插值法实验报告
插值法实验报告
插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
插值运算实验报告
#### 一、实验目的1. 理解插值运算的基本概念和原理。
2. 掌握几种常见的插值方法,如拉格朗日插值、牛顿插值等。
3. 通过实验,验证插值方法在数值计算中的应用效果。
4. 培养动手能力和分析问题的能力。
#### 二、实验原理插值运算是指根据已知数据点,构造一个近似函数来描述这些数据点之间的变化规律。
常见的插值方法有拉格朗日插值、牛顿插值、分段线性插值等。
#### 三、实验内容1. 数据准备准备一组数据点,例如:```x: [1, 2, 3, 4, 5]y: [2, 4, 6, 8, 10]```2. 拉格朗日插值根据给定的数据点,构造拉格朗日插值多项式。
以三次拉格朗日插值为例,其公式如下:```L(x) = y0 ((x - x1) (x - x2) (x - x3)) / ((x0 - x1) (x0 - x2) (x0 - x3))+ y1 ((x - x0) (x - x2) (x - x3)) / ((x1 - x0) (x1 - x2) (x1 - x3))+ y2 ((x - x0) (x - x1) (x - x3)) / ((x2 - x0) (x2 - x1) (x2 - x3))+ y3 ((x - x0) (x - x1) (x - x2)) / ((x3 - x0) (x3 - x1)(x3 - x2))```将数据点代入上述公式,得到拉格朗日插值多项式。
3. 牛顿插值根据给定的数据点,构造牛顿插值多项式。
以三次牛顿插值为例,其公式如下:```N(x) = y0 + (x - x0) (y1 - y0) / (x1 - x0) + (x - x0) (x - x1) (y2 - y1) / ((x1 - x0) (x2 - x1)) + (x - x0) (x - x1) (x - x2) (y3 - y2) / ((x1 - x0) (x2 - x1) (x3 - x2))```将数据点代入上述公式,得到牛顿插值多项式。
插值运算实验报告
插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
数值分析实验报告--实验2--插值法
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
插值方法_实验报告
肖建 计科三班 20095420开课学院、实验室: 数统学院实验时间 :2011年 5 月 8 日实验项目类型课程名称数学实验实验项目名 称插值方法验证演示综合设计其他指导教师李东成 绩实验5 插值方法一、实验目的及意义[1] 了解插值的基本原理[2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想;[4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法;[5] 通过范例展现求解实际问题的初步建模过程;通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。
通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。
提高写作、文字处理、排版等方面的能力。
二、实验内容1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。
三、实验步骤1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件3.保存文件并运行;4.观察运行结果(数值或图形);5.写出实验报告,并浅谈学习心得体会。
四、实验要求与任务根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)基础实验1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。
1),x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10x , x ∈[0,2π].211x+M 文件:(1)clcx=linspace(-5,5,11);y=1./(1+x.^2);x0=linspace(-5,5,101);y0=1./(1+x.^2);y1=interp1(x,y,x0,'spline')y2=interp1(x,y,x0);A=[ones(11,1) x' (x.^2)' (x.^3)' (x.^4)' (x.^5)' (x.^6)' (x.^7)' (x.^8)' (x.^9)' (x.^10)']a=A\y';y3=a(1)+a(2).*x0+a(3).*x0.^2+a(4).*x0.^3+a(5).*x0.^4+a(6).*x0.^5+a(7).*x0.^6+a(8).*x0.^7+a(9).*x0.^8+a(10).*x0.^9+a(11).*x0.^10;plot(x0,y3,'r'),gtext('Lagr.'),hold on ,plot(x0,y2,'b'),gtext('Pies.Lin.'),hold on ,plot(x0,y1,'m'),gtext('Spline')hold off(2)x=linspace(0,2*pi,11); y=cos(x);x0=linspace(0,pi,101);y0=cos(x0);剩余代码和(1)中相同(3)x=linspace(0,pi,11);y=cos(x).^10;x0=linspace(0,pi,101);y0=cos(x0).^10;剩余代码和(1)中相同注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的差异,或采用两个函数之间的某种距离。
插值数值实验报告(3篇)
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
插值实验实验报告
一、课题名称Malab 函数插值方法二、目的和意义1、学会拉格朗日插值、牛顿插值、亨密特插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
三、计算公式拉格朗日插值的公式)())(()()()()()()()2,1,0,;,0)(;,1)(()()()(1010110n n i ni i ni n n i i i i ni i i n x x x x x x x w x f x w x x x w x L j i i j x l i j x l x f x l x L ---='-==≠====+=++=∑∑ 其中或者其中牛顿差值公式[][][])())(()()(],,[)()()()()(,))((,,)(,)()(1011,010,010*******n n n n n n n n n x x x x x x x w x w x x x f x N x f x R x x x x x x f x x x x x x x f x x x x f x f x N ---==-=--++--+-+=++- 其中亨密特插值公式∑=++=ni i x i i x i x n m b f a H 0)()()(12][五、结构程序设计拉格朗日插值的程序function[c,l]=lagan1(x,y) x=input('x=:'); y=input('y=:'); w=length(x); n=w-1;l=zeros(w,w); for k=1:n+1 v=1;for j=1:n+1 if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)); endendl(k,:)=vEndc=y*l;牛顿插值的程序function[c,l]=lagan(x,y)x=input('x=:');y=input('y=:');n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor k=j:nd(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); endendc=d(n,n);for k=(n-1):-1:1c=conv(c,poly(x(k)));m=length(c);c(m)=c(m)+d(k,k);end六、结果讨论和分析拉格朗日插值运行的结果x=:[0.4 0.55 0.65 0.80 0.95 1.05]y=:[0.41075 0.57815 0.69675 0.9 1.00 1.25382]l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05320 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05321.3333 -5.1333 7.7300 -5.67122.0177 -0.27660 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.02540 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210.0308 -0.1031 0.1353 -0.0869 0.0273 -0.0033 ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542牛顿插值的运行结果x=:[0.4,0.55,0.65,0.80,0.95,1.05]y=:[0.41075,0.57815,0.69675,0.90,1.00,1.25382]ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542多项式插值的主要目的是用一个多项式拟合离散点上的函数值,使得可以用该多项式估计数据点之间的函数值。
插值法 实验报告
void input(double x[MAXSIZE],double f[MAXSIZE],long n); int main(void) { double x[MAXSIZE],f[MAXSIZE],_x,_y; long n,i,j; printf("\n 请输入插值节点的个数:"); scanf("%ld",&n); input(x,f,n); printf("\n 请输入插值点:"); scanf("%lf",&_x); for(j=1;j<=n-1;j++) for(i=n-1;i>=j;i--) f[i]=(f[i]-f[i-1])/(x[i]-x[i-j]); _y=f[n-1]; for(i=n-2;i>=0;i--) _y=f[i]+(_x-x[i])*_y; printf("\n 插值点(x,y)=(%lf,%lf).",_x,_y); system("pause"); } void input(double x[MAXSIZE],double f[MAXSIZE],long n) { long i; for(i=0;i<=n-1;i++) { printf("\n 请输入插值节点 x[%ld],y[%ld]:",i,i); scanf("%lf%lf",&x[i],&f[i]); } } 六.运行结果及问题答案 截图
实验 2
学院 学号 实验题目 插值法 专 业 姓 名
插值法
日期 成绩 指导老师
一.实验目的 1.掌握拉格朗日插值法、牛顿插值法。 2.记录运行结果,回答问题,完成实验报告。 二.实验环境 实验环境:C++ 三.实验内容 思考问题:插值多项式是否阶次越高越好?数值积分与插值的关系是什么? 1.用拉格朗日插值法求 2 的平方根。 提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。 2.用牛顿插值法求 2 的平方根。 提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。 四.实验原理
数值分析插值实验报告
数值分析插值实验报告引言插值是数值分析中常用的一种技术,通过已知点的函数值来推测未知点的函数值。
在实际应用中,我们经常需要根据有限的数据点来估计连续函数的值,这时插值就起到了关键作用。
本实验旨在通过插值方法来推测未知数据点的函数值,并对比不同插值方法的精度和效果。
实验目的1.了解插值的基本概念和方法;2.掌握常见的插值方法,如拉格朗日插值、牛顿插值等;3.对比不同插值方法的精度和效果,分析其优缺点。
实验步骤1.数据采集:选取一组已知数据点,作为插值的基础。
这些数据点可以是从实际场景中测量得到的,也可以是人为设定的。
2.插值方法选择:根据实验要求和数据特点,选择适合的插值方法。
常见的插值方法包括拉格朗日插值、牛顿插值、分段线性插值等。
3.插值计算:根据选定的插值方法,利用已知数据点进行计算,并得到插值结果。
4.结果分析:比较插值结果与实际数据的差异,并评估插值方法的精度和效果。
可以使用误差分析等方法进行评估。
5.优化调整:根据实验结果和需求,对插值方法进行优化调整,以提高插值的准确性和可靠性。
实验结果与讨论通过实验,我们得到了不同插值方法的结果,并进行了对比和分析。
根据实验数据和误差分析,我们可以得出以下结论:1.拉格朗日插值方法具有较高的插值精度,在一定程度上能够准确地模拟实际数据。
2.牛顿插值方法相对于拉格朗日插值方法而言,对于大量数据点的计算速度更快,但在少量数据点的情况下,两者的精度差异较小。
3.分段线性插值方法适用于数据点较为离散的情况,能够提供较为平滑的插值结果。
4.插值方法的选择应根据具体需求和数据特点进行,没有一种插值方法适用于所有情况。
实验总结通过本次实验,我们对插值方法有了更深入的了解,并掌握了常见的插值方法的原理和应用。
实验结果表明,插值方法在数值分析中起到了重要的作用,能够准确地推测未知点的函数值。
然而,在实际应用中,我们还需要考虑数据的特点、插值方法的适用性以及计算效率等因素。
数值分析实验报告(插值法)
数值分析实验报告(插值法)武汉理⼯⼤学学⽣实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导⽼师姓名学⽣姓名学⽣专业班级2010—2010学年第⼀学期实验课程名称:数值分析第⼆部分:实验调试与结果分析(可加页)⼀、调试过程(包括调试⽅法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)⽤拉格朗⽇插值法计算时,输⼊及运⾏结果如下:拉格朗⽇插值法⽜顿插值法(2)利⽤⼆次插值计算时,输⼊及运⾏结果如下:拉格朗⽇插值法⽜顿插值法(3)⽤艾尔⽶特插值法计算时,f(x)的插值多项式(x)=(1+4*x)***(x-2)*(x-2)+(4)各插值算法的精度差异⽐较H5经过⽐较,拉格朗⽇插值法要⽐⽜顿插值法算法的计算量多⼀些,拉格朗⽇插值法后⼀次计算时⽤到了前⼀次计算的结果,提⾼了运算的效率,但拉格朗⽇插值法在构造艾尔⽶特插值法时很⽅便,将坐标点和对应的导数结合起来的精度⽐线性插值的精度⼜要⾼⼀些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较⾼。
对于实验要求的第⼆组数据⽤拉格朗⽇插值法(或者⽜顿插值法)实验结果如下:⼀下分别是⼆阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的⼀部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反⽽会让结果更加偏离真实结果,这充分说明了⾼次插值存在“病态性质”,在已知点很多的情况下应该采⽤分段低次插值,将拉格朗⽇插值法和⽜顿插值法运⽤到分段低次插值法当中,这样得到的结果可能胡更加精确。
对于分段低次插值本实验没有给出实验结果,但从实践上来看,分段低次插值的精度要⽐线性插值精度⾼,但当插值阶数⽐较少的时候没有必要采⽤分段低次插值。
⼆、实验⼩结、建议及体会各种插值法都有⾃⼰的利与弊,拉格朗⽇插值法运算过程相对复杂,但当和导数结合起来,组成抛物插值的时候,精度就可以提⾼很多。
⽜顿插值法、拉格朗⽇插值法等线性插值法只能适合在已知点不多的情况下使⽤,当已知的坐标点很多时候应该将区间分成⼩段进⾏分段线性插值或者分段抛物插值。
拉格朗日插值实验报告
拉格朗日插值实验报告一、实验目的本实验旨在通过实际实验,深入理解拉格朗日插值法的原理和应用,掌握其计算过程和相关技巧。
二、实验原理Pn(x) = ∑ [yi * li(x)]其中,li(x)称为拉格朗日基函数,具体的计算公式如下:li(x) = ∏ [(x-xj)/(xi-xj)] (i≠j)利用拉格朗日插值法可以对数据进行插值计算,从而得到原函数未知的点的函数值。
三、实验步骤1.根据实验要求,选择一组离散的数据点,确保它们在横坐标轴上不共线。
2. 使用拉格朗日插值法计算插值多项式的各个基函数li(x)。
3.对插值多项式进行求和,得到最终的插值多项式Pn(x)。
4.在给定的范围内选择一些未知数据点,利用插值多项式Pn(x)计算其函数值。
5.将实际计算的函数值与原函数值进行对比,评估插值方法的准确性和精确度。
四、实验结果以实验要求给定的数据点为例,具体数据如下:x:1,2,3,4,5,6y:5,19,43,79,127,187根据拉格朗日插值法的计算公式,可以得到以下结果:l0(x)=(x-2)(x-3)(x-4)(x-5)(x-6)/(-120)l1(x)=(x-1)(x-3)(x-4)(x-5)(x-6)/120l2(x)=(x-1)(x-2)(x-4)(x-5)(x-6)/(-48)l3(x)=(x-1)(x-2)(x-3)(x-5)(x-6)/48l4(x)=(x-1)(x-2)(x-3)(x-4)(x-6)/(-20)l5(x)=(x-1)(x-2)(x-3)(x-4)(x-5)/20插值多项式Pn(x)=5*l0(x)+19*l1(x)+43*l2(x)+79*l3(x)+127*l4(x)+187*l5(x)综合以上计算结果,可以对给定范围内的未知数据点进行插值计算,从而得到相应的函数值。
五、实验分析与结论在实际实验中,我们可以利用拉格朗日插值法对任意给定的函数进行逼近计算,从而得到函数在离散数据点之间的近似值。
插值法和拟合实验报告
插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。
二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。
三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。
常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。
-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。
-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。
-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。
2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。
常用的拟合法有最小二乘法。
-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。
四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。
2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。
五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。
根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。
-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。
2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。
可以使用均方根误差(RMSE)等指标来进行评价。
-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。
拉格朗日插值法实验报告
拉格朗日插值法实验报告一、实验目的本实验旨在通过使用拉格朗日插值法,以给定的一些数据点为基础,来预测其他未给定数据点的函数值。
通过实验,掌握拉格朗日插值法的具体计算步骤和应用范围。
二、实验原理给定 n+1 个互异的点 (x0, y0), (x1, y1), ..., (xn, yn),其中n 为自然数,我们希望通过这些点来构建一个多项式函数 P(x),满足P(xi) = yi,其中 i = 0, 1, ..., n。
构建多项式的具体步骤如下:1. 对于每个 xi,令Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
2. 最终的多项式P(x) = ∑ yi * Li(x)。
三、实验步骤1. 给定一组数据点 (x0, y0), (x1, y1), ..., (xn, yn)。
2. 对于每个 xi,计算Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
3. 构建多项式P(x) = ∑ yi * Li(x)。
4.给定一个新的x值,使用多项式P(x)预测对应的函数值。
四、实验结果和分析在本实验中,我们给定了如下的一组数据点:(0,1),(1,5),(2,17),(3,41),(4,83)。
根据计算步骤,我们计算出每个Li(x)和多项式P(x)的具体形式如下:L0(x)=(x-1)(x-2)(x-3)(x-4)/(-24)L1(x)=(x-0)(x-2)(x-3)(x-4)/6L2(x)=(x-0)(x-1)(x-3)(x-4)/(-4)L3(x)=(x-0)(x-1)(x-2)(x-4)/6L4(x)=(x-0)(x-1)(x-2)(x-3)/(-24)P(x)=1L0(x)+5L1(x)+17L2(x)+41L3(x)+83L4(x)使用上述多项式预测x=5时的函数值,得到P(5)=309我们可以将预测值与实际值进行比较,确认预测的准确性。
如果有多组数据点,我们可以使用更多的数据点来构建多项式,提高预测的精度。
插值法和拟合实验报告(数值计算)
插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。
二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。
三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。
1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。
插值法 实验报告
学号:06450118姓名:李鹏实验二插值法实验2.1(多项式插值的振荡现象)问题提出:考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,L(x)是否也更加靠近被逼近的函数。
龙格给出了一个极著名例子。
设区间[-1,1]上函数f(x)=1/(1+25x^2)实验内容:考虑区间[-1,1]的一个等距划分,分点为:x(i)=-1+2i/n,i=0,1,2…,n则拉格朗日插值多项式为:L(x)=∑l(i)(x)/(1+25x(j)^2 ) i=0,1,…n 其中l(i)(x), i=0,1,…n,n是n次拉格朗日插值基函数。
实验要求:⑴选择不断增大的分点数目n=2,3…,画出f(x)及插值多项式函数L(x)在[-1,1]上的图象,比较分析实验结果。
(2)选择其它的函数,例如定义在区间[-5,5]上的函数h(x)=x/(1+x^4) ,g(x)=arctanx重复上述的实验看其结果如何。
(3)区间[a,b]上切比雪夫点的定义为:x k=(b+a)/2+((b-a)/2)cos((2k-1)π/(2(n+1))),k=1,2,^,n+1以x1,x2^x(n+1)为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果。
实验过程:程序:Lp2.1:%lagrange insertfunction y=lagranged=input('d=');longn=input('longn=');x0=linspace(-d,d,longn);y0=1./(1.+25.*x0.^2);x=sym('x');n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endsubplot(1,2,1)y=simple(y);ezplot('1/(1+25*x^2)')hold onsubplot(1,2,2)ezplot(y,[-d,d])hold offLp2.2:%lagrange insertfunction y=lagranged=input('d=');longn=input('longn=');x0=linspace(-d,d,longn);y0=x0./(1+x0.^4);x=sym('x');n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endsubplot(1,2,1)y=simple(y);ezplot('x0./(1+x0.^4)')hold onsubplot(1,2,2)ezplot(y,[-d,d])hold off数值实验结果:函数 f(x) h(x)g(x)分点数n=2n=5n=8n=11n=14实验分析:如上图所示,针对第一列的f(x),随着分点数n 的增加,插值多项式L(x)的在[-1,1]的图象在边界处与函数图像的差别越来越大。
拉格朗日插值实验报告
实验名称: 实验一 拉格朗日插值1 引言我们在生产生活中常常会遇到这样的问题:某个实际问题中,函数f (x)在区间[a,b]上存在且连续,但却很难找到其表达式,只能通过实验和观测得到有限点上的函数表。
显然,根据这些点的函数值来求其它点的函数值是非常困难的。
有些情况虽然可以写出表达式,但结构复杂,使用不方便。
所以我们总是希望根据已有的数据点(或函数表)来构造某个简单函数P (x)作为f (x)的近似值。
插值法是解决此类问题的一种比较古老的、但却很常用的方法。
它不仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。
2 实验目的和要求运用Matlab 编写三个.m 文件,定义三种插值函数,要求一次性输入整张函数表,并利用计算机选择在插值计算中所需的节点。
分别通过分段线性插值、分段二次插值和全区间上拉格朗日插值计算f (0.15),f (0.31),f (0.47)的近似值。
已知函数表如下:3 算法原理与流程图(1)原理设函数y=在插值区间[a,b]上连续,且在n+1个不同的插值节点a≤x 0,x 1,…,x n ≤b 上分别取值y 0,y 1,…,y n 。
目的是要在一个性质优良、便于计算的插值函数类Φ中,求一简单函数P (x),满足插值条件P (x i )=y i (i=0,1,…,n),而在其他点x≠x i 上,作为f (x)近似值。
求插值函数P (x)的方法称为插值法。
在本实验中,采用拉格朗日插值法。
①分段低次插值当给定了n+1个点x 0<x 1<…<x n 上的函数值y 0,y 1,…,y n 后,若要计算x≠x i 处函数值f (x)的近似值,可先选取两个节点x i-1与x i 使x ∈[x i-1,x i ],然后在小区间[x i-1,x i ]上作线性插值,即得11111)()(------+--=≈i i i i i i i i x x x x y x x x x y x P x f这种分段低次插值叫分段线性插值,又称折线插值。
数值计算插值法实验报告
数值计算插值法实验报告
一、实验目标
本实验的目标是学习和掌握插值法的基本原理,通过实际操作,验证插值法的有效性,并利用插值法解决实际问题。
二、实验原理
插值法是一种数学方法,用于通过已知的离散数据点,构造一个连续的函数来近似地表示未知的函数值。
常用的插值法包括线性插值、多项式插值、样条插值等。
其中,多项式插值是一种常用的方法,其基本思想是选择一个多项式来逼近已知的数据点,从而得到未知点的近似值。
三、实验步骤
1.准备数据:收集一组已知的数据点,并将其整理成表格形式。
2.选择插值方法:根据实际情况选择适当的插值方法,如线性插值、多项式插值或样条插值等。
3.计算插值函数:根据选择的插值方法,利用已知的数据点计算插值函数的系数。
4.验证插值函数:利用已知的数据点对插值函数进行验证,检查其精度和误差。
5.应用插值函数:利用插值函数计算未知点的近似值,并将结果与实际值进行比较。
四、实验结果及分析
下面是本次实验的结果及分析:
1.已知数据点:。
实验报告-插值法
验 目 的 和 要 求2、掌握用MATAB 作线性最小二乘的方法。
实 验 内 容 和 步 骤计算机上机实验报告1掌握用MATLA 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。
实验的主要内容1编制拉格朗日、牛顿插值程序,并运行一个简单的实例。
(1)拉格朗日插值程序:fun cti on v=pol yin terp(x,y,u) n=len gth(x); v=zeros(size(u)); for k=1: n w=on es(size(u));for j=[1:k-1 k+1:n] w=(u-x(j))./(x(k)-x(j)).*w; end v=v+w*y(k); end实例:当x=144,169,225时,y=12,13,15,用拉格朗日差值法 求根号175。
如下:''Fl ^.kiEO- 1(2)牛顿插值程序:fun ctio n y=n ewi nterp(X,Y,x)% 牛顿插值函数m=le ngth(X);for k=2:mfor j=1:k-1Y(k)= (Y(k)- Y(j))/(X(k)-X(j));endendy=Y(m);for j=m-1:-1:1y=y.*(x-X(j))+Y(j);2、给定函数f(x)x,已知:f(2.0) .1.414214 f(2.1) .1.449138f (2.2) .1.483240 f (2.3) .1.516575 f (2.4) .1.549193 用牛顿插值法求4次Newton插值多项式在2.15处的值,以此作为函3.选择函数y=exp(-x 2) (-2 <x<2),在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m要适中,如50~100)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二插值法
1、实验目的:
1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。
2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。
2、实验要求:
1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;
2)编写上机实验程序,作好上机前的准备工作;
3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);
4)分析和解释计算结果;
5)按照要求书写实验报告;
3、实验内容:
1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。
已知函数表:(,)、(,)、(,)、(,)用三次拉格朗日插值多项式求x=时函数近似值。
2) 求满足插值条件的插值多项式及余项
1)
4、题目:插值法
5、原理:
拉格郎日插值原理:
n次拉格朗日插值多项式为:L
n (x)=y
l
(x)+y
1
l
1
(x)+y
2
l
2
(x)+…+y
n
l
n
(x)
n=1时,称为线性插值,
L 1(x)=y
(x-x
1
)/(x
-x
1
)+y
1
(x-x
)/(x
1
-x
)=y
+(y
1
-x
)(x-x
)/(x
1
-x
)
n=2时,称为二次插值或抛物线插值,
L 2(x)=y
(x-x
1
)(x-x
2
)/(x
-x
1
)/(x
-x
2
)+y
1
(x-x
)(x-x
2
)/(x
1
-x
)/(x
1
-x
2
)+y
2
(x
-x
0)(x-x
1
)/(x
2
-x
)/(x
2
-x
1
)
n=i时,
Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)(X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想:
拉格朗日插值法是根据 n + 1个点x
0, x
1
, (x)
n
(x
< x
1
< (x)
n
)的函数值f (x
),
f (x
1) , ... , f (x
n
)推出n次多項式p(x),然后n次多項式p (x)求出任意的
点x对应的函数值f (x)的算法。
7、对应程序:
1 ) 三次拉格朗日插值多项式求x=时函数近似值#include""
#define n 5
void main()
{
int i,j;
float x[n],y[n];
float x1;
float a=1;
float b=1;
float lx=0;
printf("\n请输入想要求解的X:\n x=");
scanf("%f",&x1);
printf("请输入所有点的横纵坐标:\n");
for(i=1;i<n;i++)
{
printf("x[%d]=",i);
scanf("%f",&x[i]);
printf("y[%d]=",i);
scanf("%f",&y[i]);
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(j!=i)
{
b=b*(x1-x[j]);
a=a*(x[i]-x[j]);
}
}
lx=lx+b*y[i]/a;
a=b=1;
}
printf("\n求得的解是l(%f)=%f",x1,lx);
}
2 ) 满足插值条件的插值多项式及余项
#include <>
#define m 0
#define n 1
float L0(float a,float x1,float x0)
{
return (a-x1)/(x0-x1);
}
float L1(float a,float x1,float x0)
{
return (a-x0)/(x1-x0);
}
float H(float x0,float x1,float y0,float y1,float m0,float m1,float a) {
float b;
b=y0*(1-2*(a-x0)/(x0-x1))*L0(a,x1,x0)*L0(a,x1,x0)+y1*(1-2*(a-x1)/ (x1-x0))*L1(a,x1,x0)*L1(a,x1,x0)+m0*(a-x0)*L0(a,x1,x0)*L0(a,x1,x0)+m1 *(a-x1)*L1(a,x1,x0)*L1(a,x1,x0);
return b;
}
void main()
{
float x0=1,x1=2,y0=2,y1=3,m0=0,n1=-1,a1=,a2=;
float k1,k2;
printf("input a1: \n");
printf(" %f\n",a1);
k1=H(x0,x1,y0,y1,m0,n1,a1);
printf("%f的函数值为:%f\n\n\n",a1,k1); printf("input a2: \n");
printf(" %f\n",a2);
k2=H(x0,x1,y0,y1,m0,n1,a2);
printf("%f的函数值为:%f\n\n",a2,k2); }
8、实验结果:
x=时函数近似值为
9、图形(如果可视化)
三次拉格朗日插值多项式求x=时函数近似值
满足插值条件的插值多项式及余项
10、实验体会:
经过本次实验,让我清楚了整个运算过程我对C语言的编程更加熟练,对拉格朗日插值和Hermite函数插值法的运用更加熟练,也牢牢的记住了这两个公式的使用。