0-1背包问题_算法设计C++

合集下载

0-1背包问题的多种解法

0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。

首先说明一下 0-1 背包问题拥有最优解。

假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。

因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。

如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。

01背包实验报告

01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。

设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。

(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。

二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。

但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。

例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。

若使用贪心策略,则会选择一个(30,120)和一个(20,100)。

得到的价值总和是220。

而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。

因此贪心策略不能给出0-1背包的最优解。

后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。

正确的贪心策略应是:每次选择单位重量下价值最大的物品。

由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。

2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。

则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。

则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。

c语言部分背包问题的算法设计

c语言部分背包问题的算法设计

很高兴能为您提供文章撰写服务。

在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。

第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。

在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。

2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。

第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。

具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。

2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。

第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。

2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。

第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。

通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。

掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。

以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。

希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。

期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。

背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。

在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。

分支限界法求0-1背包问题实验程序以及代码(C++)

分支限界法求0-1背包问题实验程序以及代码(C++)

分支限界法求0-1背包问题实验程序以及代码(C++)本程序中(规定物品数量为3,背包容量为30,输入为6个数,前3个为物品重量,后3个数为物品价值):代码:#include<iostream>#include<stack>using namespace std;#define N 100classHeapNode //定义HeapNode结点类{public:doubleupper,price,weight; //upper为结点的价值上界,price是结点所对应的价值,weight为结点所相应的重量int level,x[N]; //活节点在子集树中所处的层序号};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);stack<HeapNode>High; //最大队Highdouble w[N],p[N]; //把物品重量和价值定义为双精度浮点数double cw,cp,c=30; //cw为当前重量,cp为当前价值,定义背包容量为30int n=3; //货物数量为3int main(){cout<<"请按顺序输入3个物品的重量:(按回车键区分每个物品的重量)"<<endl;int i;for(i=1;i<=n;i++)cin>>w[i]; //输入3个物品的重量cout<<"请按顺序输入3个物品的价值:(按回车键区分每个物品的价值)"<<endl;for(i=1;i<=n;i++)cin>>p[i]; //输入3个物品的价值cout<<"最大价值为:";cout<<Knap()<<endl; //调用knap函数输出最大价值return 0;}double MaxBound(int j) //MaxBound函数求最大上界{doubleleft=c-cw,b=cp; //剩余容量和价值上界while(j<=n&&w[j]<=left) //以物品单位重量价值递减装填剩余容量{left-=w[j];b+=p[j];j++;}if(j<=n)b+=p[j]/w[j]*left; //装填剩余容量装满背包return b;}void AddLiveNode(double up,double cp,double cw,bool ch,int lev)//将一个新的活结点插入到子集数和最大堆High中{HeapNode be;be.upper=up;be.price=cp;be.weight=cw;be.level=lev;if(lev<=n)High.push(be); //调用stack头文件的push函数}double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解{ int i=1; cw=cp=0; doublebestp=0,up=MaxBound(1); //调用MaxBound求出价值上界,best为最优值while(1) //非叶子结点{ double wt=cw+w[i];if(wt<=c) //左儿子结点为可行结点{ if(cp+p[i]>bestp) bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);}up=MaxBound(i+1);if(up>=bestp) //右子数可能含最优解AddLiveNode(up,cp,cw,false,i+1);if(High.empty()) return bestp;HeapNode node=High.top(); //取下一扩展结点High.pop(); cw=node.weight; cp=node.price; up=node.upper; i=node.level;}}输出结果为:。

01背包问题c语言代码回溯法

01背包问题c语言代码回溯法

以下是使用C语言实现01背包问题的回溯法代码:```c#include <stdio.h>#include <stdlib.h>// 初始化背包struct knapsack {int maxWeight; // 背包最大承重int *items; // 物品数组int n; // 物品数量};// 定义物品重量、价值和数量int weights[] = {2, 2, 6, 5, 4};int values[] = {6, 3, 5, 4, 6};int quantities[] = {3, 2, 2, 1, 1};// 初始化背包最大承重和当前承重int maxWeight = 10;int currentWeight = 0;// 初始化最大价值为0int maxValue = 0;// 遍历物品数组void traverseItems(struct knapsack *knapsack, int index) { // 对于每个物品,遍历其数量for (int i = 0; i < knapsack->quantities[index]; i++) {// 如果当前物品可以放入背包装且当前承重不超过背包最大承重,计算放入该物品后的总价值,并更新最大价值if (currentWeight + weights[index] <= knapsack->maxWeight) {int currentValue = values[index] * knapsack->quantities[index];if (currentValue > maxValue) {maxValue = currentValue;}}// 回溯,将当前物品从背包装中移除,递归地尝试下一个物品knapsack->quantities[index]--;if (index < knapsack->n - 1) {traverseItems(knapsack, index + 1);}knapsack->quantities[index]++; // 恢复物品数量,以便下次遍历尝试放入其他物品}}// 主函数int main() {// 初始化背包装和物品数组struct knapsack knapsack = {maxWeight, weights, 5};knapsack.items = (int *)malloc(sizeof(int) * knapsack.n);for (int i = 0; i < knapsack.n; i++) {knapsack.items[i] = values[i] * quantities[i]; // 根据价值和数量计算物品价值,并存储在物品数组中}knapsack.n = quantities[4]; // 由于最后一个物品的数量为1,因此只需遍历前n-1个物品即可得到所有可能的结果// 使用回溯法求解01背包问题,返回最大价值traverseItems(&knapsack, 0);printf("The maximum value is %d.\n", maxValue);free(knapsack.items); // 释放内存空间return 0;}```希望以上信息能帮助到你。

0-1背包问题的枚举算法

0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。

目标是在不超过背包容量的情况下,选择物品使得总价值最大化。

然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。

二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。

对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。

如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。

最终得到的组合就是最优解。

三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。

分支界限法0-1背包问题(优先队列式分支限界法)

分支界限法0-1背包问题(优先队列式分支限界法)

分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。

每组数据包含2部分。

第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。

第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。

每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。

0-1背包问题-贪心法和动态规划法求解

0-1背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。

二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。

三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。

要求每种的算法都给出最大收益和最优解。

设有背包问题实例n=7,M=15,,(w0,w1,。

w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。

,p6)=(10,5,15,7,6,18,3)。

求这一实例的最优解和最大收益。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。

0-1背包问题的求解算法设计与分析

0-1背包问题的求解算法设计与分析

itk a s c (n n it n n p ak it 。n &ma w) x
品 的重 量 分 别 为 叫 “, 、 值 分 别 为 , , , 包 的 训 价 … 背 承重 量 为 ( 4 ≤ W ) 1 。设 Vi , 为 该 最 优 解 的物 品 总 i ]
价值 , 即能 够 放 进 承 重 量 为 的 背 包 中 的 前 i 物 品 巾最 个
时 间 、 确性 等性 能 方 面进 行 了分 析 和 对 比 。 准
关 键 词 : —1背 包 问题 ; 态规 划 算 法 心 算 法 0 动 贪
中图 分 类 号 : 3 l TP l
文 献 标 识码 : A
文章 编 号 : 6 27 0 ( 0 2 0 60 3 —3 1 7 — 8 0 2 1 ) 0 —0 00
i = l
i 物 品 的子 集 和 不 包 括 第 i个 物 品 的 子 集 。 可得 : 个
( ) 不 包 括 第 i 物 品 的 子 集 中 , 优 子 集 的 价 值 1在 个 最 为 VF ,] i 。
( ) 包 括 第 i 物 品 的子 集 中 ( 此 J 2在 个 因 —W 0 , ≥ ) 最
算法 。
物 品 中选 出 的 最 优 子 集 的 总 价 值 。 因 此 , 出 如 下 递 推 得
式:
ma {  ̄- xV i




初 始 条 件 为 , ≥0时 , i0 一0 当 ≥ 0 , o 当 VE,] ; 时 v[ , 力 =0 。 我 们 的 目标 是 求 v[ , ] 即 T个 给 定 物 品 中 能 够 放 nw , /
frj 1 j : ma w;+ + ) o (一 ;< x j

0-1背包问题动态规划和贪心法实现

0-1背包问题动态规划和贪心法实现

算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。

二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。

三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。

背包问题C语言程序设计

背包问题C语言程序设计

1 问题要求及任务描述1.1 题目要求假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。

例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)(1,4,5)(8,2)(3,5,2)。

1.2 主要任务在给定物品数量,物品各自体积和背包体积的前提下,找出物体组合后的总体积与背包体积相等的物体组合2 解决问题的主要思路和方法2.1 关键问题如何选择第i件物品:(1)考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。

选中后,继续去考虑其余物品的选择。

(2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。

2.2 拟采用解决问题的方法可利用回溯法的设计思想来解决背包问题。

首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。

但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。

2.3 主要算法和处理流程图1.输入物品总个数2.依次输入各物品的体积3.输入背包总体积4.将物品排成一列,按顺序选取物品装入背包中,当物品太大不能装入时则弃之继续选取下一件,直到背包装满为止,5.出现在剩余的物品中找不到合适的物品填满背包的情况是说明刚刚装入背包的那件物品不适合,将它取出后继续选取后面的物品。

6.重复步骤4和5直至求出满足条件的解或者无解。

0-1背包问题动态规划详解及代码

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。

其关键是发现子问题和记录其结果。

然后利用这些结果减轻运算量。

比如01背包问题。

/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。

输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。

所以,我们的程序要从1到M一个一个的试。

比如,开始任选N 件物品的一个。

看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。

怎么能保证总选择是最大价值呢?看下表。

测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。

加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。

总的最佳方案是5+4为9.这样.一排一排推下去。

最右下放的数据就是最大的价值了。

(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。

遗传算法求解0-1背包问题(步骤)(精)

遗传算法求解0-1背包问题(步骤)(精)

遗传算法求解0-1背包问题。

(步骤)#include "iostream.h"#include "iomanip.h"#include "stdlib.h"#include "math.h"#include "time.h"//定义问题的最大规模#define max 100//问题规模,即共有多少个包int packageNum;//每个包的重量int packageWeight[max];//每个包的价值int packageValue[max];//约束,背包的最大容量int limitWeight;//群体的规模int colonySize;//colonyState[i][k] 表示一个染色体//colonyState[1...colonySize][ 0|1 ] 表示一代群体int colonyState[max][2][max];// currAge 表示当前代的编号// (currAge+1)%2 表示下一代的编号int currAge = 0;//个体评价信息表typedef struct tagIndividualMsg{int index;int value;} IndividualMsg;IndividualMsg individualMsg[max];//////////////////////////////////////////////////////////// // 函数声明void printColonyState( int nextAge );//////////////////////////////////////////////////////////// //初始化群体void colonyInit(){int i , j;int w;for( i = 0 ; i < colonySize ; i++ ){//保证找到一个符合约束的染色体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][currAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][currAge][j];}}}}//对个体进行评价int cmp( const void *a , const void *b ){IndividualMsg *x = (IndividualMsg *)a;IndividualMsg *y = (IndividualMsg *)b;return y->value - x->value;}void individualEstimate(){int i , j;for( i = 0 ; i < colonySize ; i++ ){individualMsg[i].index = i;individualMsg[i].value = 0;for( j = 0 ; j < packageNum ; j++ )individualMsg[i].value += packageValue[j] * colonyState[i][currAge][j]; }qsort( individualMsg , colonySize , sizeof(IndividualMsg) , cmp );}//终止循环的条件bool stopFlag(){//进行n 代进行后停止static int n = 50;if( n-- <= 0 )return true;elsereturn false;}//赌轮选择int gambleChoose(){int wheel[max] = { 0 };int i = colonySize - 1;int choose;wheel[i] = individualMsg[i].value;for( i-- ; i >= 0 ; i-- )wheel[i] = ( individualMsg[i].value + wheel[i+1] ) + colonySize * ( colonySize - i ); int seed = abs( wheel[0] - ( rand() % ( 2 * wheel[0] ) + 1 ) );choose = colonySize - 1;while( seed > wheel[choose] )choose--;// cout<<"----------------------------------------"<<endl;// cout<<"wheel :"<<endl;// for( i = 0 ; i < colonySize ; i++ )// cout<<setw(5)<<wheel[i];// cout<<endl;// cout<<"seed = "<<seed<<endl;// cout<<"choose "<<choose<<endl;return choose;}//交叉void across( int male , int female , int index ){int nextAge = (currAge+1)%2;int i , j , t;int acrossBit = rand() % (packageNum-1) + 1;for( j = 0 ; j < packageNum ; j++ ){colonyState[index][nextAge][j] =colonyState[individualMsg[male].index][currAge][j];colonyState[index+1][nextAge][j] =colonyState[individualMsg[female].index][currAge][j];}for( i = 0 ; i < acrossBit ; i++ ){t = colonyState[index][nextAge][i];colonyState[index][nextAge][i] = colonyState[index+1][nextAge][i];colonyState[index+1][nextAge][j] = t;}}//变异void aberrance( int index ){int seed , nextAge;nextAge = (currAge+1)%2;//只有1/3 的概率发生异变seed = rand() % ( packageNum * 3 );if( seed < packageNum )colonyState[index][nextAge][seed] = ( colonyState[index][nextAge][seed] + 1 ) % 2;}//处理死亡个体void dealDeath(){int i , j;int weight , w;int nextAge = (currAge+1)%2;for( i = 0 ; i < colonySize ; i++ ){weight = 0;for( j = 0 ; j < packageNum ; j++ )weight += packageWeight[j] * colonyState[i][nextAge][j];if( weight > limitWeight ){//随机生成新的个体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][nextAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][nextAge][j];}}}}printColonyState( nextAge );}//最优个体保护void saveBest(){int i , j;int min , minp , value;int nextAge = ( currAge+1)%2;min = individualMsg[0].value;minp = -1;for( i = 0 ; i < colonySize ; i++ ){value = 0;for( j = 0 ; j < packageNum ; j++ )value += packageValue[j] * colonyState[i][nextAge][j]; if( value <= min ){min = value;minp = i;}}if( minp >= 0 ){for( j = 0 ; j < packageNum ; j++ ){colonyState[minp][nextAge][j] =colonyState[individualMsg[0].index][currAge][j];}}}//////////////////////////////////////////////////////////// void setProblem(){int i;packageNum = 5;int w[] = { 5 , 4 , 3 , 2 , 1 };int v[] = { 8 , 9 , 3 , 1 , 2 };for( i = 0 ; i < packageNum ; i++ ){packageWeight[i] = w[i];packageValue[i] = v[i];}limitWeight = 13;colonySize = 5;}void printProblem(){int i;cout<<"----------------------------------------"<<endl;cout<<"problem state:"<<endl;cout<<"packageNum = "<<packageNum<<endl;cout<<"limitWeight = "<<limitWeight<<endl;cout<<"Weight: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageWeight[i];cout<<endl;cout<<"Value: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageValue[i];cout<<endl;}void printColonyState( int k ){cout<<"----------------------------------------"<<endl;cout<<"colonyState-->";if( k == currAge )cout<<"currAge:"<<endl;elsecout<<"next age:"<<endl;int i , j;for( i = 0 ; i < colonySize ; i++ ){for( j = 0 ; j < packageNum ; j++ )cout<<setw(2)<<colonyState[i][k][j];cout<<endl;}}void printIndividualMsg(){int i;cout<<"----------------------------------------"<<endl;cout<<"Individual Msg:"<<endl;for( i = 0 ; i < colonySize ; i++ ){cout<<individualMsg[i].index<<"\t"<<individualMsg[i].value<<endl; }}////////////////////////////////////////////////////////////void main(){srand( (unsigned int)time(NULL) );setProblem();printProblem();//初始群体colonyInit();printColonyState( currAge );while( !stopFlag() ){//评价当前群体individualEstimate();//生成下一代for( int i = 0 ; i < colonySize ; i += 2 ){int male = gambleChoose();int female = gambleChoose();across( male , female , i );aberrance( i );aberrance( i + 1 );}//处理死亡个体dealDeath();//最优个体保护saveBest();//现在的下一代变成下一轮的当前代currAge = ( currAge + 1 ) % 2;//printColonyState( currAge );}//输出问题解individualEstimate();cout<<"近似解:"<<endl;int j , w = 0;cout<<setw(10)<<"Value:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<packageValue[j];cout<<endl;cout<<setw(10)<<"Weight:";for( j = 0 ; j < packageNum ; j++ ){w += packageWeight[j] * colonyState[individualMsg[0].index][currAge][j]; cout<<setw(5)<<packageWeight[j];}cout<<endl;cout<<setw(10)<<"Choose:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<colonyState[individualMsg[0].index][currAge][j];cout<<endl;cout<<"limitWeight: "<<limitWeight<<endl;cout<<"总重量: "<<w<<endl;cout<<"总价值: "<<individualMsg[0].value<<endl; }////////////////////////////////////////////////////////////。

0-1背包问题的近似算法

0-1背包问题的近似算法

0-1背包问题的近似算法0-1背包问题的近似算法对问题特点和算法思想做一些整理如下:这类问题其实很有意思,做数学和做计算机的人都会研究,而且我这里将要提到的论文都是做计算机的人所写的。

问题简述0-1 Knapsack Problem (0-1背包问题,下面简称KP)和Subset Sum Problem (子集合加总问题,下面简称SSP)是经典的NP完全问题。

两个问题简要描述如下:KP:有n个物品要放入背包,第i个物品的价值为ci,占据体积为vi,背包的总容积为V,要选择一部分物品放入背包,使得他们的总价值最大。

对应的优化问题是maxxi∑ci∗xis.t.∑vi∗xi≤V,xi∈{0,1}这里xi代表是否选取第i个物品进背包,等于1就代表放入背包,等于0代表不放入背包。

SSP: 给一个集合{c1,c2,…,cn},还有一个目标值V,问能否选出一个子集,使得子集中元素求和刚好等于V。

我们一般考虑的是他的另一种表述方式:选出一个子集,使得子集中元素求和不超过V,且尽量大。

对应的优化问题是maxxi∑ci∗xis.t.∑ci∗xi≤V,xi∈{0,1}这里xi代表是否选入子集,等于1就是选入子集,等于0就是不选入子集。

SSP是KP的特殊情况,也即当ci=vi的时候,KP退化为SSP,从问题式子上看,也完全一样了。

尽管如此,研究了KP不代表就不用研究SSP了,后面会说明这一点。

精确算法与近似算法这两个问题都有很简单的动态规划算法可以精确求解,但可惜算法的时间复杂度是伪多项式的,也即和V相关,但V不是问题输入数据的规模,n才是。

在ACM竞赛等算法比赛中,经常会遇到一些问题属于KP的变种,而伪多项式算法也就足够了。

由于网上资料很多,而且难度不大,这里就不详细介绍了。

如果你不知道,请你搜索“动态规划求解0-1背包问题”。

这里我们更关心多项式近似算法,也即PTAS(Polynomial Time Approximation Scheme),也即对任意给定的ϵ,算法可以在关于n的多项式时间内求得一个解,且该解和真实最优解的最多相差ϵ倍。

0-1背包问题(回溯法)

0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品装入背包多次,也不能只装入部分的物品。

三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。

2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。

3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。

关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。

0-1背包问题的递归方法

0-1背包问题的递归方法

0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。

定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。

递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。

1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。

代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。

ACM程序设计竞赛例题[1]

ACM程序设计竞赛例题[1]

备战ACM资料习题1.0-1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

程序如下:#include <stdio.h>void readdata();void search(int);void checkmax();void printresult();int c=35, n=10; //c:背包容量;n:物品数int w[10], v[10]; //w[i]、v[i]:第i件物品的重量和价值int a[10], max; //a数组存放当前解各物品选取情况;max:记录最大价值//a[i]=0表示不选第i件物品,a[i]=1表示选第i件物品int main(){readdata(); //读入数据search(0); //递归搜索printresult();}void search(int m){if(m>=n)checkmax(); //检查当前解是否是可行解,若是则把它的价值与max比较{a[m]=0; //不选第m件物品search(m+1); //递归搜索下一件物品a[m]=1; //不选第m件物品search(m+1); //递归搜索下一件物品}}void checkmax(){int i, weight=0, value=0;for(i=0;i<n;i++){if(a[i]==1) //如果选取了该物品{weight = weight + w[i]; //累加重量value = value + v[i]; //累加价值}}if(weight<=c) //若为可行解if(value>max) //且价值大于max max=value; //替换max}void readdata(){for(i=0;i<n;i++)scanf("%d%d",&w[i],&v[i]); //读入第i件物品重量和价值}void printresult(){printf("%d",max);}2.装载问题有两艘船,载重量分别是c1、c2,n个集装箱,重量是wi (i=1…n),且所有集装箱的总重量不超过c1+c2。

0-1背包问题(分支限界法)

0-1背包问题(分支限界法)

分支限界法——01背包问题12软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。

不能将物品i装入背包多次,也不能只装入部分的物品i。

二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。

一般情况下,分支限界法与回溯法的求解目标不同。

回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。

回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。

分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。

为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。

这种方式称为分支限界法。

人们已经用分支限界法解决了大量离散最优化的问题。

三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode;typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) //入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) //出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {qnode b;if (i==n) //可行叶子结点{ if (vt==bestv){ bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列} EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf("请输入背包的最大容量v:");scanf("%d",&c);printf("请输入物品总数n:");scanf("%d",&n);printf("请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d件物品:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];}maxLoading(w,v,c);}五.实验结果。

ACM程序设计竞赛例题[1]

ACM程序设计竞赛例题[1]

A C M程序设计竞赛例题[1]-CAL-FENGHAI.-(YICAI)-Company One1备战ACM资料习题1.0-1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

程序如下:#include <>void readdata();void search(int);void checkmax();void printresult();int c=35, n=10; ");printf("\n");}printf("\n");}6.素数环问题把从1到20这20个数摆成一个环,要求相邻的两个数的和是一个素数。

分析:用回溯算法,考察所有可能的排列。

程序如下:#include <>#include <>void search(int);void init(); 表示空格;’X’表示墙。

程序如下:#include <>#include <>void search(int,int);int canplace(int,int);void readdata(); Floodfill给一个20×20的迷宫和一个起点坐标,用广度优先搜索填充所有的可到达的格子。

提示:参考第2题。

2. 电子老鼠闯迷宫如下图12×12方格图,找出一条自入口(2,9)到出口(11,8)的最短路本题给出完整的程序和一组测试数据。

状态:老鼠所在的行、列。

程序如下:#include<>void readdata();a[i][j]=0; ....注:测试数据可在运行时粘贴上去(点击窗口最左上角按钮,在菜单中选则“编辑”/“粘贴”即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京信息工程大学实验(实习)
报告
实验(实习)名称 0—1背包实验(实习)日期得分指导教师
专业软件工程年级 11 班次姓名学号
一:实验目的
通过运用回溯法的深度优先搜索解决0-1背包问题,掌握运用回溯法解题。

二:算法思想
回溯法的基本思想是按深度优先策略,从根节点出发搜索解空间树,算法搜索至解空间的任一点时,先判断该结点是否包含问题的解,如果肯定不包含,则跳过以该结点为根的子树的搜索,逐层向其祖先结点回溯,否则,进入该子树,继续按深度优先进行搜索。

三:算法实现
#include<iostream.h>
template<class Typew,class Typep>
class Knap{
friend Typep Knapsack(Typep*,Typew*,Typew,int);
private:Typep Bound(int i);
void Backtrack(int i);
Typew c;
int n;
Typew *w;
Typep *p;
Typew cw;
Typep cp;
Typep bestp;
};
template<class Typew,class Typep>
Typep Knap<Typew,Typep::Bound(int i)
{
Typew cleft=c-cw;
Typep b=cp;
while(i<=n&&w[i]<=cleft){
cleft-=w[i];
b+=p[i];
i++;
}
if(i<=n)b+=p[i]/w[i]*cleft;
return b;
}
template<class Typew,class Typep>
void Knap<Typew,Typep>::Backtrack(int i) {
if(i>n){ bestp=cp;
return;}
if(cw+w[i]<=c){cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];}
if(Bound(i+1)>bestp) Backtrack(i+1); }
class Object{
friend int Knapsack(int *,int *,int,int,);
public: int operator<=(Object a)const
{return(d>=a.d);}
private: int ID;
float d;
};
template<class Typew,class Typep>{
Typep W=0;
Typep P=0;
Object*Q=new Object[n];
for(int i=1;i<=n;i++){
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)return P;
sort(Q,n);
Knap<Typew,Typep>K;
K.p=new Typep[n+1];
K.w=new Typew[n+1];
for(int i=1;i<=n;i++){
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
K.Backtrack(1);
delete[]Q;
delete[]K.w;
delete[]K.p;
return K.bestp;
}
void main(){
int p[]={0,4,3,5,6,3};
int w[]={0,3,5,6,2,7};
int *p1=p;
int *w1=w;
int c=10,n=5;
int bestx[6];
int x=Knapsack(p1,w1,c,n);
cout<<"best="<<c<<endl;
cout<<bestx<<1<<6<<"Result";
return (0);
}
四实验截图
五结论;
回溯法是一种搜索解空间树上所有解的方法。

由于计算上界函数Bound需要O(n)时间,在最坏情况下有O(2n接点需要计算上界函数,故解0-1背包问题的回溯算法Backtrack所需的计算时间为O(n*2n)。

相关文档
最新文档