第三章 酸 碱 理 论和水的解离平衡和溶液的pH
第三章 酸碱解离平衡和缓冲溶液
Ka 1.8 10 5 1.3 10 2 cr 0.10
(2) 加入NaAc后
HAc + H2O H3O+ + Ac-
第一节 强电解质溶液理论
• 一、强电解质溶液理论要点 1、强电解质和弱电解质: 易溶强电解质 电 解 质
强电解质 完全解离
难溶强电解质
弱电解质
部分解离
α=
已解离分子数 原有分子总数
• 2、强电解质的解离度α(degree of
dissociation)
• 理论上应为100%, • 实际上小于100% • 25℃0.1mol/kg的HCl α92%,KClα86%
第三步解离 H2PO4-+H2O
H3PO4+OH-
[ H PO ][ OH ] 12 3 4 Kb 1.3 10 3 [H 2 PO-4 ]
二、弱电解质解离平衡的移动
(一)浓度对平衡移动的影响 设HAc的相对浓度为cr,解离度为α,达到平衡后,
HAc
• 则 cr - crα
H+ + Accrα crα
共轭酸碱对的Kaθ 和Kbθ 之间的关系
HB + H2O
Ka
H3O+ + BKwθ = [ H+ ][OH-]
[H 3 O][B- ] H B
B- + H2O
Kb
θ
OH- + HB
[HB][OH ] [HB][OH ] [H3O+ ] K w = θ + [B ] [B ] [H3O ] K a
第3章 酸碱平衡
无机化学
3
二、酸碱质子理论
1923年,丹麦的布朗斯特与英国的劳莱提出的酸 碱质子理论。
1、酸和碱的定义:
酸:凡能给出质子的物质(质子的给予体); 碱:凡能接受质子的物质(质子的接受体)。 酸碱反应:实质是质子的转移。酸给出的质子必须 转移到另外一种能够接受质子的碱上。
酸 无机化学
H
碱
4
酸
无机化学
6
2、酸碱反应的实质:
酸碱反应的实质是两对共轭酸碱对之间的质子传递:
H
+
A1 B2
B1 A 2
酸碱反应是较强的酸与较强的碱作用,生成较弱
的碱和较弱的酸的过程: 较强酸 + 较强碱 = 较弱碱 + 较弱酸
无机化学
7
3、酸碱质子理论优缺点:
优点: 1)、扩大了酸、碱的范围;
2)、适用于水溶液、非水溶液和无溶剂体系;
3)、解释了盐类水溶液呈酸碱性的现象。 缺点: 1)、将酸碱反应局限于质子传递反应,酸必须 是含有氢原子的物质; 2)、不能解释无质子参与的酸碱反应。
无机化学
8
三、酸碱电子理论
1923年,美国物理化学家的路易斯G.N.Lewis提 出的酸碱质子理论。
酸:凡接受电子对的物质 碱:凡给出电子对的物质
酸碱反应:实质是碱提供电子对,与酸形成配 位键而生成酸碱配合物。
a A(aq) b B(aq) c C(s)
K
c X / c
c A / c a c B / c b
A- + H2O
K
HA
K
H+ + A-
HA + OH-
第三章 酸碱解离平衡
举例说明:
50 mL 纯水 pH = 7 50 mLHAc—NaAc (c(HAc)=c(NaAc)=0.10mol· -1) L pH = 4.74 加入1滴(0.05ml) 1mol· -1 HCl L pH = 3 加入1滴(0.05ml) 1mol· -1 NaOH L pH = 11
H2O H++OH-
实验测得295K时,1L纯水中仅有10-7 mol水分子电离, 所以[H+]=[OH-]=10-7 mol· -1。根据化学平衡原理, L
Kw=[H+] [OH-]=1.0×10-14
Kw称为水的离子积常数。简称水的离子积。
Kw意义:一定温度下,水溶液中[H+] 和[OH-]之积为 一常数,温度升高, Kw增大,但常温下一般可认为 Kw=1.0×10-14。
Ac–和H2O,当达到新平衡时, c(Ac–)略有增加, c(HAc)略有
19 减少, c ( Ac ) 变化不大,因此溶液的c(H+)或pH值基本不变。
c ( HAc )
缓冲溶液pH值的计算
弱酸弱碱盐组成的缓冲溶液:HAc—NaAc,H2CO3—NaHCO3
初始浓度 平衡浓度 HA ca ca – x H+ 0 x + A- cs cs + x
x y x
( x y z )( x y ) 0 . 100 x x
2
x
2
0 . 100 x
K 1 1 . 32 10
θ 4
7
又 K 1 很小,
4 1
θ
则
0 . 100 x 0 . 100
4
酸碱理论弱酸弱碱的解离平衡酸碱PPT课件
例题
第30页/共67页
四、多元弱碱溶液 浓度的计算
离
当 ;
Kb1cb
/
c
20Kw
时,可以忽略水的解
Kb1cb / c 40Kb2
当
时,可以忽略多元弱碱的
第
二级解c离eq (。OH ) 相K对b1浓 度(的Kb1近)2似 4计cb算Kb1公/ c式为:
c
2
若 cb /[Kb1c ] 400,上式可进一步简化为:
H2PO4 H3O+
Ka1
(H3PO4
)
[ceq
(H2PO4 ) / c ][ceq (H3O+ ceq (H3PO4 ) / c
)
/
c
]
第14页/共67页
第二步解离:
H2PO4 H2O HPO42 H3O+
Ka2
(H3PO4
)
[ceq
(HPO42 ) / c ][ceq (H3O+ ceq (H2PO4 ) / c
利用软硬酸碱规则可以判断配合物的稳定 性和预测有关化学反应的方向。一切化学反应 都有朝着硬酸与硬碱结合或软酸与软碱结合的 方向进行的趋势。 第9页/共67页
第二节 弱酸、弱碱的解离平衡
一、一元弱酸、弱碱的解离平衡 二、多元弱酸、弱碱的解离平衡 三、共轭酸碱对 Ka 与 Kb 的关系
第10页/共67页
OH H3O+
ceq (H3O+) ceq (HA) 2ceq (A2) ceq (OH)
根据得失质子相等的原则:
第28页/共67页
水的解离c(:H当2A)Ka1 (H2A) / c 20Kw
时,可以忽略
ceq (H3O+ ) ceq (HA) 2ceq (A2)
酸碱解离和沉淀平衡
酸:凡能给出质子(H+)的物质;质子的给予体 。(proton donor) 碱:凡能接受质子(H+)的物质;质子的接受体 。(proton acceptor)
酸
如: HCl
质子 + 碱
H+ + Cl-
HAc
H+ + Ac-
酸碱半反应
NH4+ H2CO3 HCO3H3O + H2O
H+ + H+ + H+ + H+ + H+ +
在一元弱酸 HB 溶液中,存在 HB 与 H2O
之间的质子转移反应:
HB + H2O B H3O+
达到平衡时:
Ka
(HB) [ceq (B ) / c ][ceq (H3O ) / c ceq (HB) / c
]
一元弱酸的标准解离常数越大,它的酸性
就越强。
二、弱酸、弱碱的解离平衡
(二)一元弱碱的解离平衡
一元弱酸 HB 和其共轭碱 B- 在水溶液中存在 如下质子转移反应:
HB + H2O B + H3O+
B + H2O
HB + OH
达到平衡时:
Ka
(HB) [ceq (B ) / c ][ceq (H3O ) / c ceq (HB) / c
]
Kb
(B
)
[ceq
(HB)
/c ceq
][ceq (OH (B ) / c
)
/
c
]
以上两式相乘得:
Ka (HB) Kb (B ) Kw
第三节 弱酸弱碱溶液H3O+和OH-浓度的计算
大学无机化学第四版第三章课件
= 4.2 10-7
第二步:HCO-3 (aq) + H 2O(l)
H
3O
+
(aq)
+
CO
2- 3
(aq)
{ { }{ } } Ka2 (H2CO3 ) =
c(H3O+ )
c(CO
2- 3
)
c(HCO-3 )
= 4.7 10-11
K a1
Байду номын сангаас
103
K a2
溶液中的H 3 O + 主要来自于第一步解离反应,
平衡浓度
•由于同离子效应的存在,通常用初始浓度 c0(HA) ,c0(A-)代替c(HA) ,c(A-) 。
例1:H2CO3 - NaHCO 3 Ka1 = 4.2 10-7
pH
=
pK a1
-
lg
c(H 2CO3 )
c(HCO
3
)
例 2:H3PO4 - NaH2PO4
H3PO4 (aq) + H 2O(l)
H3O+
(aq)
+
H
2
PO
4
(aq)
ceq /mol L-1 cHA - x
x
cA- + x
x (cA- + cHA - x
x)
=
K a1
=
6.7 10-3
因为 Ka1 较大,x不能忽略,必须解一元 二次方程,
此时,缓冲溶液 pH值公式中的 c(HA),c(A- )应是平衡
浓度,不能用初始浓度 代之。
c(H3O+ )的计算可按一元弱酸的解离平衡
酸碱反应和沉淀反应
在0.100mol· L-1NH3· H2O溶液中,加 入固体NH4Cl, 使其浓度为0.100mol· L-1, 计算溶液中c(H+)、NH3· H2O的解离度。 解: NH3· H2O NH4+ + OH平衡浓度/(mol· 利用同离子效应 L-1) 0.100-x 0.100+ : x x -)=1.8×10-5 mol· -1 c(OH L 可调节溶液的酸碱性; -5 1.8 × 10 控制弱酸溶液中酸根离子浓度, α = ×100%=0.018% 0.100 达到离子分离、提纯的目的。 -14 1.0 × 10 + -10 mol· -1 c(H ) = =5.6 × 10 L 1.8×10-5 未加NH4Cl的0.100mol· L-1NH3· H2O溶液 α=1.34%,
2015-1-3
3-2-5 解离平衡的移动
同离子效应
在弱电解质溶液中,加入含有相同离子 的易溶强电解质,使弱电解质解离度降 3-2-5 解离平衡的移动 同离子效应 低的现象。 平衡向左移动
如 HOAc H+ + OAcNaOAc → Na+ + OAc2015-1-3
例 在0.100mol· L-1NH3· H2O溶液中,加入 固体NH4Cl,使其浓度为0.100mol· L-1,计算 溶液中c(H+)、NH3· H2O的解离度。 解: NH3· H2O NH4+ + OH平衡浓度/(mol· L-1) 0.100-x 0.100+x x x(0.100+x) Kb= 0.100-x =1.8×10-5 因为 (c/c )/Kb=0.100/(1.8×10-5)>500 所以 0.100-x≈0.100, 0.100+x≈0.100 -5 0.100x x =1.8 × 10 -5 =1.8 × 10 0.100 c(OH-)=1.8×10-5 mol· L-1
第3章酸碱解离平衡和沉淀溶解平衡分解
Ka (HB) —弱酸HB的标准解离常数, Ka ↑,酸性↑ ceq(B-) , ceq(H3O+) , ceq(HB) — B-, H3O+, HB的平衡浓度
HSO4- + H2O
HAc + H2O NH4+ + H2O
解: HS- + H2O H2S+OH-
查表得:H2S 的 Ka1= 5.1×10-8
KW 1.001014 7 K b2 2 . 0 10 K a1 5.1108
三、弱酸、弱碱溶液 pH 的计算
氢离子浓度和 pH
纯水:ceq(H3O+) = ceq(OH-) = K c = 1.0×10-7 mol· L-1
Kb (Ac-) = 5.6×10-10 Kb (NH3) = 1.8×10-5
碱性:NH3 > Ac- > SO42-
多元弱酸解离平衡 多元弱酸:能给出2个或2个以上质子的弱酸
第一步解离:H3PO4 + H2O H3PO4的一级标准解离常数
Ka1 (H3PO4) = H2PO4- + H3O+
ceq(H2PO4-) ·ceq(H3O+) ceq(H3PO4)
Kb1 (CO32-) >> Kb2 (CO32- ) 2.1×10-4 2.4×10-8 溶液中的OH-主要来自CO32- 的第一步质子转移反应
多元弱碱的相对强弱取决于一级标准解离常数Kb1 Kb1越大,溶液中OH- 浓度越大,多元弱碱的碱性越强
3. Ka(HB) 与 Kb(B-) 的关系
无机及分析化学第三章酸碱平衡
c(H )1. 310- 3
pH2.89
c(H )1.313 01.312 01.3%
c0
0.1
28
Question
(2) 0.10 mol·L–1的HAc溶液中加入少量固体NaAc,使NaAc的浓度为0.10 mol·L–1
解:在HAc水溶液中加入NaAc固体,由于同离子效应, HAc的解离度更小
25
3.2.5 同离子效应和盐效应
向HAc溶液中加入少量固 体NaAc固体可以使甲基橙指示 剂由红色变成黄色,为什么?
向体系中加入NaAc固体后, Ac¯浓度增大, 平衡向逆反应方向移动,HAc解离度降低。
HAc H+ + AcNaAc →Na+ + Ac-
在弱酸或者弱碱中加入其共轭碱或者共轭 酸,从而使平衡向着降低弱酸或者弱碱解离度方 向移动的作用称为同离子效应。
27
Question
解:
例3-1 计算下列两溶液的pH值和HAc的解离度: (1) 0.10 mol·L–1的 HAc溶液;
(1) 在HAc水溶液中存在如下解离平衡
HA + H2O
H3O+ + A¯
Ka (HA c(cH c)() H c(A A - )c c 1).810 5 K a (H A c c((c H H )2 ) A c(H 0 c .1 ))21.815 0
c0
0 .1
29
3.3 弱酸(碱)溶液中的型体分布
3.3.1酸(碱)的分析浓度
酸(碱)的浓度(分析浓度)是指某溶液中所含某酸 (碱)的总的物质的量浓度,它等于溶液中酸(碱) 各种型体的浓度之和,通常以c0来表示。
溶液的酸(碱)度是指溶液中H+(OH-)的浓度,通常 以pH(pOH)来表示。
在水溶液中,酸,碱的解离也是质子的转移反应.
第三章酸碱反应与配位反应一、教学基本要求1. 酸碱理论概述熟悉酸碱质子理论。
2. 电解质溶液的解离平衡。
了解强电解质溶液、表观解离度、活度、活度系数、离子强度等基本概念;熟悉水的解离平衡;掌握弱酸弱碱的解离平衡;了解酸碱的相对强弱。
3. 电解质水溶液pH值的计算理解分布系数;掌握质子平衡式与[H+]的计算(掌握各种溶液[H+]计算的最简式)。
4. 缓冲溶液掌握缓冲溶液的原理及计算。
5. 配位平衡及其移动掌握配合物的基本概念、定义、组成和命名,配合物的类型;掌握配合物在水溶液中的离解平衡;掌握配体过量时的计算;掌握配离子与配离子之间的转化及相关计算。
二、学时分配:三、教学内容§3.1质子酸碱理论酸碱物质和酸碱反应是化学研究的重要内容。
在科学实验和生产实际中有着广泛的应用。
人们对酸碱物质的认识是不断深化的。
1887年阿仑尼乌斯(S.A.Arrhenius)在解离理论学说的基础上把酸碱定义为:酸是在水溶液中解离生成的正离子全部是H+离子的物质;碱是在水溶液中解离生成的负离子全部是OH-离子的物质。
酸碱反应的实质是H+离子和OH-离子结合生成H20的反应。
这一酸碱解离理论对化学,尤其是酸碱理论的发展起了积极作用,至今仍广泛地应用着。
随着生产和科学技术的发展和进步,酸碱的解离理论显现了局限性,于是先后又提出多种酸碱理论,其中比较重要的有质子酸碱理论和酸碱的电子理论。
3.1.1质子酸碱理论一、酸碱定义根据酸碱的解离理论,在水溶液中许多酸碱反应都有质子参与,也就是说酸碱反应是涉及质子的传递反应。
1923年丹麦化学家布朗斯特(J .N .Bronsted)和英国化学家劳莱(T .M .Lowry)各自独立提出质子酸碱理论。
该理论认为:酸是能给出质子的物质;碱是能接受质子的物质。
简单地说,酸是质子的给予体,而碱是质子的接受体。
这个定义不像解离理论那样只限于水溶液中。
如-+-+-+++→+→+→Cl H HCl HPO H PO H NH H NH 244234二、按照酸碱质子理论,可从以下几方面加深理解酸碱概念1. 酸碱可以是阳离子、阴离子、中性分子及两性物质,有些物质既可作为酸,也可作为碱。
第三章 酸碱解离平衡和缓冲溶液
– cθ为标准态的浓度(1mol/L)
– 相对浓度: cr =cB /cθ,单位为1。aB=γB cr
– γB为活度因子(activity coefficient); – 一般 aB<cB 故γB <1 – 溶液越稀,活度与浓度差别越小。对中性
分子、弱电解质, γB 可视为1。
为1的状态
A- + H2O
HA + OH-
[HA][OH-]
K bө=
[A-]
Kb ө ---- 碱解离平衡常数 (碱常数)
在一定温度下,Ka ө 、Kb ө值一定。 Ka ө 越大,酸性越强。 Kb ө越大,碱性越强。 有时也用pKa ө或pKb ө表示。 pKaθ=-lgKaθ,pKbθ=-lgKbθ(表3.3) pKaθ越大,Kaθ越小, 酸越弱 pKb ө越大,Kb ө越小,碱越弱
第二节 弱电解质溶液
相对平衡浓
• 一、弱电解质的解离平衡度,单位为
HA + H2O
A- + H3O+
1
KKaөө==
[A[-A][-H][+H] +] [HA][HA]
质热在力某学温标度准(态2K指98物ak)ө ---- 酸解离平衡常数 ( 酸常数) 和100kPa下,活度表示酸在水中释放质子能力的大小
[HPΟ
2 4
]
2.21013
4-]> [HPO42-]>[PO43-]。
• 2、多元酸每一步解离都产生H+,所以溶液中H+ 浓度是几步解离所产生H+的总浓度。在Ka1θ,Ka2θ, Ka3θ关系式中的[H+]也是指H+的总的相对浓度。
H2PO4- + H3O+
南医化学第三章酸碱解离平衡
表达式: 表达式:
离 度 α) = 解 (
已 解 弱 解 分 数 离 的 电 质 子 ×100 % 溶 中 有 弱 解 分 总 液 原 的 电 质 子 数
电解质愈弱,解离度就愈小 电解质愈弱,解离度就愈小!
20
解离度的大小可通过测定电解质溶液 解离度的大小可通过测定电解质溶液 的依数性如△ 等求得。 的依数性如△Tf、△Tb或Π 等求得。
∆Tb = K b ⋅ bB ∆T f = K f ⋅ bB
∏渗透 = RT ⋅ cB = K ⋅ cB
21
弱电解质的离解平衡 (Dissocation equilibrium of weak electrolyte) )
一元弱酸、 (一)一元弱酸、弱碱的解离平衡 (二) 多元弱酸或弱碱的离解 二
HAc
H + + Ac19
在平衡状态下,弱电解质在水溶液中的解离程度的 在平衡状态下, 大小可以定量地用解离度来表示: 大小可以定量地用解离度来表示: 解离度来表示 解离度(degree of ionization):符号为 解离度 :符号为α 是指在一定温度下当解离达到平衡时, 是指在一定温度下当解离达到平衡时 , 已解离的分 子数与解离前分子总数之比。 子数与解离前分子总数之比。
强电解质(strong electrolyte): 在水溶液中 强电解质 : 能完全解离成离子的化合物。 能完全解离成离子的化合物。
特点: 、不可逆性; 特点:1、不可逆性; 2、导电性强; 、导电性强; 例如: 例如:NaCl HCl
离子型化合物) Na+ + Cl- (离子型化合物)
H+ + Cl-
弱电解质分子与其离子之间的平衡。 弱电解质分子与其离子之间的平衡
酸碱解离平衡
二、离子的活度和活度因子
(activity and activity coefficient) 一般来说,aB<cB, B <1。溶液愈稀,离子
间的距离愈大,阴、阳离子间的牵制作用愈
弱,离子氛和离子对出现的概率愈小,活度
与浓度间的差别就愈小。
当溶液中的离子浓度很小,且离子所带电荷
数也少时,活度接近浓度,即B 趋近于1
相同浓度的不同电解质,它们的离解度 分别与其离解平衡常数的平方根成正比。
22
2、多元弱酸碱的离解平衡
H3PO4
+ H+ H2 PO4
θ Κ a1 [Η ][Η 2 PO4 ] 7.52 10 3 [Η 3 PO4 ]
H2 PO
4
2 HPO4 + H+
Κ
2 HPO4
25
例 :25℃时,向lL浓度为0.1mol· L-1HAc溶液 中加入0.1molNaAc,求HAc的解离度。(设溶 液总体积不变,KθHAc=1.76×10-5) 解、 HAc 0.100-x H+ +Acx 0.100+x
x(0.100 x ) 1.76 10 5 0.100 x
1 (3) I [b z 2 (K ) b z 2 (Br ) (Br ) 2 (K )
1 [(0.020mol kg1)( 1)2 (0.020mol kg1)( 1)2 2 (0.030mol kg1)( 2)2 (0.030mol kg1)( 2)2]
§3.2 弱电解质溶液
一、弱电解质的离解平衡 HA H + + A-
[H ][A ] θ Ki [HA]
水的解离反应和溶液的酸碱性
阿仑尼乌斯(Arrhenius)电离理论 富兰克林(Franklin)溶剂理论 布朗斯泰德(Bro..nsted)质子理论 路易斯(Lewis)电子理论 皮尔逊(Pearson)软硬酸碱理论
拓宽视野:近代酸碱理论
1. 阿仑尼乌斯(Arrhenius)电离理论 1887年,28岁的瑞典科学家阿仑尼乌斯提出。
拓宽视野:近代酸碱理论
4. 路易斯(Lewis)电子理论 (1923年)
凡是能给出电子对的物质(分子、离 子或原子团)为碱,凡能接受电子对的物 质(分子、离子或原子团)为酸。
酸碱反应是电子的转移,是碱性物质 提供电子对与酸性物质生成配位共价键的 反应。
Lewis酸碱着眼于物质的结构 ,具有高度 概括性。
3.1.2 水的解离反应和溶液的酸碱性
2. 溶液的酸碱性和pH
酸性增强 中性 碱性增强
c(H )/(mol·L ) +
-1 1 10-1 10-2 10-3 10-4 10-510-6 10-7 10-810-910-1010-1110-1210-1310-14
pH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
软亲软,硬亲硬,软硬结合不稳定
软酸、软碱对外层电子抓得松,硬酸、硬碱对外层电子 抓得紧。例如,Cu+、Ag+、Au+、Pt2+、Pt4+、Hg2+等
为软酸,各CO种、酸CN碱-、理I- 、论S均2-等有为其软优碱。缺H点+、,Li+应、该Na+、 KNPO+H、了以34、3B-等解便He2为2+各用O、硬、理其M碱Og论更,H2B+-、、中好r-,FC酸地-Sa、O2碱说+3、C2-的明l,T- 、i4N概问+、OS念题2OF-为e4及。23-交+、、其界N碱A适Ol,33+用-、C等u范为A2+c围硬,- 、酸,,
酸碱理论
6
2、定量 、
衡量酸(碱 强弱的尺度 强弱的尺度—— 衡量酸 碱)强弱的尺度 酸(碱)的解离常数 碱 的解离常数 酸在水中给出质子的能力用质子转移平衡常数的大小 来表示. 来表示. 越大, Ka 越大,酸越强 碱的接受质子能力则由其加合质子反应平衡常数 的大小来衡量. 的大小来衡量.
Kb 越大,碱越强 越大,
第三章 酸碱反应
酸碱理论概述 酸碱平衡中有关浓度的计算 缓冲溶液
1
三、酸碱质子理论
1923年丹麦化学家布朗斯特(J.N.Brönsted)与英 年丹麦化学家布朗斯特( 国化学家劳莱( 国化学家劳莱(T.M.Lorry) 提出了酸碱质子理论 )、酸碱质子理论 (一)、酸碱质子理论 凡是能够给出质子( 的物质( 1、酸:凡是能够给出质子(H+)的物质(包括 分子和离子)都是酸; 分子和离子)都是酸; 例: HAc → H+ + Ac酸 碱 NH4+ → H+ + NH3 酸 碱 2、碱:凡是能够接受质子的物质都为碱。 凡是能够接受质子的物质都为碱。 、 例: NH3 + H+ → NH4+ Ac- + H+ → HAc 碱 酸
a = γ .c
= a c
γ
15
意义:活度系数衡量活度与浓度的差异。 意义:活度系数衡量活度与浓度的差异。表示了 离子间力对化学作用能力影响的大小, 离子间力对化学作用能力影响的大小,也 是衡量溶液偏离理想溶液的尺度. 是衡量溶液偏离理想溶液的尺度.
通常γ ≤1。 。
(1)在较稀的弱电解质或极稀的强电解质溶液中 离子的总浓度很 在较稀的弱电解质或极稀的强电解质溶液中,离子的总浓度很 在较稀的弱电解质或极稀的强电解质溶液中 离子间力很小, 接近于1,可认为a 低,离子间力很小,γ接近于 ,可认为 = c。 。 (2)在一般的强电解质溶液中,离子的总浓度很高,离子间 在一般的强电解质溶液中,离子的总浓度很高, 在一般的强电解质溶液中 力较大, 就小于1,因此活度就小于浓度。在这种情况下, 力较大,γ 就小于 ,因此活度就小于浓度。在这种情况下, 严格地讲,各种平衡常数的计算就不能用离子的浓度, 严格地讲,各种平衡常数的计算就不能用离子的浓度,而应 用活度 。 (3)中性分子活度系数γ近似等于 。 中性分子活度系数 近似等于1。
酸碱理论与解离平衡
酸碱的定义
01
阿累尼乌斯酸碱理论
认为凡是在水溶液中电离出的阳离子全部是氢离子的物质就是酸,电离
出的阴离子全部是氢氧根离子的物质就是碱。
02 03
酸碱质子理论
认为凡是可以释放质子(氢离子)的任何物质(分子或离子)都是酸; 凡是能接受质子的任何物质都是碱。简单地说,酸是质子的给予体,而 碱是质子的接受体。
在生物化学中的应用
1 2
生物酶活性
酸碱解离平衡在生物化学中具有重要应用,如酶 的活性受pH值影响,可以通过调节pH值来控制 酶促反应的速度。
生物分子结构
生物分子如蛋白质、核酸等在酸碱环境中会发生 解离和结合,从而影响其结构和功能。
3
生物代谢过程
酸碱平衡对于生物体的正常代谢过程至关重要, 如酸碱平衡失调可能导致代谢紊乱和疾病。
详细描述
酸解离常数通常用$K_a$表示,其计算公式为$K_a = frac{[H^+][A^{}]}{[HA]}$,其中$[H^+]$、$[A^{-}]$和$[HA]$分别表示氢离子、酸根离子和 未解离的酸的浓度。
碱解离常数的计算
总结词
碱解离常数是描述碱解离能力的参数, 其值越大表示该碱的解离能力越强。
VS
详细描述
碱解离常数通常用$K_b$表示,其计算公 式为$K_b = frac{[B^{-}] [OH^{}]}{[HB]}$,其中$[B^{-}]$、$[OH^{-}]$ 和$[HB]$分别表示碱根离子、氢氧根离子 和未解离的碱的浓度。
酸碱解离平衡的计算实例
总结词
通过具体的计算实例,可以深入理解酸碱解离平衡的计算方法。
酸碱电子理论
认为酸是任何可以接受电子的分子或离子,而碱则是任何可以给出电子 的分子或离子。
酸碱解离平衡
第一节
酸碱理论
第二节
水溶液中酸碱平衡 第三节
弱酸、弱碱溶液H3O+或OH浓度的计算
目的要求:
二、主要教学内容 1.掌握酸碱质子理论;酸、 碱、两性物质及其共轭酸 碱。 2.掌握弱电解质的解离平衡、 解离平衡常数,溶液pH的简 化计算。
1.酸碱概念的发展,酸碱 质子理论;共轭酸碱概念,酸 碱反应的本质,共轭酸碱的强 弱关系。 2.弱电解质的离解平衡、 离解平衡常数。
2.一元弱碱溶液 cb Kb > 20Kw
Ka Ka 4Ka ca [H ]= 2
+
2
K b Kb 4Kbcb [OH ]= 2
c/Kb > 400
2
c/Ka>400
[H ]= Ka c
+
[OH ]
Kbcb
【例 1 】计算 0.10mol· L-1HAc 溶液中 [H+] 和 pH 值。已知 Ka=1.74×10-5 。 解: ∵ c/Ka= c· Ka>20Kw
第三节 酸碱溶液pH的计算
酸度:溶液中H+的浓度 (pH值)。 pH=-lg[H+] pOH=-lg[OH-]
∵
∴
[H+] [OH-] = KW
pH + pOH = pKW 即 pH + pOH = 14
一、一元弱酸溶液[H3O+]的简化计算
一元弱酸HB在水溶液中,存在着两种质子传递平衡:
HB + H2O
+
Kw
若此时也可以忽略水提供的H3O+,即 Ka· ca>20Kw, 上式中(Ka• ca + Kw)≈ Ka• ca
无机及分析化学 第三章 酸碱平衡
HC2O-4 H2O
H3O
C O2- 24
K
a2
(H2
C
2
O
4
)
c(
H
)
c(
C2
O
2 4
)
c(HC
2
O
4
)
S2- H2O
OH- HS-
K
b1
(S
2
)
c(OH - ) c(HS- ) c(S2 )
HS- H2O
OH- H2S
K
b2
(S
2
)
3
)
2
K
b2
(A
3
)
K
2–
a3
(H
3
A)
3–
b2
b2
K
b1
(A
3
)
解:经查表可知
K
a1
(H
3
A)
K
b3
(A
3
)
K w
K a2
(H 3A)
K
b2
(A
3
)
K w
K a3
(H 3A)
K
b1
(A
3
)
K w
Ka2 = 6.3×10-8, 即 pKa2 = 7.20 由于 Ka2·Kb2 = 10-14 所以 pKb2 = 14 - pKa2
H3O+ + A¯
K
a
(HAc
)
c(H ) c(Ac-) c(HAc)
1.8105
172.3水的解离平衡和溶液的pH
$
由于 [H+]·[OH-]= Kwθ 对 [H+]·[OH-]= Kwθ 两边取负对数得: (-lg[H+])+(-lg[OH-] )=-lg Kwθ
pH + pOH = p Kwθ = 14 (25 oC)
pH的使用范围:H+或OH-的浓度小于1mol·L-1 ,相应的pH和
pOH范围一般在0.0 ~14.0。在这个范围以外,用浓度c(mol·L-
1)表示酸度和碱度更方便些。
$
共轭酸碱对的Kaθ、Kbθ和Kwθ的关系:
HB + H2O
H3O+ + B-
Ka
[H
3
O][B-
H B
]
Kwθ = [ H+ ][OH-]
B- + H2O
OH- + HB
KaθKbθ= [ H+ ][OH-]
Kbθ
[HB][OH ] [B ]
[HB[]B[O ]HK ]aθ[[HHK33bOOθ+ +=]]=KKKwwaθθθ
H3O++OH-
[H ][OH ] K θ [H 2O]
[H+][OH-] = Kwθ
Kwθ水---的- 自水递的标质准子平自衡递常平数衡,常水数的,离简子称积水不的离子
仅积适。用其数于值纯与水温,度也有适关用(于2一5切0C稀为水1溶.0液0×。10-14)
$
在任何稀水溶液中都同时存在着H+和OH-,只是它 们的相对浓度有所不同。 中性:[H3O+ ]=[OH- ]=1.0×10-7 酸性:[H3O+] > 1.0×10-7 >[OH- ] 碱性: [H3O+] < 1.0×10-7 < [OH-]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、溶液的pH
在水溶液中同时存在H+和OH-,它们 的含量不同,溶液的酸碱性也不同。 pH:定义为氢离子活度的负对数值。
pH lgaH
在稀溶液中,浓度和活度的数值十分接 近,可用浓度的数值代替活度。 pH = -lg[H+]
21
由于 [H+]· [OH-]= Kw 对 [H+]· [OH-]= Kw 两边取负对数得: (-lg[H+])+(-lg[OH-] )=-lg Kw
中性物质,如金属离子Na+,Ca+等。
(3) 在酸碱质子理论中,排除了盐的概念。
(4) 酸碱质子理论体现了酸和碱这对矛盾相互转化
和相互依存的关系,并且扩大了酸碱物质的范围。
5
(二)酸碱反应的本质
酸碱半反应式 : 酸 H+ + 碱
例如HAc在水溶液中的存在两个酸碱半反应:
酸碱半反应1
酸碱半反应2
+
- 4 - 4
12
将各种不同强度的酸拉平到溶剂化质子
(在这里是水化质子H3O+)水平的效应 称为拉平效应(leveling effect)。
具有拉平效应的溶剂称为拉平性溶剂。
13
区分效应:酸碱强度被溶剂区分开来的 作用。
在冰醋酸中,酸的强度顺序:
14
HClO4>HBr>HCl>H2SO4>HNO3 区分溶剂 :可把酸碱强度区分开来的溶剂。
§3.4 水的解离平衡和溶液的pH
Dissociation equilibrium of Water
and pH of Solution
17
§3.4 水的解离平衡和溶液的PH
一、水的解离平衡 H2O+H2O 质子自递反应
H3O+ +OHH+ +OH水的离子积
H+ 简写式: H2O
[H ][O H ] θ K [H2O ]
28
[H+]=[Ac-]+[OH-]
浓度为c的NaH2PO4溶液,
物质均衡式为:
[Na+]=c [H3PO4] + [H2PO4-] + [HPO42-] +[PO43-]=c 电荷均衡式为: [Na+] + [H+]=[H2PO4-] + 2[HPO42-] + 3[PO43-] + [OH-]
35
(3) 若c/Ka1 500, 则
[H ]
ቤተ መጻሕፍቲ ባይዱ
K a 1 [H2 A] K a 1c(H2 A)
36
例:计算0.100 mol· L-1Na2CO3溶液的pH值。
解 :Na2CO3溶液即多元弱碱CO32-溶液
K w 1.0 10 4 Kb1 1.78 10 11 Ka2 5.6110
15
例
酸
碱
酸碱配合物
H+ + ∶OH → H ∶OH HCl + ∶NH 3 → NH 4 Cl Ag+ + 2∶NH 3 → [Ag( NH 3)]+ Ag+ + ∶ Cl - → Ag Cl
优点 立论于电子,更具有普遍性,更能体现物质的本性。
局限性 •对酸碱的认识过于笼统,因而不易掌握酸碱的特性; •不能对酸碱的强弱定量。 16
38
(二) 多元弱酸弱碱溶液
(1)当多元弱酸的 Ka1 >>Ka2 >>Ka3时, 且 c Ka1 ≥ 20 KW ,Ka1 / Ka2 ≥102求[H+]可近似 地把该多元弱酸作为一元弱酸来处理。
HAc溶液的pH值(Ka =
θ
θ
解: Kac = 1.76×10-6≥20Kw c/Kaθ= 0.10/(1.74×10-5) > 500,故:
[H ]
θ Ka c 1.76 10 5 0.10 1.33 10 3 mol L1
pH=2.88
32
例 计 算 0.100mol· L-1NaAc 溶 液 的 pH 值 。 已 知 Ka(HAc)=1.74×10-5 解:K b(Ac-)=Kw/Ka(HAc)=1.00×10-14/(1.74×10-5) =5.75×10-10. 由于Kbcb≥20Kw ,cb/Kb=0.100/(5.75×10-10)>500
19
任何水溶液中,均存在着水的解离平衡。
θ
θ 在纯水和一切稀水溶液中, KW 只是温度的函数。
常温下(严格的说25℃时) Kw = 10-14 纯水中:[H+]=[OH-]=10-7mol•L-1
酸性溶液 中性溶液
[H+] >10-7mol•L-1 >[OH-] [H+]=10-7mol•L-1 = [OH-]
7
(二)酸碱反应的本质
酸碱反应的实质是两对共轭酸碱对之间的
质子转移反应(proton transfer reaction)。
酸碱反应可在水溶液中进行,也可在非
水溶剂中或气相中进行。
8
酸碱反应是由较强的酸和较强的碱作 用,向着生成较弱的酸和较弱的碱的 方向进行。
酸1 强
碱2 强
酸2 弱
碱1 弱
9
(三) 酸碱的强弱关系
14
Kw 1.0 1014 8 Kb2 2.32 10 7 Ka1 4.30 10
37
因 Kb1/Kb2﹥102,c/Kb1﹥500,可按最简
式计算
[OH ]
K b1c 1.78 104 0.100
3
4.22 10
pOH=2.37 pH=14.00-2.37=11.63
NaCN → Na+ + CN-
电荷均衡式为: [Na+]+[H+]=[OH-]+[CN- ] ∵ [Na+]=c ∴ c + [H3O+]=[OH-]+[CN- ]
27
质子均衡(PBE): 质子均衡是指酸碱反应 达到平衡时,酸失去的质子数等于碱得 到的质子数。
质子均衡式为:
[H+]总= [H+]HAc+ [H+]H2O
第三节
酸 碱 理 论
(THEORY OF ACID-BASE)
1
§3.3 酸碱理论
概述
1663年 波义耳(R.Boyle)提出酸碱概念。 1889年 阿累尼乌斯提出酸碱电离理论。 1905年 富兰克林酸碱溶剂理论。 1923年 布朗斯特和费莱(T.M.Lowry)几乎同 时各自独立地提出了酸碱的质子理论。同年, 路易斯提出了酸碱的电子理论。
pH + pOH = pKw= 14 (25 oC) pH和pOH值的适用范围一般为0~14之间 人体各种体液的pH值 pH值 体液 血 浆 成人胃液 唾 液 7.35~7.45 0.9~1.5 6.35~6.85
23
酸中毒(acidosis): pH值< 7.35 碱中毒(alkalosis): pH值>7.45
[OH ] K b cb 5.75 1010 0.100
=7.58×10-6(mol· L-1)
[H+]=Kw/[OH-]=10-14/(7.58×10-6) pH = 8.88
33
(三) 多元弱酸弱碱溶液
+ + HA H H2A [H+][HA-] Ka1= [H2A] -
在具有共轭关系的酸碱对中,它们的强
度是相互制约的。酸强,其共轭碱就弱; 酸弱,其共轭碱就强。
HA H + + A10
(三) 酸碱的强弱关系
另外,一种物质显示酸碱性的强弱,除 了与其本性有关外,还与反应对象(或溶 剂)的性质有关。
HNO3+H2O
HNO3+HAc HNO3+H2SO4
H3O++NO3H2Ac++NO3H2NO3++HSO411
1963年 皮尔逊提出硬软酸碱原则。
2
一、酸碱质子理论
(一) 基本概念
酸:凡能给出质子(H+)的物质都是,
碱:凡能接受质子的物质都是。
即酸是质子给予体,碱是质子的接受体。
3
酸与碱的关系可用下式表示为
酸 HCl HAc H2CO3
HCO3- H3 O+
H+ + 碱 H+ + Cl H+ + Ac H+ + HCO3 H+ + CO3 H+ + H2 O
HAc
酸1 H+ + H2O 碱2
H+ + Ac碱1
H3O+
酸2
6
两式相加得:
H+ ↓
HAc + H2O H3O+ + Ac酸1 碱2 酸2 碱1 共轭 共轭
可见,两个共轭酸碱对半反应的结果是HAc 把质子H+传递给了H2O。如果没有酸碱半反应2 的存在,没有H2O接受H+,则HAc就不能发生 在水中的电离。
25
(二)一元弱酸弱碱溶液的pH
物质均衡(MBE): 它是指在一个平衡体系 中,某一给定组分的总浓度,等于各有关组 分平衡浓度之和。 例如:浓度为c(mol.L-1)的HAc溶液的物质均 衡 c(HAc)=[HAc]+[Ac-] 电荷均衡(CBE) : 根据电中性原则,溶液中
正离子的总电荷数与负离子的总电荷数恰好相等。 26
pH + pOH = pKw= 14 (25 oC)
pH的使用范围:H+或OH-的浓度小于1mol· L-1 , 相应的pH和pOH范围一般在0.0 ~14.0。 在这个范围以外,用浓度c(mol· L-1)表示 酸碱性更方便些。