点测量的 压力,单位为帕斯卡(Pa )。
表压
以当地大气压为基准测量 的压力,单位也为帕斯卡 (Pa)。
真空度
与大气压相比的压力差值 ,单位为帕斯卡(Pa)。
流体静压强分布规律
流体静压强大小与流体的 密度、重力加速度和高度 有关。
在重力场中,流体静压强 随高度增加而减小。
在同一高度上,不同流体 的静压强不同。
化工原理-精选版课件.ppt
![化工原理-精选版课件.ppt](https://img.taocdn.com/s3/m/e365285db4daa58da0114abd.png)
1、牛顿型流体与非牛顿型流体;
2、层流内层与边界层,边界层的分离。
化工原理
本章 内容
2019/12/17
1.1 流体静力学基本方程 1.2 流体流动的基本方程 1.3 流体流动现象 1.4 流体在管内的流动阻力 1.5 管路计算 1.6 流速和流量测量
化工原理
第一节 流体静力学基本方程
1 流体的密度
化工原理
3、液体密度的计算 通常液体可视为不可压缩流体,其密度仅随温度略有变化 (极高压强除外)。 (1)纯组分液体的密度其变化关系可从手册中查得。
(2)混合液体的密度
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、、xwn ,
当m总 1kg时,xwi
其中xwi
mi
2019/12/17
化工原理
流体流动是最普遍的化工单元操作之一,研究流体流动问 题也是研究其它化工单元操作的重要基础。
掌握 内容
1、流体的密度和粘度的定义、单位、影响因 素及数据的求取;
2、压强的定义、表示法及单位换算; 3、流体静力学基本方程、连续性方程、柏努
利方程及应用; 4、流动型态及其判断,雷诺准数的物理意义
2019/12/17
化工原理
5、 与密度相关的几个物理量
(1)比容:单位质量的流体所具有的体积,用υ表示,单
位为m3/kg。
mi m总
假设混合后总体积不变:
2019/12/17
V总
xwA
A
xwB
B
xwn m总
n m
化工原理
1 xwA xwB xwn
m A B
n
——液体混合物密度计算式
2、层流内层与边界层,边界层的分离。
化工原理
本章 内容
2019/12/17
1.1 流体静力学基本方程 1.2 流体流动的基本方程 1.3 流体流动现象 1.4 流体在管内的流动阻力 1.5 管路计算 1.6 流速和流量测量
化工原理
第一节 流体静力学基本方程
1 流体的密度
化工原理
3、液体密度的计算 通常液体可视为不可压缩流体,其密度仅随温度略有变化 (极高压强除外)。 (1)纯组分液体的密度其变化关系可从手册中查得。
(2)混合液体的密度
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、、xwn ,
当m总 1kg时,xwi
其中xwi
mi
2019/12/17
化工原理
流体流动是最普遍的化工单元操作之一,研究流体流动问 题也是研究其它化工单元操作的重要基础。
掌握 内容
1、流体的密度和粘度的定义、单位、影响因 素及数据的求取;
2、压强的定义、表示法及单位换算; 3、流体静力学基本方程、连续性方程、柏努
利方程及应用; 4、流动型态及其判断,雷诺准数的物理意义
2019/12/17
化工原理
5、 与密度相关的几个物理量
(1)比容:单位质量的流体所具有的体积,用υ表示,单
位为m3/kg。
mi m总
假设混合后总体积不变:
2019/12/17
V总
xwA
A
xwB
B
xwn m总
n m
化工原理
1 xwA xwB xwn
m A B
n
——液体混合物密度计算式
化工原理流体流动与输送机械PPT课件
![化工原理流体流动与输送机械PPT课件](https://img.taocdn.com/s3/m/4f59b8b2a6c30c2259019ef2.png)
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
大学化学《化工原理-流体流动1》课件
![大学化学《化工原理-流体流动1》课件](https://img.taocdn.com/s3/m/1505a428a66e58fafab069dc5022aaea988f4162.png)
第一章 第二节
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy
=
y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B
与
很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy
=
y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B
与
很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.33mH 2O 1.0133bar 1.0133 105 Pa
2、压强的表示方法
10mH 2O 0.9807bar 9.807 10 4 Pa
流体体系的真实压强称为绝对压强。 1)绝对压强(绝压): (以真空为基准)。 2)表压 强(表压):压力上读取的压强值称为表压。 (以大气压力为基准) 表压强=绝对压强-大气压强 3)真空度: 真空表上读取的压强值称为真空度。 (以大气压力为基准)
例如:标况下的空气,
M 29 3 0 1.29kg / m 22.4 22.4
操作条件下(T, P)下的密度:
2018/11/10
p T0 0 p0 T
1.2.2、流体的比容
V 1 v m
SI单位
m3 / kg
2018/11/10
1.2.3流体的粘度
1. 牛顿粘性定律
2)粘度与温度、压强的关系 a) 液体的粘度随温度升高而减小,压强变化时,液体的粘度 基本不变。 b)气体的粘度随温度升高而增大,随压强增加而增加的很少。
2018/11/10
3)粘度的单位 在SI制中:
2 N .S N / m 2 (m / s) m du / dy m
在图1-4中的两个垂直位置2 和 1 之间对上式作定积分
1 dp z1 - gdz z 2 p2
p
J/k g
由于 和 g 是常数,故 p1 p2 z1 g z2 g (1-5)
p2 p1 g ( z1 z 2 )
P a
(1-5a)
图1-4 静止液体内压力的分布
2018/11/10
2、流体的特征
(1)流动性; (2)无固定形状,随容器形状而变化 (3)受外力作用时内部产生相对运动。
(二)、连续介质假定
(1)流体质点:由大量分子构成的微团,其尺寸远小于设 备尺寸,但却远大于分子自由程。 (2)连续介质:质点在流体内部紧紧相连,彼此间没有间 隙,即流体充满所占空间。
不服从牛顿粘性定律的流体,称非牛顿型流体,如泥浆等
2018/11/10
第 一 章 流 体 流 动及 输送
1.3 流体静力学
1.3.1 流体的压力
1.3.2 流体静力学方程 1.3.3 流体静力学方程的应用
2018/11/10
1.3.1 流体的静压强
1、压强的定义
流体的单位表面积上所受的压力,称为流体的静压强, 简称压强。
2018/11/10
(2)表面力 表面力与作用的表面积成正比。单
位面积上的表面力称之为应力。 ①垂直于表面的力F,称为压力(法向力)。 单位面积上所受的压力称为压强p。
② 平行于表面的力F,称为剪力(切力)。
单位面积上所受的剪力称为剪应力τ。
2018/11/10
1.2 流体的物理性质 1.2.1、流体的密度
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产生的依据
2018/11/10
u F S y
u F S y
剪应力:单位面积上的内摩擦力,以τ表示。
F u S y
2018/11/10
适用于u与y成直线关系
Байду номын сангаас
du dy
2018/11/10
真空度=大气压强-绝对压强=-表压
绝对压强、真空度、表压强的关系为 A 表 压 强 大气压强线 绝 真空度 对 B 压 强 绝对压强 绝对零压线 当用表压或真空度来表示压强时,应分别注明。
如:4×103Pa(真空度)、200KPa(表压)。
2018/11/10
1.3.2、流体静力学基本方程式推导
式中:
——牛顿粘性定 律
du 速度梯度 : dy
比例系数,它的值随流体的不同而不同,流 :
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简
称粘度。
2018/11/10
2、流体的粘度
1)物理意义
du dy
促使流体流动产生单位速度梯度的剪应力。
粘度总是与速度梯度相联系,只有在运动时才显现出来
2018/11/10
(3)在研究流体流动时,常摆脱复杂的分子运动 和分子 间相互作用,从宏观角度出发,将流体视为由无数流体质 点(或微团)组成的连续介质。
(三)作用在流体上的力
任取一微元体积流体作为研究对象,进行受力分析,它受 到的力有质量力(体积力)和表面力两类。 (1)质量力(体积力) 与流体的质量成正比,质量力对于均质流体也称为 体积力。如 重力和离心力
若将图1-4中的点1移至液面上(压强为p0),则式1-5a变为:
p2 p0 gh
P p A
SI制单位:N/m2,即Pa。
其它常用单位有:
atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高 度(mmH2O,mmHg等)。
2018/11/10
换算关系为: 1atm 1.033kgf / cm 2 760mmHg
1工程大气压 1kgf / cm 2 735.6mmHg
1. 密度定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m V
2. 影响ρ的主要因素
f t , p
2018/11/10
液体:
气体:
f t
——不可压缩性流体
f t , p ——可压缩性流体
3.气体密度的计算
M 理想气体在标况下的密度为: 0 22.4
第一节
流体的概述
(一)、流体的分类和特征
1、分类 气体(含蒸汽)和液体统称流体
(1)按状态:气体、液体和超临界流体 (2)按可压缩性:不可压缩性流体、可压缩性流体 (3)按是否可忽略分子间作用力: 理想流体、 粘性(实 际)流体 (4)按流变特性(剪力与速度梯度之间的关系): 牛顿型流体、非牛顿型流体
Pa.S
在物理单位制中,
g dyn / cm 2 dyn.s P ( 泊) 2 cm s cm du / dy cm.s
cm
SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 1000CP 10P
2018/11/10
实验证明,气体及水、溶济、甘油等液体服从牛顿粘性定律 ,此类流体统称为牛顿型流体