大学物理静电场

合集下载

大学物理课件第五章静电场65页PPT

大学物理课件第五章静电场65页PPT
结论: 电场中各处的力 学性质不同。
2、在电场的同一点上放 不同的试验电荷
结论: F 恒矢量
q0
F3
q3
F1
q1
Q
q2
F2
电场强度定义:
E
F
qo
单位:N·C-1
1. 电场强度的大小为F/q0 。
2. 电场强度的方向为正电荷在该处所受电场 力的方向。
FqE
➢ 电场强度的计算
1.点电荷电场中的电场强度
n
Fi
E i1 q0
n Fi q i 1 0
n
Ei i1
q1 r0 1
F02r02q2 F
q0
F01
若干个静止的点电荷q1、q2、……qn,同时存在时的
场强为
n
E Ei
i 1
i
qi
4 π ori2
eˆri
3.连续分布电荷电场中的电场强度
将带电体分成许多无限小电荷元 dq ,先求出它在任意
目录
第五章 第六章 第七章 第八章
静电场 静电场中的导体和电介质 恒定磁场 变化的电磁场
第五章 静电场
5-1 电荷 库仑定律 5-2 电场 电场强度 5-3 高斯定理及应用 5-4 静电场中的环路定理 电势 5-5 等势面 电势梯度
5-1 电荷 库仑定律
➢ 电荷 带电现象:物体经摩擦 后对轻微物体有吸引作 用的现象。 两种电荷: • 硬橡胶棒与毛皮摩擦后 所带的电荷为负电荷。
Qi c
电荷守恒定律适用于一切宏观和微观过程( 例如 核反应和基本粒子过程 ),是物理学中普遍的基本定
律之一。
➢ 库仑定律
库仑定律描述真空中两个静止的 点电荷之间的相互 作用力。

大学物理学(上册)第5章 静电场

大学物理学(上册)第5章 静电场
q ne (n 1,2,3, )
e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '

大学物理第一章 静电场

大学物理第一章 静电场
第一章
静止电荷的电场
本章是静电部分重点,主要讨 论如何描述电场,即从电荷在电场 中受力的角度建立电场强度的概念。 重点讨论用两种方法求场强分布。
1
一、基本概念
1. 电荷
(1) 种类 只有两种 (2) 电荷是量子化的(charge quantization ) 自然界物体所带电荷:q = ne (3) 电荷遵从守恒定律 (law of conservation of charge) (4) 电量是相对论不变量
dE
dq 4 o r
e 2 r
13
例2 均匀带电直线,带电量为q,长为L,
求空中任意一点P的场强。
解:
(1)取电荷元
q dq dl dl L
y
dq
(2)电荷元产生 元场强大小 1 dq dE 4 0 r 2
L
dl
r
o
x

P
14
dE
x
方向:与dq到场点的矢径 r
q 1 1 Ey 4 0 L x 2 ( L d )2 x2 d 2
式中:
x是场点到带电线的垂直距离
d 是垂足到直线下端点的距离(取绝对值)
17
(5)长直带电线周围任一点电场强度
大小:
E E E E E E
2 x 2 y 2 z 2 x
2. 数学表达式:
q1q2 F k 2 er r
er :
单位矢径
大小:等于1 方向:从施力电荷(场源) 指向受力电荷(场点) 3
1 k 8.988 1012 Nm 2 / c 2 4 o
o 8.8510 12 C 2 / Nm 2

大学物理 静电场

大学物理 静电场

0
s q
(3)任意闭合曲面 s ,不包围电荷,点
电荷 q 位于闭合曲面外,情况如何?
有电场线连续,则穿入和穿出曲面 s 的电场线数 相等,则穿出闭合曲面 s 的电场强度通量为零。
qi e E ds 0
s
q
0
(4)任意闭合曲面 s 内有点电荷 q1 , q2 ,, qn 曲面外有点电荷 Q1 , Q2 ,, Qn ,则通过该闭 合曲面的电场强度通量
第五章 静电场
静电场----相对于观察者静止的电荷产生的电场
稳恒电场—不随时间改变的电荷分布产生不随时间
改变的电场
两个物理量:
场强、电势;
一个实验规律:库仑定律;
两个定理:
高斯定理、环路定理
§1 电荷及其相互作用
摩擦起电和雷电:对电的最早认识
§8-1 电荷
库仑定律
电荷的种类:正电荷和负电荷
电性力:同号相斥、异号相吸 电量:物体带电的多少 使物体带点的方法: 1.摩擦起电
e E ds q 4 0 R q
2
ds
ds
q
0
(2)任意闭合曲面 s 内包围一点电荷q 以 q 为中心作一半径为 R 的球面,由于电场线
在空间连续不中断,显然通过球面与通过闭合曲面
s 的电场强度通量相等

q e E ds
s
x dE
电场强度的计算
dq
y
R
当dq 位臵发生变化时,它所激发的电场 矢量构成了一个圆锥面。 所以,由对称性
.
z
x
dE
dE
E y Ez 0
§3 静电场的高斯定理
电场线

大学物理——静电场汇总

大学物理——静电场汇总

第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。

❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。

电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。

电荷之间的作用是通过电场实现的。

电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。

Edzy x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强kE j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εE EDε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。

大学物理笔记(6)电磁学(一)静电场

大学物理笔记(6)电磁学(一)静电场
对于电荷面分布,可以取一小块面积元,其电荷面密度为σ ,则该面积元在距离r处产生的电势为dV=kσdA/r。
电荷体密度与电势关系
对于电荷体分布,可以取一小体积元,其电荷体密度为ρ, 则该体积元在距离r处产生的电势为dV=kρdV/r。电势ຫໍສະໝຸດ 与等势面概念及应用电势差定义
电势差是指电场中两点间电势的差值 ,用符号U表示,单位为伏特(V)。
种电荷相互吸引。
电场
电荷周围存在的一种特殊物质,对 放入其中的其他电荷有力的作用。
电场线
用来形象描述电场的曲线,电场线 上每点的切线方向表示该点的电场 强度方向,电场线的疏密程度反映 电场的强弱。
电场强度与电势
电场强度
描述电场强弱的物理量,用E表示 ,单位是牛/库仑(N/C)。电场 强度是矢量,方向与正电荷在该 点所受电场力方向相同。
电场强度
表示电场中某点的电场强弱 和方向的物理量,用E表示 。其方向与正电荷在该点所 受电场力的方向相同。
电势
描述电场中某点的电势能的 高低,用φ表示。电势差则 是两点间电势的差值,即电 压。
高斯定理
通过任意闭合曲面的电通量 等于该曲面内所包围的所有 电荷的代数和除以真空中的 介电常数。
常见误区及易错点提示
这种现象称为静电感应。
静电平衡
当导体内部电荷分布达到稳 定状态,即导体内部电场强 度为零时,称导体处于静电 平衡状态。此时,导体表面
电荷分布满足高斯定理。
屏蔽效应
处于静电平衡状态的导体, 其内部电场强度为零,因此 外部静电场对导体内部无影 响,这种特性称为屏蔽效应 。
介质在静电场中特性分析
01
电极化
05 静电场能量与能 量守恒定律探讨
静电场能量密度表达式推导

大学物理静电场

大学物理静电场


静电力的叠加原理
两个以上点电荷对于另一个点电荷的静电 作用力等于各个点电荷单独存在时对该点电荷 作用力的矢量和. N F qqi F2 ˆ e F Fi 2 ri i 4 0 ri i 1 r1 F 1 q 连续分布电荷Q对点电荷q作用力 q 1 r2 qdq q2


dl
电荷线密度
1 λe r E dl 2 l 4 πε 0 r
r
P
dE
17
求解电场强度的步骤:
1、按其几何形状的带电特征任取一电荷元dq
2、写出dq在所求场点的电场表达式 dE 3、分析不同电荷元在所求场点的电场方向是 否相同,如果不同则需要将 dE 分解,写出 dE 在具体坐标系各坐标轴方向上的分量式,并将 分量式进行积分,最后将各分量结果进行矢量 合成。
2 xr0 q E E E 2 2 2 i 4 πε0 ( x r0 4)
q -
r0
. 2
O
r0 2
q
+
x
E
A
.
E
x
21
q 2r0 1 2 xr0 q E i 2 2 2 2 i 4πε x 3 r0 2 4πε0 ( x r0 4) 0 (1 2 ) 4x
F dF Q
4 0 r
ˆ e 2 r
11.3
电场和电场强度
1. 库仑相互作用力的两种解释:
1)一个点电荷不需中间媒介直接施力与另一点电荷 -----超距相互作用 2)电荷产生电场,电场再作用于另一电荷
-----场传递相互作用
对静电情况 两种观点等价
在动态下会怎样呢? 结果完全不同!

大学物理静电场ppt课件

大学物理静电场ppt课件
大学物理静电场ppt 课件
目录
• 静电场基本概念与性质 • 静电场中的电荷分布与电势 • 静电感应与电容器 • 静电场中的能量与动量 • 静电场与物质相互作用 • 总结回顾与拓展延伸
01
静电场基本概念与性质
电荷与电场
电荷的基本性质
同种电荷相互排斥,异种电荷相互吸引。
电场的概念
电荷周围存在的一种特殊物质,它对放入其中 的其他电荷有力的作用。
典型问题解析
电荷在电场中的受力与运动
根据库仑定律和牛顿第二定律分析电 荷在电场中的受力与运动情况。
电场强度与电势的关系
通过电场强度与电势的微分关系,分 析电场强度与电势的变化规律。
电容器与电容
分析平行板电容器、圆柱形电容器等 典型电容器的电容、电量、电压等物 理量的关系。
静电场的能量
计算静电场中电荷系统的电势能、电 场能量等物理量,分析静电场的能量 转化与守恒问题。
某些晶体在受到外力作用时,内部产生电极化现象,从而在晶体表面产生电荷的现象。 压电效应具有可逆性,即外力撤去后,晶体又恢复到不带电的状态。
热电效应
温差引起的电荷分布和电流现象。包括塞贝克效应(温差产生电压)和帕尔贴效应(电 流产生温差)。
压电效应和热电效应的应用
在传感器、换能器、制冷技术等领域有广泛应用。
静电场能量密度及总能量计算
静电场能量密度定义
01
单位体积内静电场所具有的能量。
计算公式
02
能量密度 = 1/2 * 电场强度平方 * 电介质常数。
静电场总能量计算
03
对能量密度在整个空间进行积分。
带电粒子在静电场中运动规律
运动方程
根据牛顿第二定律和库仑定律建立带电粒子在静 电场中的运动方程。

大学物理 静电场总结

大学物理 静电场总结

5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.

大学物理课件静电场

大学物理课件静电场

有限差分法求解边值问题
有限差分法原理
将连续的空间离散化为网格,用差分方程近 似代替微分方程进行数值求解。
有限差分法的离散化方案
常见的离散化方案包括向前差分、向后差分 和中心差分等。
有限差分法的求解步骤
建立差分方程、确定边界条件、采用迭代法 或直接法求解差分方程得到近似解。
06 静电危害防护与 安全措施
连续分布电荷系统势能计算方法
通过积分求解连续分布电荷的势能,需考虑电荷分 布的空间范围和形状。
静电场能量密度和总能量
静电场能量密度定义
单位体积内静电场所具有的能量。
静电场能量密度计算公式
$w = frac{1}{2} varepsilon_0 E^2$,其中$varepsilon_0$为真空 介电常数,$E$为电场强度。
静电场总能量计算
通过对静电场能量密度在空间上的积分,可求得静电场的总能量。
能量守恒定律在静电场中应用
能量守恒定律表述
在一个孤立系统中,无论发生何种变化,系统的总能量保持不变。
静电场中能量转化与守恒
在静电场中,电荷的移动和电场的变化都会伴随着能量的转化,但 总能量保持不变。
应用实例
如电容器充放电过程中,电场能与电源提供的电能或其他形式的能 量相互转化,但总能量不变。
分离变量法的适用范围
适用于具有规则几何形状和简单边界条件的静电场问题。
格林函数法求解边值问题
1 2
格林函数法原理
利用格林函数表示点源产生的场,并通过叠加原 理求解任意源分布产生的场。
格林函数的性质 格林函数具有对称性、奇异性和边界条件等性质。
3
格林函数法的应用步骤 确定格林函数、将源分布表示为点源的叠加、利 用格林函数求解场分布。

大学物理 第六章 静电场

大学物理 第六章 静电场

-
开始, E’< E0 ,导体内部场强不为零,自由电子继续运动,E’ 增大。到E’= E0 即导体内部的场强为零,此时导体内没有电荷 作定向运动,导体处于静电平衡状态。
3 3、静电平衡条件 用电场表示 •导体内部任一点的电场强度为零; •导体表面处的电场强度,与导体的 表面垂直。 3 3、静电平衡条件
U AB
qd E d oS

球形电容器
+q R1 R2 o
解:两极板间电场
q E 2 4 o r
板间电势差
( R1 r R2 )
-q 讨论:①当R2 → 时,
U 12
电容
R2
R1
q 1 1 ( ) E dl
4 o R1 R2
C 4 o R1 ,
E表 表面
E内= 0
等 势 面
用电势表示: •导体是个等势体; •导体表面是等势面。 对于导体内部的任何两点A和B
U AB
对于导体表面上的两点A和B
B E dl 0
A

U AB
B Et dl 0
A
E dl
A
B
二、静电平衡时导体上电荷的分布
例1:两块平行放置的面积为S 的金属板,各带电量Q1、 Q2 ,
板距与板的线度相比很小。求:
① 静电平衡时, 金属 板电荷的分布和周围电
Q1
Q2
场的分布。
②若把第二块金属 板接地,以上结果如何?
1
EI
2
S
3
EII
4
S
EIII
解: 电荷守恒
( 1 2 ) s Q1 ( 3 4 ) s Q2 i i 高斯定理 2 o

大学物理静电场总结

大学物理静电场总结

第七章、静 电 场一、大体概念 1、电场 (1)、电荷在周围空间激发电场,电荷之间的彼此作用是通过电场传递的。

电场对身处其中的电荷有力的作用(2)库伦定律 沿连线方向,同号相斥,异号相吸2、电场强度⑴、 实验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与实验电荷电量成正比,若实验电荷异号,则所受电场力的方向相反。

咱们就用qF来表示电场中某点的电场强度,用E 表示,即qF E =⑵、点电荷的电场强度以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r,把试验电荷q 放在P 点,有库仑定律可知,所受电场力为:r Qq F E 2041επ==⑶常见电场公式无穷大均匀带电板周围电场:εσ02=E3、电势⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与查验电荷有关,而比值qE pa 0则与电荷的大小和正负无关,它反映了静电场中某给定点的性质。

为此咱们用一个物理量-电势来反映那个性质。

即qE p V 0=⑶常见电势公式 点电荷电势散布:rq V επ04=半径为R 的均匀带点球面电势散布:Rq V επ04=()R r ≤≤0rq V επ04=()R r ≥221r qq k F =二、定理1、场强叠加定理点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。

即E E E n E +++= (21)2、电势叠加定理V 1 、V 2 ...V n 别离为各点电荷单独存在时在P 点的电势点电荷系的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。

3、高斯定理在真空中的静电场内,通过任意封锁曲面的电通量等于该闭合曲面包围的所有电荷的代数和除以ε说明:①高斯定理是反映静电场性质的一条大体定理。

②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。

③高斯定理中所说的闭合曲面,通常称为高斯面。

三、静电平衡1、静电平衡当一带电体系中的电荷静止不动,从而电场散布不随时刻转变时,带电 体系即达到了静电平衡。

大学物理课件静电场

大学物理课件静电场

大学物理课件静电场大学物理课件:静电场一、引言静电场是物理学中的一个重要概念,它描述的是电荷在空间中产生的电场对其他电荷的作用力。

在我们的日常生活中,静电现象随处可见,如静电吸附、静电感应等。

本篇课件将介绍静电场的基本概念、性质和规律,并通过实例说明静电场的实际应用。

二、静电场的定义与性质1、静电场的定义静电场是指由静止电荷在空间中产生的电场。

在静电场中,电场强度E和电势V是描述电场特性的两个基本物理量。

2、静电场的性质(1)电场强度E是矢量,具有方向和大小。

在真空中,电场强度E 与电荷q成正比,与距离r的平方成反比。

(2)电势V是一个标量,它描述了电荷在电场中的相对位置。

在真空中,电势V与电荷q无关,只与距离r有关。

三、库仑定律与高斯定理1、库仑定律库仑定律是描述两个点电荷之间的作用力的定律。

在真空中,两个点电荷之间的作用力F与它们的电量q1和q2成正比,与它们之间的距离r的平方成反比。

2、高斯定理高斯定理是描述穿过一个封闭曲面的电场线数与该曲面所包围的电荷量之间的关系。

在真空中,穿过一个封闭曲面的电场线数N与该曲面所包围的电荷量Q成正比,与距离r的平方成反比。

四、静电场的实际应用1、静电除尘器静电除尘器是一种利用静电场对气体中的粉尘颗粒进行吸附的装置。

在静电除尘器中,带电的粉尘颗粒在电场力的作用下被吸附在收集器壁上,从而达到净化气体的目的。

2、静电复印机静电复印机是一种利用静电场对光敏材料进行成像的装置。

在静电复印机中,光敏材料上的电荷分布会根据光学图像产生变化,从而形成静电潜像。

这个潜像可以通过墨粉显影或热转印等方式转化为可见图像。

大学物理静电场课件一、静电场的基本概念1、静电场:静电场是静止电荷在其周围空间产生的电场。

2、静电场的特性:静电场具有“高斯定理”和“环路定理”两个基本特性。

二、静电场的数学描述1、电位函数:电位函数是描述静电场分布的物理量,其值沿闭合曲线的变化与电场强度沿该闭合曲线的积分成正比。

大学物理 静电场

大学物理  静电场

E
➢电力线的性质:
1)电力线起始于正电荷(或无穷远处)
,终止于负电荷,不会在没有电荷
处中断;
2)两条电场线不会相交;
q
3)电力线不会形成闭合曲线。
之所以具有这些基本性质, 由静电场的基本性质和场的单值性决定的。
E
q
二、电通量(电场强度通量)
——藉助电力线认识电通量
定义: 通过任一面元的电力线的条数称为通过这
E
ds
S
侧面
0
两底面
2ES
sS
0
s
E
2 0
由以上例题可见:
对 Q 的分布具有某种对称性的情况下 利用高斯定理解 E 较为方便
常见的电量分布的对称性:
球对称 柱对称
面对称
均 球面 匀
带 电
球体

无限长带电线 无限长柱面 无限长柱体
无限大平面(无厚度) 无限大平板(有厚度)
总结选取高斯面的规律
思考:有限长直导线 的电场轴对称吗?
思考: 均匀带电的无限长的柱面,设其截面
半径为R,带电线密度为.
rR E 0
rR E
2 0 r
P
r
例4 无限大均匀带电平面的场强,设电
荷面密度为s.
解: 场强具有面对称性
取垂直于带电面的柱面 E
s
E
为高斯面,设其截面积
为S。
S
E ds
E
ds
q1
0
q2
0
qn
0
0
0 1
0
qint
S内
qint
E dS i
S
0
高斯定理表述:
在真空中的静电场内,通过任一闭合面的电通量

大学物理12真空中的静电场

大学物理12真空中的静电场

03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场

CONTENCT

• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。

大学物理静电场课件

大学物理静电场课件

Q dq
r q0
• P
那么电荷之间的作用是通过什么作用的呢?
§8.2 电场和电场强度
一、电场
• 场论观点(法拉第) 没有物质,物体之间的 相互作用是不可能发生的。
根据场论观点:
(1)特殊媒介物质——电场 电场
电荷
相互作用
(2)电场力
激发
电荷
电场
电荷 电场力
电荷
(3)电场是物质的一种特殊形态,不仅存在于带电体内, 而且存在于带电体外,弥漫在整个空间。
方向←
方向
电场强度小结
•电场强度的定义:
E
F
q0
•定量研究电场:对给定场源电荷求其 E分布函数 .
•基本方法: 用点电荷(或典型电荷)电场公式和
场强叠加原理
qr
E 4 0r 3
;
E Ei
i
dq dE ( dEx , dEy ) E dE
Ex dEx Ey dEy
•典型带电体 E分布:
电场 强度
电势
电通量
静电力叠加原理
高斯定理 环路定理
静电场的 基本性质
与带电粒子 的相互作用
稳恒电场
导体的静电平衡

电介质 极化
电 电位移矢量 介 容
质中高斯定理
场 能
• 重点
• 真空中的库仑定律 • 点电荷的概念 • 电场强度矢量 • 场强叠加原理
• 难点
• 电场强度矢量的计算(叠加法)
§8.1 静电的基本性质
EE与 与rr反 同向 向。 ;+q
(呈球对称分布)
P q0
r
-q
E
P q0 E
2、点电荷系的场强

【大学物理】静电场

【大学物理】静电场

【大学物理】静电场在大学物理的广阔知识海洋中,静电场无疑是一个极其重要的篇章。

它不仅是物理学基础理论的重要组成部分,也在实际生活和众多科学技术领域中有着广泛而深刻的应用。

让我们先来了解一下什么是静电场。

静电场是由静止电荷产生的一种特殊的物质形态。

电荷是物质的基本属性之一,分为正电荷和负电荷。

当这些电荷静止不动时,它们周围的空间就会产生一种特殊的“力场”,这就是静电场。

静电场具有一些独特的性质。

首先,静电场对放入其中的电荷会产生力的作用。

这个力的大小与电荷的电荷量以及所处位置的电场强度有关。

电场强度是描述静电场强弱和方向的物理量,它等于单位正电荷在该点所受到的电场力。

从电场线的角度来看,静电场的电场线总是从正电荷出发,终止于负电荷,或者延伸到无穷远处。

而且电场线的疏密程度表示电场强度的大小,电场线越密,电场强度越大;电场线越稀疏,电场强度越小。

库仑定律是描述静电场中两个静止点电荷之间相互作用力的基本定律。

它表明,两个点电荷之间的作用力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。

这个定律为我们研究静电场中电荷之间的相互作用提供了重要的依据。

静电场中的高斯定理也是一个非常重要的概念。

它指出,通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以真空中的介电常数。

这个定理为我们计算电场强度提供了一种有效的方法。

在实际生活中,静电场有着广泛的应用。

例如,静电复印机就是利用静电场来实现复印的功能。

在复印机中,通过对硒鼓充电形成静电场,使得墨粉能够吸附在硒鼓上,从而完成复印的过程。

再比如,静电除尘器是利用静电场使空气中的灰尘带电,然后在电场力的作用下将灰尘吸附到电极上,达到净化空气的目的。

在科学研究中,静电场也发挥着重要的作用。

例如,在加速器中,通过利用静电场对带电粒子进行加速,可以使粒子获得很高的能量,从而用于科学研究和医疗等领域。

静电场的研究不仅在物理学中具有重要意义,在其他学科领域如化学、生物学等也有着不可忽视的影响。

(完整版)大学物理静电场

(完整版)大学物理静电场

(
r
l 2
)2
1
(r
l 2
)2
1
E
(
r
l 2
)2
E
若r>>l,则有:
E 2ql 4 0r3
2Pe 4 0r3
写成矢量形式即为:
E 2Pe 4 0r3
电偶极子在电场中所受的力
如图所示 M=flSin
=qElSin =PeESin
则 M Pe E
f +
l
pe
f
θ
E
[例2] 如图示,求一均匀带电直线在 O点的电场。
3、电荷的量子化 e =1.6021892±0.0000046×10-19C 密里根油滴实验
二、库仑定律(Coulomb’s Law)
1、库仑定律
F
k
q1q2 r122
其中 k 1
4 0
0 8.85 1012C 2N 1m2
2、矢量性:
1 Qq
F
4 0
r2
r0
r0 F
与电荷电性无关(指研 究对象) 的方向与电荷电性及r0 有关
r2
Cos
5、选择积分变量
选作为积分变量,则
l = atga =atg(-/2)
=-aCtg dl=aCsc2 d r2=a2+l2=a2+a2Ctg2
=a2Csc2 所以有:
Y
dE
X
θ2
0
aa
r
a
θ1
q
dl
l
dEX
1 4 0
Cos aCsc2d a2Csc2
1 4 0
d a
Cos
大学物理 (下)

大学物理(下)03静电场3

大学物理(下)03静电场3
大学物理( 大学物理(下)
§11.3 电 势
静电场—电势 静电场 电势
1
§11.3 电 势
§11.3.1 §11.3.2 §11.3.3 §11.3.4 小结 电场力的功 电势能 电势 电势的计算
静电场—电势 静电场 电势
返回
2
§11.3
§11.3.1 电场力的功
1、在点电荷的电场中 、

+q

静电场—电势 静电场 电势
12
r+ ⋅ r− ≅ r
2
r− − r+ ≅ l cosθ
3. 连续带电体的电势 连续带电体的电势: (1). 电势积分法 电势积分法:
r dU
P
dq
UP = ∫

dq 4πε0r
Q
Q
(2). 场强积分法 场强积分法:
UP = ∫
P
v v E ⋅ dL
特点: 计算场强对称分布带电体的电势方便。 特点: 计算场强对称分布带电体的电势方便。
W = qU
静电场—电势 静电场 电势
返回
9
§11.3.4 电势的计算
1、 点电荷的电势 、
UP
r ∞ r = ∫ E ⋅ dl
P
q
r
P
r dl
r 设 dr = d l
U
r E

=
=
∫r

E dr

∫r 4πε 0
q 4πε0r
q
dr 2 r
q>0
r
o
=
q<0
静电场—电势 静电场 电势
10
2、电荷系的电势 、
(1). 当 P点 r > R2 : P = U1 1

大学物理静电场PPT课件

大学物理静电场PPT课件
象。
雷电防护
避雷针是利用尖端放电原理来保护建筑物等免受雷击的一种装置。在雷雨天气,云层中 的电荷使避雷针尖端感应出与云层相反的电荷,由于避雷针尖端的曲率大,电荷密度高 ,使得其周围电场强度特别强,容易将空气击穿而产生放电现象,从而将云层中的电荷
引入大地,避免了对建筑物的雷击。
02 静电场中的电介质
05 静电场在生活、生产中的应用
静电除尘原理及设备简介
静电除尘原理
利用静电场使气体中的粉尘荷电,然后在电场力的作用下使粉尘从 气流中分离出来的除尘技术。
设备组成
主要包括电极系统、高压电源、收尘装置、气流分布装置、振打清 灰装置及电除尘器的外壳等。
工作过程
含尘气体在通过高压电场时,粉尘颗粒荷电并在电场力作用下向电极 运动,最终沉积在电极上,通过振打等方式使粉尘落入灰斗中。
电源内部非静电力将正电荷从负极移 到正极所做的功与移送电荷量的比值 称为电源电动势,用符号E表示。电源 电动势反映了电源将其他形式的能转 化为电能的本领大小。
内阻
电源内部存在着阻碍电流通过的因素 称为内阻。内阻的大小反映了电源内 部损耗的大小。在电路中,内阻与负 载电阻串联连接,共同影响电路的性 能。
03 静电场能量与能量密度
静电场能量计算方法
电场能量定义
01
静电场中的电荷分布所具有的能量。
计算方法
02
通过对电场中所有电荷的电势能进行求和来计算。
公式表示
03
$W = frac{1}{2} int rho V dV$,其中$rho$为电荷密度,$V$
为电势。
能量密度概念及其物理意义
能量密度定义
应用实例
高压作业人员穿戴用金属丝制成的防护服,当接触高压线时,形成了等电位,使得作业人员的身体没有电流通过 ,起到了保护作用。此外,精密电子仪器和设备的金属外壳也是利用静电屏蔽原理来防止外部静电场对其内部电 子元件的干扰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求它们之间电相互作用和万有引力,并比较它们的大小.
解 me9.11031kg e1.611 0C 9
mp1.671027kg G 6 .6 7 1 1 0 N 1m 2k 2 g
Fe 4π10
e2 r2
8.1106N
FgGmrem 2p 3.710-47N
Fe 2.271039 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
F 124π10
q1q2 r122
e 12
三 叠加原理
点电荷 q i 对q 0 的作用力
Fi
1
4π 0
qiq0 ri3
ri
q1
q2 q3
r1 r2 r3
q0
F3
F2 F1
q 0 所受合力
F
Fi
i
力的叠加原理
F Fi
i
例12.1 在氢原子内,电子和质子的间距为 5.31011m.
Aq0
2、场中同一点放不同的试验电荷
结论:
B
q0
F2F恒 矢 量
FB
q0 2q0
定义电场强度:
F E
qo
单位:N·C-1 或 V m1
大小:单位正试验电荷在该处所受电场力的大小
方向:正试验电荷在该处所受电场力的方向
电场中某点的电场强度等于单位正电荷在该 点所受的电场力。
讨论:
E
F
qo
1、电场是客观存在,与试验电荷q0无关.
2、电场强度是点函数 E E (r,t) 静电场 EE(r)
3、均匀电场:电场强度的大小、方向都相同。
4、电场中电荷受力: FqE F Edq Q
§12.4 静止的点电荷的电场及其叠加
一 点电荷的电场强度
Q
r q 0
E
F 1 E
q0 4π0
rQ2er
SI制 k 8 .98 1 9 7 N 0 m 5 2 C 2 5
+ q1 F
F
q2
库仑定律 F 12kqr11q 222e 12F 21
库仑力遵守牛顿第三定律
令 k 1
4π 0
( 为0 真空电容率)
04 π 1k 8 .85 1 4 1 0 C 2 2 2N 1m 2
8 .85 14 1 0 F 2 2 m 1
有关教学事宜
平时成绩:出勤、作业、课堂练习等 作业安排:每周二交 答疑安排:每周二、四(G511)
课件下载邮箱: 密码:123456
第12章 静电场
教学基本要求
念,理一解电掌场握强描度述静E电是场矢的量物点理函量数—. —电场强度的概
二 理解高斯定理.是静电场的重要定理,它表 明静电场是有源场.
i
电荷连续分布情况
dE
1
4π 0
drq2 er
E dE 4π10re r2dq
qd q
r
P
dE
电荷体密度 dq
dV
点 P处电场强度
E
1
V4π0
re 2r dV
电荷面密度 d q
ds
E
S
4π10σre 2r ds
电荷线密度 d q
dl
E
l
1
4π 0
re 2r dl
qds
r
P
dE
dl
q
r
dE
P

电偶极子的电场强度
电偶极子的轴
r0
电偶极矩(电矩)
pqr0
q
讨论
p q
r0
(1)电偶极子轴线延长线上一点的电场强度
q O q
r0 2 r0 2
E
x
A
E
x
q O q
x r0 2 r0 2
E
A
E
x
E 4π10
q (xr0
2)2i
E 4π10
q (xr0
rl
E
p
r r
q
y
r0 q
x
40r3
例 解
例12.4 长为L的均匀带电直杆,电荷线密度为
求 它在空间一点 P 产生的电场强度。(P点到杆的垂直
距离为 a )
解 dqdx
dE 1
40
dx
r2
dExdEcos
dEydEsin
由图上的几何关系
y
dE
dE y
P
dEx
r
1
a
2
dq O
x
xactg dxacs 2d c
3 同性相斥,异性相吸. 二 电荷守恒定律
在孤立系统中,电荷的代数和保持不变. (自然界的基本守恒定律之一)
三 电荷的相对论不变性 电荷与带电体的运动速率无关
§12.2 库仑定律与叠加原理

点电荷F2模1q型1 (Fqd21 1r1r12r212)F1q22
q2
d
F1 2
二 库仑定律
F 12kqr11q 222 e 12F 21
三 掌握用点电荷电场强度和叠加原理以及高斯 定理求解带电系统电场强度的方法.
四 了解电偶极子概念,能计算电偶极子在均匀 电场中的受力和运动.
§12.1 电荷
一 电荷的量子化 基本性质
1 电荷有正负之分;
2 电荷量子化; 电子电荷 e1.6012 0 1C 9
q ne ( n 1 ,2 ,3 , )
r2 a 2 x 2 a 2 c2 sc
1 λd x dE x 4 0 r 2 cos θ
1 4 0
λa csc 2 θ d θ a 2 csc 2 θ
cos
θ
dE dE y
P
dEx
cos d
4 0a
dEy
s
40a
ind
Ex
dEx
2 1
40acosd
r
a
1
2
d4q0a(Osin2sin1x)
Ey dEy
2 1
40asind40a(co1 sco2s)
讨论一些特例:无限长均匀带电直线的场强?
1 = 0 ,2 =
Ex 0
EEy 2oa
y P
1
a o
2 x
P点的场强?
P a
L
P a
L
L
aP
例12.5 正电荷 q均匀分布在半径为 R的圆环上.
计算在环的轴线上任一点

EdE
P的电场强度. 由对称性有 EExi
§12.3 电场和电场强度
一 静电场
实验证实了两静止电荷间存在相互作用的静电力,
但其相互作用是怎样实现的?
电荷
电场
电荷
场是一种特殊形态的物质 场
物质
实物
二. 电场强度
{ •试验电荷q0及条件
点电荷(尺寸小) q0足够小,对待测电场影响小
1、场中不同点上放相同试验电荷qo
FA
结论:各处力学性质不同。
2)2i
E E E 4πq0(x2 2x r020r4)2i
x r0
E
1
4π 0
2xr03qi
1
4π 0
2p x3
(2)例12.3电偶极子轴线的中垂线上一点的电场强度
解 EE40(rq 2l24)
E2Ecos
cos l 2
E E
y
B
r2 l2 4
E
E40r3(1 ql2l4r2)3/2
Q
r
E q0
Байду номын сангаас
E
Q
E Q
二 电场强度的叠加原理
点电荷 q i 对q 0 的作用力
Fi
1
4π 0
qiq0 ri3
ri
q1
q2 q3
r1 r2 r3
q0
F3
F2 F1
由力的叠加原理得 q 0 所受合力
F
故 q 0 处总电场强度
E
F Fi
i
Fi
q0 i q0
电场强度的叠加原理
EEi
相关文档
最新文档