何晓群版—多元统计分析课后练习答案
多元统计分析第二章部分课后习题
第二章课后习题1.现选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省区。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。
边远及少数民族聚居区社会经济发展水平的指标数据地区人均GDP(元)三产比重(%)人均消费(元)人口增长(%)文盲半文盲(%)内蒙古506831.121418.2315.83广西407634.220409.0113.32贵州234229.8155114.2628.98云南435531.3205912.125.48西藏371643.5155115.957.97宁夏427037.3194713.0825.56新疆622935.4 274512.8111.44甘肃345632.8161210.0428.65青海436740.9204714.4842.92资料来源:《中国统计年鉴(1998)》,北京,中国统计出版社,1998。
五项指标的全国平均水平为:)15.789.5297232.8701.6212(0'=μ解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果1-1正态性检验Kolmogorov-Smirnov a Shapiro-Wilk统计量Df Sig. 统计量df Sig.人均GDP .219 9 .200*.958 9 .781 三产比重.145 9 .200*.925 9 .437 人均消费.209 9 .200*.873 9 .131 人口增长.150 9 .200*.949 9 .682 文盲半文盲.246 9 .124 .898 9 .242 *. 这是真实显著水平的下限。
a. Lilliefors 显著水平修正上表给出了对每一个变量进行正态性检验的结果,因为该例中样本数n=9,所以此处选用Shapiro-Wilk 统计量。
《应用回归分析》部分课后习题答案-何晓群版
《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
《应用回归分析》课后习题部分答案-何晓群版
第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
《多元统计分析》第三版例题习题数据文件..
何晓群《多元统计分析》第三版(2012)数据下载第2章[例2-1] 1999年财政部、国家经贸委、人事部和国家计委联合发布了《国有资本金效绩评价规则》。
其中,对竞争性工商企业的评价指标体系包括下面八大基本指标:净资产收益率、总资产报酬率、总资产周转率、流动资产周转率、资产负债率、已获利息倍数、销售增长率和资本积累率。
下面我们借助于这一指标体系对我国上市公司的运营情况进行分析,以下数据为35家上市公司2008年年报数据,这35家上市公司分别来自于电力、煤气及水的生产和供应业,房地行业,信息技术业,在后面各章中也经常以该数据为例进行分析。
习题3.今选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省份。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口的比例等五项能够较好的说明各地区社会经济发展水平的指标。
验证一下边远及少数民族聚居区的社会经济水平与全国平均水平有无显著差异。
数据来源:《中国统计年鉴》(1998)。
5项指标的全国平均水平μ0=(6212.01 32.87 2972 9.5 15.78)/第3章例3-1 若我们需要将下列11户城镇居民按户主个人的收入进行分类,对每户作了如下的统计,结果列于表3-1。
在表中,“标准工资收入”、“职工奖金”、“职工津贴”、“性别”、“就业身份”等称为指标,每户称为样品。
若对户主进行分类,还可以采用其他指标,如“子女个数”、“政治面貌”等,指标如何选择取决于聚类的目的。
表3-1 某市2001年城镇居民户主个人收入数据X1 职工标准工资收入 X5 单位得到的其他收入X2 职工奖金收入 X6 其他收入X3 职工津贴收入 X7 性别X4 其他工资性收入 X8 就业身份X1 X2 X3 X4 X5 X6 X7 X8540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体例3-3English Norwegian Danish Dutch German FrenchOne En en een ein unTwo To to twee zwei deuxThree Tre tre drie drei troisFour Fire fire vier vier quatreFive Fem fem vijf funf einqSix Seks seks zes sechs sixseven Sju syv zeven siebcn septEight Ate otte acht acht huitNine Ni ni negen neun neufTen Ti ti tien zehn dixSpanish Italian Polish Hungarian FinnishUno uno jeden egy yksiDos due dwa ketto kaksiTres tre trzy harom kolmecuatro quattro cztery negy neuaCinco cinque piec ot viisiSeix sei szesc hat kuusiSiete sette siedem het seitsemanOcho otto osiem nyolc kahdeksaunueve nove dziewiec kilenc yhdeksanDiez dieci dziesiec tiz kymmenen例3-4X1 食品支出(元/人)X5 交通和通讯支出(元/人)X2 衣着支出(元/人)X6 娱乐、教育和文化服务支出(元/人)X3 家庭设备、用品及服务支出(元/人)X7 居住支出(元/人)X4 医疗保健支出(元/人)X8 杂项商品和服务支出(元/人)X1 X2 X3 X4 X5 X6 X7 X8 辽宁1772.14 568.25 298.66 352.20 307.21 490.83 364.28 202.50 浙江2752.25 569.95 662.31 541.06 623.05 917.23 599.98 354.39 河南1386.76 460.99 312.97 280.78 246.24 407.26 547.19 188.52 甘肃1552.77 517.16 402.03 272.44 265.29 563.10 302.27 251.41 青海1711.03 458.57 334.91 307.24 297.72 495.34 274.48 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)x4 人均其他副食支出(元/人)x8 人均其他非商品支出(元/人)第4章[例4-1] 判别分析的一个重要应用是用于动植物的分类当中,最著名的一个例子是1936年Fisher的鸢尾花数据(Iris Data)。
《应用回归分析》课后习题部分答案-何晓群版
回归分析作业设计班级:统计0802学号: 1303080513姓名:刘贯春指导老师:胡朝明日期:2011年1月2日实验目的:结合SPSS 软件使用回归分析中的各种方法,比较各种方法的使用条件,并正确解释分析结果。
实验内容:世纪统计学教材应用回归分析(第二版)课后有数据的习题。
详细设计:第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN Lσββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
《应用回归分析》课后习题部分答案何晓群版
第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
多元统计分析第二章部分课后习题
年第二章课后习题1•现选取内蒙古、广西、贵州、云南、西藏、宇夏、新疆、甘肃和青海等9个内陆边远省区。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。
五项指标的全国平均水平为:“° = (6212.01 32.87 2972 9.5 15.78/解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果]a. Li 11 iefors显著水平修正上表给岀了对每一个变量进行正态性检验的结果,因为该例中样本数n二9,所以此处选用Shapiro-Wilk统计量。
则Sig.值分别为0. 781、0. 437、0. 131、0.682、0.242均大于显著性水平,由此可以知道,人均GDP、三产比重、人均消费、人口增长、文盲半文盲这五个变量组成的向量均服从正态分布,即我们认为这五个指标可以较好对各地区社会经济发展水平做出近似的度量。
(2)提出原假设及备选假设Hi :(3)做出统讣判断,最后对统讣判断作出具体的解释SPSS的GLM模块可以完成多元正态分布有关均值与方差的检验。
依次点选Analyze —>General Linear Mode^ IMultivariate ..................... 进入Multivariate 对话框,将人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等这五项指标选入Dependent列表框,将分类指标选入Fixed Factor (s)框,点击OK运行,则可以得到如下结果(见输出结果1-2)。
输出结果1-2a.设计:截距+分类b.精确统计虽少年易学老难成,上面第一张表是样本数据分别来自边远及少数民族聚居区社会经济发展水平、全国的个数。
《应用回归分析》课后习题部分答案-何晓群版
回归分析作业设计班级:统计0802学号: 1303080513姓名:刘贯春指导老师:胡朝明日期:2011年1月2日实验目的:结合SPSS 软件使用回归分析中的各种方法,比较各种方法的使用条件,并正确解释分析结果。
实验内容:世纪统计学教材应用回归分析(第二版)课后有数据的习题。
详细设计:第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)22001()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
多元统计分析习题与答案
多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。
在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。
习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。
你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。
以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。
答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。
根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。
标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。
然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。
由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。
习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。
你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。
何晓群版—多元统计分析课后练习答案
1、在数据处理时,为什么通常要进行标准化处理? 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。在某些比
较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的 纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是 0-1 标准化和 Z 标准化。
4、如果正态随机向量 X (X1, X2, X p ) 的协方差阵为对角阵,证明 X 的分量 是相互独立的随机变量。
解: 因为 X (X1, X2, X p ) 的密度函数为
f
(
x1
,
...,
x
p
)
1 2
p
Σ
1/
2
exp
1 2
(x
μ)Σ1(x
μ)
12
又由于
Σ
2 2
2 p
Σ
12
2 2
(xp
p )2
2 p
p i 1
i
1 2
exp
(
xi i
2
2 i
)2
f (x1)... f (xp )
则其分量是相互独立。
5. y1 和 y 2 是相互独立的随机变量,且 y1 ~ N(0,1), y 2 ~ N(3,4)。
(a)求
y
2 1
的分布。
(b)如果 y
(y 2
y1 3)/
零假设的拒绝区域 {(n-p)/[(n-1)*p]}*T 2 > Fp,np ( )
1/10*T 2 >F5,4(5) μ0=( 6212.01 32.87 2972 9.5 15.78)’ 样本均值(4208.78 35.12 1965.89 12.21 27.79)’
多元统计课后题精选全文完整版
多元统计分析课后题第四章 回归分析1、设河流的一个断面的年径流量为y ,该断面的上游流域的年平均降水量为x1,年平均饱和差为x2,现共有14年的观测记录:时间x1x2y 时间x1x2y17201.8029085792.221512553 2.6713595152.411313575 1.75234105763.031064548 2.07182115471.832005572 2.49145125681.902246453 3.5969137201.982717540 1.88205147002.90130(1)试求y 关于x 1、x 2的二元线性回归方程;(2)对回归方程和每一个回归系数的显著性做检验;(3)求出每一个回归系数的置信水平为0.95的置信区间;(4)求出回归方程的复相关系数;(5)设某年x 1=600,x 2=2.50,求E(y)的点估计及置信水平为0.95的置信区间。
解:利用以上数据表拟合线性回归模型.22110εβββ+++=x x y 点选SPSS 视窗中的分析回归分析线性…,再将y 选入因变量的方框中,同时→→将x1和x2选入自变量的方框中,再在“统计”中选择估计、模型拟合、R 平方变化、描述、部分和偏相关、Durbin-Watson 选项,最后点击“OK ”按钮即可作线性回归分析,输出结果如下:Regression变量的样本均值和标准差:变量间的简单相关系数:这里给出了回归方程的样本决定系数和P值以及DW值:下面的框图是方差分析表,从中可以看出,y关于x1和x2的线性回归方程通过了显著性检验,均方残差为554.963,F统计量值为42.155,P值为0.000,回归方程在0.000的统计意义上是显著的。
上面的框图给出了非标准化和标准化的回归方程,以及回归系数的t 统计量检验结果。
从中我们可以看出,非标准化的回归方程为:(1)21x 647.87292.0875.209-+=x y(2)回归系数、均通过了显著性检验。
多元统计分析 课后部分习题答案 第二章
x1 y2 (2)第二次配方.由于 x2 y1 y2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22 x1 14 x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
1 1 2 2 f ( x1 , x2 ) exp (2 x1 x2 2 x1 x2 22 x1 14 x2 65) 2 2
试求X的均值和协方差阵. 解一:求边缘分布及Cov(X1,X2)=σ12
1 f1 ( x1 ) f (x1 , x2 )dx2 e 2
1 1 2 1 1 1 因ΣY CC 1 1 1 1 1 0 2 1 1 1 1 2 2(1 ) 1 1 0 2(1 ) 1 1
O 2(1 2 ) O 2(1 2 )
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相 互独立.
7
第二章
(2) 因
(1) ( 2)
多元正态分布及参数的估计
(1) ( 2) 2(1 2 ) O X X Y (1) ( 2) ~ N 2 p (1) ( 2) , O 2(1 2 ) X X
4 1 1 E ( X ) , D( X ) 3 1 2
1 1 1 ( x )] 且f ( x1 , x2 ) exp[ ( x ) 2 2 故X=(X1,X2)′为二元正态分布.
何晓群多元统计分析课后答案
何晓群多元统计分析课后答案【篇一:何晓群版多元统计分析数据】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.00 1326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00 198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez italian uno due tre quattro cinque sei sette otto nove diecipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiechungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenennorwegian en to tre fire fem seks sju ate ni tidanish en to tre fire fem seks syv otte ni tidutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人) x5 交通和通讯支出(元/人)x2 衣着支出(元/人) x6 娱乐、教育和文化服务支出(元/人) x3家庭设备、用品及服务支出(元/人)x7 居住支出(元/人)x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人) x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人) x4 人均其他副食支出(元/人) x8 人均其他非商品支出(元/人)第四章数据例4-3x1 人均食品支出(元/人) x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人) x6 人均文教娱乐用品及服务支出(元/人) x3 人均住房支出(元/人) x7 人均医疗保健支出(元/人)【篇二:何晓群多元统计分析(数据)】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入 x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.001326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez norwegian en to tre fire fem seks sju ate ni tiitalian uno due tre quattro cinque sei sette otto nove diecidanish en to tre fire fem seks syv otte ni tipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiecdutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnhungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenenfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人)x5交通和通讯支出(元/人)x2 衣着支出(元/人)x6 娱乐、教育和文化服务支出(元/人) x3 家庭设备、用品及服务支出(元/人)x7居住支出(元/人) x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)人均其他副食支出(元/人)人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人) x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人) x3人均住房支出(元/人)x7 人均医疗保健支出(元/人)【篇三:多元统计分析期末试题】>1、若x(?)~np(?,?),(??1,2,?n) 且相互独立,则样本均值向量2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
《多元统计分析》第三版例题习题数据文件
何晓群《多元统计分析》第三版(2012)数据下载第一章[例2-1] 1999年财政部、国家经贸委、人事部和国家计委联合发布了《国有资本金效绩评价规则》。
其中,对竞争性工商企业的评价指标体系包括下面八大基本指标:净资产收益率、总资产报酬率、总资产周转率、流动资产周转率、资产负债率、已获利息倍数、销售增长率和资本积累率。
下面我们借助于这一指标体系对我国上市公司的运营情况进行分析,以下数据为35家上市公司2008年年报数据,这35家上市公司分别来自于电力、煤气及水的生产和供应业,房地行业,信息技术业,在后面各章中也经常以该数据为例进行分析。
一、均值向量的估计DESCRIPTIVESVARIABLES=v1 v2 v3 v4 v5 v6 v7 v8/STATISTICS=MEAN.Descriptive StatisticsN MeanV1 35 4.4940V2 35 2.6043V3 35 56.1046V4 35 .5037V5 35 1.2711V6 35 4.6326V7 35 -1.6983V8 35 5.528935Valid N(listwise)二、协方差阵的估计CORRELATIONSVARIABLES=v1 v2 v3 v4 v5 v6 v7 v8/PRINT=TWOTAIL NOSIG/STATISTICS XPROD/MISSING=PAIRWISE.第2章[例2-1] 1999年财政部、国家经贸委、人事部和国家计委联合发布了《国有资本金效绩评价规则》。
其中,对竞争性工商企业的评价指标体系包括下面八大基本指标:净资产收益率、总资产报酬率、总资产周转率、流动资产周转率、资产负债率、已获利息倍数、销售增长率和资本积累率。
下面我们借助于这一指标体系对我国上市公司的运营情况进行分析,以下数据为35家上市公司2008年年报数据,这35家上市公司分别来自于电力、煤气及水的生产和供应业,房地行业,信息技术业,在后面各章中也经常以该数据为例进行分析。
何晓群多元统计分析课后答案
何晓群多元统计分析课后答案【篇一:何晓群版多元统计分析数据】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.00 1326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00 198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez italian uno due tre quattro cinque sei sette otto nove diecipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiechungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenennorwegian en to tre fire fem seks sju ate ni tidanish en to tre fire fem seks syv otte ni tidutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人) x5 交通和通讯支出(元/人)x2 衣着支出(元/人) x6 娱乐、教育和文化服务支出(元/人) x3家庭设备、用品及服务支出(元/人)x7 居住支出(元/人)x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人) x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人) x4 人均其他副食支出(元/人) x8 人均其他非商品支出(元/人)第四章数据例4-3x1 人均食品支出(元/人) x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人) x6 人均文教娱乐用品及服务支出(元/人) x3 人均住房支出(元/人) x7 人均医疗保健支出(元/人)【篇二:何晓群多元统计分析(数据)】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入 x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.001326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez norwegian en to tre fire fem seks sju ate ni tiitalian uno due tre quattro cinque sei sette otto nove diecidanish en to tre fire fem seks syv otte ni tipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiecdutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnhungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenenfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人)x5交通和通讯支出(元/人)x2 衣着支出(元/人)x6 娱乐、教育和文化服务支出(元/人) x3 家庭设备、用品及服务支出(元/人)x7居住支出(元/人) x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)人均其他副食支出(元/人)人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人) x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人) x3人均住房支出(元/人)x7 人均医疗保健支出(元/人)【篇三:多元统计分析期末试题】>1、若x(?)~np(?,?),(??1,2,?n) 且相互独立,则样本均值向量2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
多元统计分析课后习题答案
多元统计分析课后习题答案多元统计分析课后习题答案在学习多元统计分析时,课后习题是巩固所学知识的重要环节。
通过解答习题,我们可以进一步理解和应用统计学的概念和方法。
下面将给出一些多元统计分析课后习题的答案,希望能对大家的学习有所帮助。
1. 在多元统计分析中,什么是协方差矩阵?如何计算协方差矩阵?答:协方差矩阵是用来衡量多个随机变量之间的线性关系的矩阵。
它是一个对称矩阵,对角线上的元素是各个变量的方差,非对角线上的元素是两个变量之间的协方差。
计算协方差矩阵的方法是,首先计算每个变量的平均值,然后计算每个变量与其他变量的协方差。
最后将这些协方差按照矩阵的形式排列,即得到协方差矩阵。
2. 什么是主成分分析?主成分分析的步骤是什么?答:主成分分析是一种用于降维的统计方法,它可以将多个相关变量转化为一组无关的主成分。
主成分分析的目标是找到能够解释原始变量大部分方差的少数几个主成分。
主成分分析的步骤如下:(1) 标准化数据:将原始数据进行标准化处理,使得每个变量的均值为0,标准差为1。
(2) 计算协方差矩阵:根据标准化后的数据计算协方差矩阵。
(3) 计算特征值和特征向量:求解协方差矩阵的特征值和特征向量。
(4) 选择主成分:根据特征值的大小选择主成分,通常选择特征值较大的前几个主成分。
(5) 构造主成分:将选择的主成分与原始数据进行线性组合,得到新的主成分。
3. 什么是判别分析?判别分析的步骤是什么?答:判别分析是一种用于分类的统计方法,它通过寻找最佳的分类边界,将样本分为不同的类别。
判别分析的目标是找到能够最大程度地区分不同类别的线性组合。
判别分析的步骤如下:(1) 收集样本数据:首先收集包含已知类别的样本数据。
(2) 计算类均值向量:根据样本数据计算每个类别的均值向量。
(3) 计算类内离散度矩阵:根据样本数据计算每个类别的类内离散度矩阵。
(4) 计算类间离散度矩阵:根据样本数据计算类间离散度矩阵。
(5) 计算投影向量:根据类内离散度矩阵和类间离散度矩阵计算投影向量。
应用回归分析-课后习题答案-何晓群
第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑ =2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈(5)由于2 11(,)xxNLσββ∧tσ∧==服从自由度为n-2的t分布。
因而/2||(2)1P t nαασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t tααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353即为:(2.49,11.5)22001()(,())xxxNn Lββσ-∧+t∧∧==服从自由度为n-2的t分布。
因而/2||(2)1P t nαα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1pβσββσα∧∧∧∧-<<+=-可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x与y的决定系数22121()490/6000.817()niiniiy yry y∧-=-=-==≈-∑∑(7)ANOVAx平方和 df均方 F显著性组间(组合) 9.000 2 4.500 9.000 .100线性项加权的 8.167 1 8.167 16.333 .056偏差.833 1 .833 1.667.326组内 1.0002 .500总数10.0004由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
4、如果正态随机向量12(,,)p X X X X '=的协方差阵∑为对角阵,证明X 的分量是相互独立的随机变量。
解: 因为12(,,)p X X X X '=的密度函数为 1/2111(,...,)exp ()()2p p f x x --⎧⎫'=---⎨⎬⎩⎭Σx μΣx μ又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 22212p σσσ=Σ 212122111p σσσ-⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x211/2222212122111exp ()()21p p p σσσσσσ--⎧⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪'==--=-⎨⎬ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎩⎭Σx μΣxμ()222123*********()()()111exp ...222p p p p p x x x μμμσσσσσσ-⎧⎫---⎪⎪=----⎨⎬⎪⎪⎩⎭ 2121()()...()2p i i p i i x f x f x μσ=⎧⎫-=-=⎨⎬⎩⎭则其分量是相互独立。
5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N 。
(a )求21y 的分布。
(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布。
(c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布。
解:(a )由于1y ~)1,0(N ,所以1y ~)1(2χ。
(b )由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ 第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义。
3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ (n=9 p=5) 检验统计量/(n-1))()(0102μμ-'-=-X S X n T 服从P ,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以n*(n-1),这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {(n-p )/[(n-1)*p]}*2T >,()p n p F α-1/10*2T >F5,4(5)μ0=( 6212.01 32.87 2972 9.515.78)’ 样本均值(4208.78 35.12 1965.89 12.21 27.79)’(样本均值-μ0)’=(-2003.23 2.25 -1006.11 2.7112.01) 协方差矩阵(降维——因子分析——抽取)协方差的逆矩阵1.88034E-05 -0.000440368 -6.09781E-05 0.00279921 -0.000625893 -0.00044037 0.207023949 -0.000210374 -0.0237044 -0.06044981 -6.0978E-05 -0.000210374 0.00022733 -0.0105019 0.003047474 0.002799208 -0.023704352 -0.010501881 0.85288927 -0.18139981 -0.00062589 -0.06044981 0.003047474 -0.1813998 0.070148804计算:边远及少数民族聚居区社会经济发展水平的指标数据.xls2T =9* (-2003.23 2.25 -1006.11 2.71 12.01)*s^-1* (-2003.23 2.25 -1006.11 2.71 12.01)’=9*50.11793817=451,06144353F 统计量=45.2>6.2 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显著差异。
4、略第3章 聚类分析1.、聚类分析的基本思想和功能是什么?聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来。
功能是把相似的研究对象归类。
2、试述系统聚类法的原理和具体步骤。
系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止。
具体步骤:1、对数据进行变换处理;(不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的)2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果。
3、试述K-均值聚类的方法原理。
K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心(均值)类中,它是把样品聚集成K个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组。
步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中(通常采用标准化数据或非标准化数据计算欧氏距离)重新计算接受新样品的类和失去样品的类的形心。
重复这一步直到各类无元素进出。
4、试述模糊聚类的思想方法。
模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系。
基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别。
简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的。
模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。
它有两种基本方法:系统聚类法和逐步聚类法。
该方法多用于定性变量的分类。
5、略第4章判别分析1、应用判别分析应该具备什么样的条件?答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差。
对于判别分析有三个假设:(1)每一个判别变量不能是其他判别变量的线性组合。
有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性。
(2)各组变量的协方差矩阵相等。
判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显著性检验。
(3)各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显著性检验值和分组归属的概率。
2、试述贝叶斯判别法的思路。
答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识(先验概率分布),得到后验概率分布,各种统计推断都通过后验概率分布来进行。
将贝叶斯判别方法用于判别分析,就得到贝叶斯判别。
3、试述费歇判别法的基本思想。
答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向。
因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题。
为了有利于判别,我们选择投影方向a应使投影后的k个一元总体能尽量分开(同一总体中的样品的投影值尽量靠近)。
k要做到这一点,只要投影后的k个一元总体均值有显著差异,即可利用方差分析的方法使组间平方和尽可能的大。
则选取投影方向a使Δ(a)达极大即可。
4、什么是逐步判别分析?答:具有筛选变量能力的判别方法称为逐步判别分析法。