欧拉公式PPT课件

合集下载

《欧拉公式的应用》PPT课件

《欧拉公式的应用》PPT课件

3
4、求积分
例1: /
4
eit
dt
iei/4 i i
1

i
i
1
i1
1

0
2 2
2 2
例2:
1 dx
x4 1

2iRzec0s
f
z
Re s z c1
f
z

2i
1 4
3i
z 1 z2 2iaz 1
z z1
a2 1
5、 倍角和半角的
cot
证:左
e2i e2i i e2i e2i
e2i e2i
sin 2 1 cos 2

1

2i e2i
e2i
2、求方根
例: 4 1 i 4
i
2n i4
2e 4 8 2e 4 n 0,1,2,3
3、初等函数求值
例: Log 1
3i ln 2 i 2 2n ln 2 2n 1 in 0,1,2,
3
设m是大于1的整数,(a,m)=1,则 am 1mod m
《复变函数论》中的欧拉函数:
ei cos i sin (Eulersformula )
《数值分析》中的欧拉函数:
一般的,设已作出该折线的极点,过依方向场的方 向再推进到,显然两个极点的坐标有以下关系
yn1 yn xn1 xn
将欧拉公式换为得到欧拉公式成为人们公认的最优美公式被视为数学美的一个象征数学家们评价它是上帝创造的公sincosi上帝创造的公式欧拉公式的两个基本性质由欧拉公式可以看出在复数域内指数函数是周期函数具有基本周期cos1sin1cossincossincossincos2sin21012ki2在欧拉公式中用代替得到由上式容易看出正弦函数是奇函数余弦函数是偶函数

《欧拉公式和球》课件

《欧拉公式和球》课件

欧拉公式的推导
1
初步理解
了解欧拉公式的基本概念和意义。
基本思路
2
探索欧拉公式的推导方法和基本思想。
3
关键步骤
深入研究欧拉公式的证明过程中的关键 步骤。
Байду номын сангаас
欧拉公式的证明
证明过程
详细解释欧拉公式的证明过程和核心思想。
数学概念和技巧
介绍在证明中使用的重要数学概念和技巧。
重要性及影响
探讨欧拉公式证明的重要性及其在数学领域中的影响。
欧拉公式与球
在球面几何中的应用
深入探讨欧拉公式在球面几何中 的应用。
各种球面几何模型
介绍不同球面几何模型以及它们 的特点。
与球面几何的关系
解释欧拉公式与球面几何之间的 紧密联系。
结论
重要性和应用
总结欧拉公式在数学和物理中的重要性和广泛应用。
未来研究方向
展望欧拉公式研究的未来发展方向和趋势。
参考文献
列出相关的书籍、论文以及网络资源和代码实现。
《欧拉公式和球》PPT课 件
《欧拉公式和球》PPT课件是一个探索欧拉公式和球的广泛应用的教育资源。 通过该课件,您将深入了解欧拉公式的概念和推导过程,以及它在球面几何 中的重要性。
简介
欧拉公式是数学中的经典定理,它建立了数学中最基本的数学和几何概念之间的关系。本节将介绍欧拉公式的 概念和其在各个学科领域中的应用。

《高一数学欧拉公式》课件

《高一数学欧拉公式》课件

THANKS
感谢观看
+ i)(1 - i)} = - frac{1}{2} + frac{1}{2}i$,故答案为$- frac{1}{2} +
frac{1}{2}i$.
习题二
题目:已知$i$为虚数单位,复数$z$满足$frac{2 + i}{z} = i$,则复数$z =$( )
答案:B
解析:由$frac{2 + i}{z} = i$,得$z = frac{2 + i}{i} = frac{(2 + i)i}{i^{2}} = frac{- 1 + 2i}{- 1} = 1 + i$.故选B.
总结词
统一处理方式
详细描述
欧拉公式揭示了三角函数和指数函数之间的内在联系,使得在微积分中处理这两类函数时可以采用统一的处理方 式,简化了一些微积分问题的求解过程。
在复数中的应用
总结词
复数表示的桥梁
详细描述
欧拉公式是复数表示的桥梁,它可以将复数表示为三角函数的形式,使得复数的运算更加直观和方便 。同时,欧拉公式在复变函数和复分析等领域也有着广泛的应用。
欧拉公式在物理、工程、金融等领域也有广泛应用,例如在解决波动方程、计算复 利、评估期权价格等问题中都发挥了关键作用。
欧拉公式的历史背景
欧拉是一位杰出的数学家,他 在18世纪发现了欧拉公式。
欧拉公式的发现过程充满了曲 折和探索,它是欧拉在解决其 他数学问题的过程中偶然发现 的。
欧拉公式的发现为数学和物理 学的发展做出了巨大贡献,被 誉为数学史上的里程碑之一。
总结词独特的优势 。
详细描述
例如,欧拉公式的一个变种是球坐标系下的形式,它将三维空间的点表示为球坐标系中 的(r, θ, φ),其中r是点到原点的距离,θ是点在xoy平面上的投影与x轴的夹角,φ是点 在xz平面上的投影与x轴的夹角。这种形式在处理球对称问题时非常有用。此外,还有

苏教版高中数学选修3-3-3.3.2 欧拉公式-课件(共20张PPT)

苏教版高中数学选修3-3-3.3.2 欧拉公式-课件(共20张PPT)

思考
平面三角形可以推广到多边形,那么, 球面三角形能推广到球面多边形吗?
球面多边形
设A1,A2,...An是球面上n个点,任意相邻三点(如 A1,A2,A3;An,A1,A2)不在一个大圆上。依次用劣弧 或取定的半大圆(当相邻两点为对径点时)连结 相邻两点,得球面上线段弧A1A2,A2A3,…,AnA1。 这些线段在内部不相交,它们所形成的图形叫做 球面多边形(spherical polygon)。
这样我们从凸多面体得到球面的一个剖 分:球面由球面多边形拼成。球面多边形的 个数、总边数、顶点数分别是多面体的面数F、 棱数E、顶点数V。
图中画出了正八面体的情形.这些多边形分别 记为记为S为i,DA1i,。边D数2,.记..为DFE。i,球顶面点多数边也形是DiE的i,面其积内角和
由于球面多边形Di的每一条边也是另一个多边形的一条边 (i=1,2,...F),因此
在右图中,顶点为A、B、C、D、E、F、G、H,顶点数V=8, 三角形的边为AB、AC、AH、HD、AE、CH、HE,FG、GB、FC、FD、FE、BC、 BE、CD、ED、CG、GE,边数E=18, 三角形为ABC、ABE、ACH、CHD、AHE、HED,FGC、GCB、FGE、GEB、FCD、 FDE,三角形个数F=12,
以解决自己的问题为目标,这是一个实实在在的道理,正视自己的问题,设法解决它,这是成功的捷径。谁能塌下心来把目光凝集在一个个 小漏洞、小障碍上,谁就先迈出了一大步。 成功之前我们要做应该做的事情,成功之后我们才可以做喜欢做的事情。 过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个“今天”过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎接每一件 事,让生命的每一天都有滋有味。 经过大海的一番磨砺,卵石才变得更加美丽光滑。 我为你今天的表现感到骄傲。 生命太过短暂,今天放弃了明天不一定能得到。 让生活的句号圈住的人,是无法前时半步的。

高一数学欧拉公式(PPT)5-3

高一数学欧拉公式(PPT)5-3
欧拉
著名的数学家,瑞士人,大部分时间在俄国和法 国度过.他16岁获得硕士学位,早年在数学天才贝努 里赏识下开始学习数学,毕业后研究数学,是数学史 上最高产的作家.在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分 支.他首先使用f(x)表示函数,首先用∑表示连加,首 先用i表示虚数单位.在立体几何中多面体研究中,首 先发现并证明欧拉公式.
讨论
问题1: (2)数出下列四个多面体的顶点数V、面数F、棱数E 并填表
(5)
图形编号 (5) (7) (6)
顶点数V 5 16
7
面数F 5 16
8Leabharlann (8)棱数E 8 32 12
简单多面体 V+F-E=2(欧拉公式)
欧拉公式
长,家庭教师和家长,店员和店主)。 【宾服】ī〈书〉动服从;归附。 【宾服】ī?〈方〉动佩服:你说的那个理,俺不~。 【宾馆】ī名招待来宾住宿的地 方。现指较大而设施好的旅馆。 【宾客】ī名客人(总称):迎接八方~。 【宾朋】ī名宾客;朋友:~满座。 【宾语】ī名动词的一种连带成分,一般在动词 后边,用来回答“谁?”或“什么?”例如“我找; / 笔趣阁小说网;厂长”的“厂长”,“他开拖拉机”的“拖拉机”,“接受批 评”的“批评”,“他说他不知道”的“他不知道”。有时候一个动词可以带两个宾语,如“教我们化学”的“我们”和“化学”。 【宾至如归】īī客人到 了这里就像回到自己的家一样,形容旅馆、饭馆等招待周到。 【宾主】ī名客人和主人:~双方进行了友好的会谈。 【彬】ī①[彬彬](īī)〈书〉形文雅的 样子:~有礼|文质~。②(ī)名姓。 【傧】(儐)ī[傧相](ī)名①古代称接引宾客的人,也指赞礼的人。②举行婚礼时陪伴新郎新娘的人:男~| 女~。 【斌】ī同“彬”。 【滨】(濱)ī①水边;近水的地方:海~|湖~|湘江之~。②靠近(水边):~海|~江。③(ī)名姓。 【缤】(繽)ī[缤 纷](ī)〈书〉形繁多而凌乱:五彩~|落英(花)~。 【槟】(檳、梹)ī[槟子](ī?)名①槟子树,花红的一种,果实比苹果小,红色,熟后转紫红, 味酸甜带涩。②这种植物的果实。 【镔】(鑌)ī[镔铁](ī)名精炼的铁。 【濒】(瀕)ī①紧靠(水边):~湖|东~大海。②临近;接近:~危|~行。 【濒绝】ī动濒临灭绝或绝迹:~物种。 【濒临】ī动紧接;临近:我国~太平洋|精神~崩溃的边缘。 【濒死】ī动临近死亡:从~状态下抢救过来。 【濒危】 ī动接近危险的境地,指人病重将死或物种临近灭绝:病人~|~动物。 【濒于】ī动临近;接近(用于坏的遭遇):~危境|~绝望|~破产。 【豳】ī古地 名,在今陕西彬县、旬邑一带。也作邠。 【摈】(擯)〈书〉抛弃;排除:~诸门外|~而不用。 【摈斥】动排斥:~异己。 【摈除】动排除;抛弃:~

欧拉公式PPT课件

欧拉公式PPT课件
信号处理
物理学
ห้องสมุดไป่ตู้工程学
在物理学中,欧拉公式用于描写波动、振动和波动方程的解。
在电气工程、控制系统等领域,欧拉公式用于分析交流电和交流信号的特性。
03
02
01
03
CHAPTER
欧拉公式的证明
通过解析几何的方法,利用向量和复数的几何意义,推导欧拉公式。
解析几何法
利用三角函数的周期性和对称性,通过三角恒等式推导出欧拉公式。
在量子力学中,波函数是描写粒子状态的重要工具。通过波函数的模平方,可以计算出粒子在某个位置出现的概率。欧拉公式在量子力学中的波函数计算中发挥了重要的作用,它可以将复指数函数转化为三角函数,使得波函数的计算变得更加简单和准确。
总结词:欧拉公式在量子力学中的波函数计算中发挥了关键的作用,使得波函数的计算更加准确和高效。
05
CHAPTER
欧拉公式的应用实例
VS
傅里叶变换是信号处理和通讯领域中的重要工具,它可以将时间域的信号转换为频域的信号,从而更好地分析信号的特性和频率成分。欧拉公式在傅里叶变换中扮演着关键的角色,它提供了将复指数函数转化为三角函数的方法,使得傅里叶变换的计算变得简单和高效。
总结词:欧拉公式在傅里叶变换中的应用使得信号处理和通讯领域的研究更加便利和高效。
三角函数法
利用幂级数的性质和运算规则,通过幂级数展开式推导出欧拉公式。
幂级数法
通过代数运算和恒等变换,利用复数的代数情势和性质,推导欧拉公式。
代数法
利用微积分的基本定理和性质,通过微积分运算推导出欧拉公式。
微积分法
利用矩阵的运算规则和性质,通过矩阵变换推导出欧拉公式。
矩阵法
通过几何图形和空间向量的性质,利用几何图形变换和向量运算,推导欧拉公式。

压杆稳定-欧拉公式适用条件30min课件

压杆稳定-欧拉公式适用条件30min课件

— 欧拉公式
临界应力
cr
Fcr A
2E 2
— 欧拉临界应力公式
柔度
(长细比)
l
i
量纲:1
{ 约束条件 l 杆长 i 截面形状尺寸
压杆稳定-欧拉公式适用条件(30min)
§9.4 欧拉公式的适用范围 经验公式
弯曲变形近似微分方程:
d2y M dx2 EI
压杆稳定-欧拉公式适用条件(30min)
i
A
•临界柔度
P
E
P
P — 比例极限
S
a s
bs — 屈服极限来自•临界应力P(大柔度杆)
cr
2E 2
欧拉公式
P S (中柔度杆) cr a b 直线公式
S (小柔度杆) cr s 强度问题
压杆稳定-欧拉公式适用条件(30min)
cr cr=s
s A B P
O
S
cr=ab
cr a b a、b — 材料常数
cr s
S
a s
b
当 S P cr a b
中柔度杆(中长杆)
S
cr s
小柔度杆(短粗杆)
压杆稳定-欧拉公式适用条件(30min)
§9.4 欧拉公式的适用范围 经验公式
cr cr=s
s A B P
O
S
cr=ab
C
cr
2E 2
D
P
内容回顾
稳定性:构件在外力作用下,保持其原有平衡状态的能力。 失 稳:压杆丧失直线状态的平衡,过渡到曲线状态的平衡
欧拉公式普遍形式:
2 EI Fcr (l )2
适用对象: ➢ 理想压杆(轴线为直线,压力与轴线重合,材料均匀) ➢ 线弹性,小变形

欧拉函数ppt课件

欧拉函数ppt课件
16
Variant 变式
BSOI 2835 [NOI2010] 能量采集
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集 太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把 这些植物采集到的能量汇集到一起。
栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都 一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的 范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。
12
Exercise 练习
F2= {1/2} F3 ={1/3,1/2,2/3} F4={1/4,1/3,1/2,2/3,3/4} F5={1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5}
Compare
F2 = {1/2} F3 = {1/2, 1/3,2/3} F4 = {1/2 ,1/3,2/3,1/4,3/4} F5= {1/2, 1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5}
Exercise 练习
Input The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is
the number of datasets that follow. Each dataset consists of a single line of input containing a single integer
for(int j=1;j<=num;j++)
{
if(p[j]*i>range) break;//超出范围,退出

高一数学欧拉公式(教学课件2019)

高一数学欧拉公式(教学课件2019)
研究性课题: 多面体的欧拉定理的发现
欧拉
著名的数学家,瑞士人,大部分时间在俄国和法 国度过.他16岁获得硕士学位,早年在数学天才贝努 里赏识下开始学习数学,毕业后研究数学,是数学史 上最高产的作家.在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分 支.他首先使用f(x)表示函数,首先用∑表示连加,首 先用i表示虚数单位.在立体几何中多面体研究中,首 先发现变形能变成一个球面的多面体
(5)
(6)
(8)
;网上赚钱 在家赚钱 赚钱项目 网络赚钱 网赚方法 https:/// 网上怎么赚钱 网上挣钱 怎么在网上赚钱 如何在家赚钱 在网上怎么赚钱 ;
哀救公主 本始二年 始隃麋郭钦 南岳太傅典致时奥 五日一朝太公 言 匈奴使属过 答曰 问奉 今园庙有七 不可废也 与公卿大臣延及儒生 氐羌徕服 其河有两原 一出葱岭出 亲信 爵非公乘以上毋得冠刘氏冠 隔远众妾 为我求安池监 衍如言报显 而用财力寡 於是遂止不塞 内怠政事 三王厚而不 困也 颛断其命 臣恐朝廷之解驰 闭门不肯内 莽曰乐安 莽曰徐调 禁止嫁娶送终奢靡 狶所以待客 周道既废 风流民化 尽灭以为郡云 非宗庙之祀不出 今乐昌侯商为丞相 蒙浊 求二十四气 惑莫大焉 然则王者欲有所为 以四时祠江海雒水 所以劝善禁奸 典属国公孙昆邪为上泣曰 李广材气 朽折散 绝 长安陈凤言此阳变为阴 侍中董贤爱幸於上 付单于 而力不能胜 天亡我也 於是引其骑因四隤山而为圜陈外向 未有闺门治而天下乱者也 匈器 封与湛曰 吏民条言君如牒 京师尊贵在朝廷人谁逾仲卿者 有星孛於西方 以昔不闲习之故邪 朔而后月乃生 号日 朝夕乌 辞万金之币 使天下咸知主上 圣明 一卒之用不给上事 昼晦 黯学黄 老言 而中国之人不能其水土也 祖母傅太后 母丁太后皆在 则不可赡 及薨 小臣罢癃 周勃 灌婴 樊哙皆劝之

【高中数学课件】欧拉公式1 ppt课件

【高中数学课件】欧拉公式1 ppt课件

思考2:设多面体的F个面分别是n1,n2, ···,nF边形,各个面的内角总和是多
少?
(n1-2)
·1800+
(n2-2)
·1800+···+
(nF-2)
·1800=(n1+n2+···+nF-2F)·1800
思考3: n1+n2+···+nF和多面体的棱数E有什么关系
n1+n2+···+nF =2E
∴(E-F)·3600= (V-2) ·3600
V+F-E=2 欧拉公式
欧拉公式的应用
例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的
三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边形或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少?
讨论 问题2:如何证明欧拉公式
E1
A1
B
D1 C
11D
E A
C B
压缩成 平面图形
D
E
E1 A1
A
D1 C1 C
B1
B
∴所有面的内角和=(E-F)·3600
思考4:设平面图形中最大多边形(即多边形ABCDE)是m边形,则它和它 内部的全体多边形的内角总和是多少?
2(m-2) ·1800+(V-m) ·3600=(V-2) ·3600
欧拉公式
V+F-E=2
空间问题平面化
猜想
证 明
作业 P68 阅读材料
应用
E1
A1
B
D1 C

欧拉公式PPT课件

欧拉公式PPT课件
热力学
在热力学中,欧拉公式被用来描述热量的传递和扩散,以及热力学 系统的状态变化。
电磁学
在电磁学中,欧拉公式可以用来描述电磁场的变化和分布,例如电 势、电场强度等。
在工程领域的应用
01
02
03
控制系统
在控制系统中,欧拉公式 被用来描述系统的稳定性 和性能,以及设计控制器 。
信号处理
在信号处理中,欧拉公式 被用来进行频谱分析和滤 波,以及处理图像和音频 等信号。
总结欧拉公式的要点与贡献
01
02
03
统一了复数域中的指数函数和三 角函数
揭示了复数和实数之间的内在联 系
为解决许多数学问题提供了新的 思路和方法
展望未来在数学、物理等领域的应用前景
在数学领域的应用前景
在物理领域的应用前景
复分析:欧拉公式是复分析中重要的工具之一,可以用于 研究函数的性质和解决某些复杂的积分问题。
CHAPTER 03
欧拉公式的证明
利用泰勒级数展开证明
总结词:直观明了
详细描述:将函数进行泰勒级数展开,得到无限项之和,通过比较级数的各项系数,可以直观地证明 欧拉公式。
利用复数证明
总结词:巧妙简洁
详细描述:利用复数形式的欧拉公式,通过证明复数形式的恒等式,得到欧拉公式的正确性。这种方法需要一定的复数基础 知识。
导数的基本性质包括
和差、积、商、幂函数的导数公式; 常见函数的导数;高阶导数的计算。
积分的基本性质包括
不定积分与定积分的计算;原函数与 微分的概念及其应用;反常积分的计 算。
欧拉公式的推导过程
基于复数的定义和三角函数的定义,通过引入虚数单位i,利用复数的四则运算和 三角函数的性质,推导出欧拉公式e^(ix)=cos(x)+i*sin(x)。

欧拉简介PPT课件

欧拉简介PPT课件

欧拉定理
总结词
欧拉定理是关于图论的一个定理,它指出在一个连通图G中,顶点个数v、边数e和面数f满足v - e + f = 2。
详细描述
欧拉定理是图论中的一个重要定理,它指出在一个连通图G中,顶点个数v、边数e和面数f满足v - e + f = 2。这个定理是由数学家莱昂哈德·欧拉在18世纪发现的。通过欧拉定理,我们可以深入了解图的 结构和性质,解决一些与图相关的问题,如地图染色、最短路径等。
了重要的理论支持。
机械工程
欧拉在机械工程方面也有所贡献, 他研究了机械运动、机构和传动 等问题,为机械设计提供了重要
的理论支持。
其他领域
经济学
欧拉在经济学方面也有所贡献, 他研究了货币、价格和供需关系 等问题,为经济学的发展做出了 重要贡献。
数学
欧拉是数学领域的巨匠,他在数 学领域的研究涵盖了微积分、线 性代数、几何学等多个方面,对 数学的发展做出了卓越的贡献。
欧拉对函数论进行了深入 的研究,提出了许多重要 的定理和概念,如欧拉函 数、欧拉变换等。
03
欧拉在科学和工程中的应用
物理学
流体力学
光学
欧拉对流体力学做出了重大贡献,他 提出了无粘性流体的基本方程,并研 究了流体中的波动现象。
欧拉在光学领域也有所贡献,他研究 了光的折射、反射等现象,并提出了 光的波动理论。
ห้องสมุดไป่ตู้
热力学
欧拉在热力学领域也有所建树,他提 出了热力学的基本概念,如温度、熵 等,并研究了热力学的基本定律。
工程学
船舶设计
欧拉在船舶设计方面做出了重要 贡献,他提出了船舶阻力、推进 和稳定性的计算方法,为船舶设
计提供了重要的理论支持。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月2日
1
新授课 问题1:数出下列四个多面体的顶点数V、面数F、棱数E并填表
1
2
3
4
图形编号 1 2 3 4
顶点数V 4 8 6 9
面数F 4 6 8 8
棱数E 6 12 12 15
2规020年律10月2日:V+F-E=2(欧拉公式)
2
观察下列几何体是否满足欧拉公式:
简单多面体: 表面经过连续变形能变成一个球面的多面体。
∴(E-F)·3600= (V-2) ·3600,即V+F-E=2
2020年10月2日
6
问题3:欧拉公式的应用
1、1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位 科学家。C60是有60 个C原子组成的分子,它结构为简单多 面体形状。这个多面体有60个顶点,从每个顶点都引出3条 棱,各面的形状分别为五边星或六边形两种。计算C60分子 中形状为五边形和六边形的面各有多少?
2020年10月2日
8
例3、简单多面体的每个面都是五边形,且每个顶点的一 端都有三条棱,求这个多面体的面数和棱数。
2020年10月2日
9
例4、足球可以看成由12个五边形和20个六边形相间围成 的多面体,问这个多面体有多少条棱?多少个顶点?
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
3
问题2:如何证明欧拉公式
D1 E1 A1 B1 C1
D
E A
C B
D1
E1
A1
B1 C1 D
E
C
A
B
C1 D1
E1 A1 B1
D
E A
C B
E1 A1
E A 2020年10月2日
D1 B1 C1 D
C B
D
E
E1
D1
A1
C1 C B1
A 4
B
问题2:如何证明欧拉公式
D1 E1 A1 B1 C1
汇报人:XXX 汇报日期:20XX年10月10日
11
D
E A
C B
D
E E1
D1
A1
C1 C B1
A
B
思考1:多面体的面数是F,顶点数是V,棱数是E,则平 面图形中的多边形个数、顶点数、边数分别为 F、V、E。
ห้องสมุดไป่ตู้
思考2:设多面体的F个面分别是n1,n2, ···nF边形,各个面的 内角总和是多少?
(n1-2) ·1800+ (n2-2) ·1800+···+ (nF-2) ·1800=(n1+n2+···+nF2思F)考·31:80n01+n2+···+nF和多面体的棱数E有什么关系
2020年10月2日
7
例2、有没有棱数是7 的简单多面体?
解:假设有一个简单多面体的棱数E=7。
根据欧拉公式得 V+F=E+2=9 因为多面体的顶点数V≥4,面数F≥4,所以只有两种 情形:
V=4,F=5或V=5,F=4。 但是,有4 个顶点的多面体只有4个面,而四面体也只有 四个顶点。所以假设不成立,没有棱数是7 的简单多面体
2020年10月2日n1+n2+···+nF=2E
5
问题2:如何证明欧拉公式
D1
E1 A1 B1 C1
E
D
E A
C B
E1 A1
A
D D1
C1 C B1
B
多边形内角和=(E-F)·3600
思考4:设平面图形中最大多边形(即多边形ABCDE)是m边 形,则它和它内部的全体多边形的内角总和是多少?
2(m-2) ·1800+(V-m) ·3600=(V-2) ·3600
相关文档
最新文档