概率论习题解答
概率论课后习题答案
习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。
(完整版)概率论高等数学习题解答
习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数 (1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,,2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.设随机变量X 的分布律为0;,2,1,0,!}{>===λλΛk k ak X P k为常数,试求常数a .解:因为1!==-∞=∑λλae k ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P .解:(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x F ,(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P Y . 5.设随机变量X 的分布律为Λ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数}解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P ΛΛ偶数, (2) {}{}16116151212121211415432=-=⎭⎬⎫⎩⎨⎧+++-=≤-=≥X P X P ,(3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P . (2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率.解:设射击的次数为X ,由题意知().20400~,B X , {}{}∑=--=≤-=≥10400400,98.002.01112k k k kC X P X P由于上面二项分布的概率计算比较麻烦,而且X 近似服从泊松分布P (λ)(其中λ=400×0.02),所以P {X ≥2}∑=--≈18!81k k e k , 查表泊松分布函数表得:P {X ≥2}9972.028.01=-≈8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225Λ=-==---kk k e e C k Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P 10.设随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求: (1) 系数a ; (2) X 落在区间)4,0(π内的概率.解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a .(2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F 试求:(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='= ,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x 有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即0)1)(2(≥+-X x ,得2≥X 或1-≤X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少? 解: (1) 因为4)(3~,N X所以}1235.0{}23523232{}52{≤-<-=-≤-<-=≤<X P X P X P5328.016915.08413.01)5.0()1()5.0()1(=-+=-+=--ΦΦΦΦ{}=≤<-104X P )234()2310(----=ΦΦ 9996.019998.021)5.3(2)5.3()5.3(=-⨯=-=--=ΦΦΦ{}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-= [])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=.(2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。
高等数学(概率论)习题及解答
高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。
1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。
2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。
现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。
求当下为晴天时,随后一天为阴天的概率。
2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。
根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。
以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。
概率论复习题解答
概率论复习题一、填充题:1.设事件A 与B 互不相容,3.0)(,2.0)(==B P A P ,则=⋃)(B A P _0.5___。
2. 设事件A 与B 相互独立,8..0)(,5.0)(==B P A P ,则=⋃)(B A P 0.9 ,=-)(B A P 0.1 。
P(A)5.0)(=B P ×(1-0.8)3.设5.0)(=A P ,4.0)(=B P ,8.0)|(=A B P ,则=)(B A P Y 0.7 。
4.已知3.0)(,6.0)(==AB P A P ,则=-)(B A P _0.3; 0.6×(1-0.3/0.6) =+)|()|(B A P B A P ____1_____。
5. 从1,2,3,4,5中同时任取3个数,求其中至少含有1个偶数的概率为_9/10__。
6.设一射手进行5次独立射击,每次击中目标的概率0.7,恰有3次命中的概率是23353.07.0C ⨯⨯。
7.一盒晶体管内有6个正品,4个次品,作不放回抽样,每次任取一个,取两次。
则第二次才取到正品的概率 4/15 ,第二次取到的是正品的概率 3/5 。
8. 设随机变量X 服从二项分布)2.0,100(b ,则=>}1{X P 991008.0208.01⨯--。
9.设随机变量X 服从(0,1)上的均匀分布,则=<<}3421{X P __1/2____。
10.设随机变量X 服从参数为λ的泊松分布,且2/1}0{==X P ,则λ=ln2,=>}1{X P _1/2×(1-ln2)__。
11、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>-=-0001)(5x x ex F x,则X 的概率密度 )(x f =⎪⎩⎪⎨⎧≤>-000515x x e x,,。
12.X 为连续随机变量,对任意实数C ,=≠}{C X P __1__。
13.设μ=)(X E ,2)(σ=X D ,则=-))((X E X E __0__,=-))((X E X D 2σ。
概率论习题解答(第5章)
概率论习题解答(第5章)第5章习题答案三、解答题1. 设随机变量X 1,X 2,…,X n 独⽴同分布,且X ~P (λ),∑==ni i X n X 11,试利⽤契⽐谢夫不等式估计}2|{|λλ<-X P 的下界。
解:因为X ~P (λ),∑∑===?===n i i n i i n nX E n X n E X E 111)(1)1()(λλλλn n nX D n X n D X D n i i n i i 11)(1)1()(2121====∑∑==由契⽐谢夫不等式可得nn X P 4114/1}2|{|-=-≥<-λλλλ 2. 设E (X ) = – 1,E (Y ) = 1,D (X ) = 1,D (Y ) = 9,ρ XY = – 0.5,试根据契⽐谢夫不等式估计P {|X + Y | ≥ 3}的上界。
解:由题知()()()Y X Y X E E E +=+=()11+-=0Cov ()Y X ,=()()Y D X D xy ??ρ=()915.0??-= -1.5()()()()()75.1291,2=-?++=++=+Y X Cov Y D X D Y X D所以{}{}97303≤≥-+P =≥+)(Y X Y X P 3. 据以往经验,某种电器元件的寿命服从均值为100⼩时的指数分布.现随机地取16只,设它们的寿命是相互独⽴的.求这16只元件的寿命的总和⼤于1920⼩时的概率.解:设i 个元件寿命为X i ⼩时,i = 1 ,2 , ...... , 16 ,则X 1 ,X 2 ,... ,X 16独⽴同分布,且 E (X i ) =100,D (X i ) =10000,i = 1 ,2 , ...... , 16 ,4161161106.1)(,1600)(?==∑∑==i i i i D E X X ,由独⽴同分布的中⼼极限定理可知:∑=16i iX近似服从N ( 1600 , 1.6?10000),所以>∑=1920161i i X P =≤-∑=19201161i i X P ???-≤?--=∑=16000016001920100006.116001161i i X P()8.01Φ-==1- 0.7881= 0.21194. 某商店负责供应某地区1000⼈商品,某种商品在⼀段时间内每⼈需要⽤⼀件的概率为0.6,假定在这⼀时间段各⼈购买与否彼此⽆关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某⼀时间段内每⼈最多可以买⼀件).解:设商店应预备n 件这种商品,这⼀时间段内同时间购买此商品的⼈数为X ,则X ~ B (1000,0.6),则E (X ) = 600,D (X ) = 240,根据题意应确定最⼩的n ,使P {X ≤n }= 99.7%成⽴. 则P {X ≤n })75.2(997.0)240600(240600240600ΦΦP ==-≈-≤-=n n X 所以6.64260024075.2=+?=n ,取n =643。
概率论 1-9章 习题解答
第 一 章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题 一1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶”-C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”:;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B是两随机事件,化简事件(1)()()AB A B (2)()()A B A B解:(1)()()A B A B A B A B B B== ,(2)()()A B A B ()A B A B B A A B B==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==.5.n 张奖券中含有m张有奖的,k个人购买,每人一张,求其中至少有一人中奖的概率.解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则 总数为k nC ,而全为白球的取法有k mn C-种,故所求概率为knkm n C C --1.解法二:令i A —第i 人中奖,,.,2,1k i=B —无一人中奖,则kA A A B21=,注意到k A ,,A ,A 21不独立也不互斥:由乘法公式)()()()()(11213121-=k kA A A P A A A P A A P A PB P(1)(2)(1)121n m n m n m n m k nn n n k -------+=⋅⋅---+ !,1kkn m n m k kn nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少? 解:122585410()C C C P A C -=7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率.解:此为几何概率问题:]11[,-=Ω,所求事件占有区间]5151[,-,从而所求概率为121525P ⋅==.8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14C D E O A BS S = .9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率.解:设所取两数为,,X Y 样本空间占有区域Ω, 两数之积小于14:14X Y <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω,而11411()(1)1(1ln 4)44S D d x x=-=-+⎰,故所求概率为1(1ln 4)4+.10.设A 、B 为两个事件,()0.9P A =,()0.36P A B =,求()P A B . 解:()()()0.90.360.54P A B P A P A B =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B . 解:()()1()1[()()]1[0.70.3]0.6P A B P A B P A B P B P A B ==-=--=--= . 12.假设()0.4P A =,()0.7P A B = ,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B .解:若A 、B 互不相容,()()()0.70.40P B P A B P A =-=-= ;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容) 故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06所以94.006.01)(1)(=-=-=A P A P 即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率.解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则0909.0999010010)()()(===ABP A P AB P16.设随机变量A、B、C 两两独立,A与B互不相容. 已知)(2)(>=C P B P且5()8P B C =,求()P A B .解:依题意)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P .又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程85)(3)]([22=+-C P C P151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P A B P B =+-==17.设A是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A迟早总会发生(以概率1发生).解:设事件iA —第i 次试验中A出现(1,2,,)i n = ,∵(),()1i i P A P A εε==-,(1,2,,)i n = ,∴n次试验中,至少出现A一次的概率为1212()1()n n P A A A P A A A =- 121()n P A A A =-121()()()n P A P A P A =-⋅⋅⋅ (独立性)1(1)nε=--∴12lim ()1n n P A A A →∞= ,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-1()1()()() P A B C P A P B P C =-=-42331..5345=-=. 19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --; (2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496 P A B C P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A=,求()P A B .解:由()0.4B P A=得()0.4,()0.12,()()()0.48()P A B P A B P A B P B P A B P A ==∴=-=,()()()()0.82P A B P A P B P A B =+-= .22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少? 解:设A—某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P A B P B BBP P AAP A P A =====23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内 发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P B A P B BBP P A AP A P A =-=-=-=-=.24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球. 1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少? 解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P A B P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021121112116⨯+⨯=.26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=i B {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上} 则%1)(%,4)(%,95)(321===B P B P B P%70)(%,80)(%,90)(321===BAP BAP B AP所以)()()()()()()(332211BAP B P BAP B P B AP B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率 解:以Bi分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,AP B =32()0.7,()0.85AAP P B B==所求概率为().P A 由全概率公式得:123123()()()()()()()AAAP A P B P P B P P B P B B B =++0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P AP A P A ====28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A AP P B B==()0.0005,P B =所求概率为().BP A()0.10,()0.9995.AP P B B==由Bayes 公式得()()()()()()()AP B P BBP AAAP B P P B P BB =+0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率. 解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1AAAP P P BB B===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯= 2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i i i P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率. 解:A ——需经调试 A ——不需调试 B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P (1)由全概率公式:)()()()()(ABP A P ABP A P B P ⋅+⋅=%941%70%80%30=⨯+⨯=. (2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P BAP .31.进行一系列独立试验,假设每次试验的成功率都是p,求在试验成功2次之前已经失败了3次的概率. 解:所求的概率为234(1)pp -.32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红 球的概率解:所求的概率为11191010kn kk n C ---⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅=34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率. 解:设试验E —从二盒火柴中任取一盒,A—取到先用完的哪盒,1()2P A =,则所求概率为将E 重复独立作2n r-次A发生n次的概率,故所求的概率为222211()()()222nnnn rn rn rn r n r C P n C -----==.第 二 章思 考 题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗? 答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g则随机变量)(X g Y =既非离散型又非连续型.事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y ;当10<≤y 时,()2))(()(y y X P y X g P y F Y =≤=≤=于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y yy y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==Y Y F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量.4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么?答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即tt X X==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x P X x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形.解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能 取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P XC ===,2133353{2}10C C P XC ===∴随机变量X的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩0 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律. 解:设{}ii A =第次取得废品,{}i A i =第次取得合格品,由题意知,废品数X的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====,21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(),3212311123299{2}()0.0409121110220A A P X P A A A P A P P A A A ===⋅⋅=≈()()()=32412341112123{3}()32191 0.00451211109220A A A P X P A A A A P A P P P A A A A A A ====⋅⋅⋅=≈()()()()所以X8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i成正比,即1,2,,10P X i ki i === (),(),求k.解:由条件1,2,,P X i k ii === (),(),由分布律的性质1011i i p ==∑,应有1011i k i ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N .解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!==≤∑=-Nk k eNX P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率. 解:设~()XP λ,由题意:)1(=X P =)2(=X P ,2!2!1λλλλ--=ee,解得2=λ,所求的概率即为222!0)0(--===eeX P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000XB ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμeeeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984. 12.设[]~2,5XU ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率.解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3AX =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3YB ⎛⎫ ⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B ,X 的分布律为{})50,,2,1,0(31325050 =⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk14.设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =.解:(3,)Y p B ,1211{}224p P X x d x =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,0xa x ex f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率. 解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2)()()()F x P X x f x dx+∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2xxxeF x a x ed x x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩.(3)511(0)()(0)12P X F F eλλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x X x ++=有实根的概率.解: “方程210x X x ++=有实根”即{2}X >,故所求的概率为{2}P X >=45.17.知随机变量X 服从正态分布2(,)N a a ,且Y a X b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩ 解得:1,1a b ==-18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内 的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλee,即021=--λe,∴.2ln =λ19.设随机变量(1,4)X N ,求(01.6)P X ≤<,(1)P X <. 解:011.61(01.6)()22P X P X --≤<=≤< 1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25XN ,在200,200240,240XX X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求: (1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A XA X A X =≤=<≤=>, D —电子元件损坏,则(1)123,,A A A完备,由全概率公式()()()()123123DD D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭,同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫⎪⎝⎭⎛⎫==⎪⎝⎭0.5760.0010.0090.062⨯==.21.随机变求2Y X =的分布律解:. 22.变量X 服从参数为0.7的0-1分布,求2X 及22X X -的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22X X -的可能值为1-和0,由于2{}P Xu =={P X }u =(0,1)u =,可见2X的概率分布为:由于2{21}{1}0.7P XX P X -=-===,2{20}{0}0.3P X X P X -====,可得22XX-的概率分布为23.X 概率密度函数为21()(1)X f x x π=+,求2Y X =的概率密度函数()Y f y .解:2y x =的反函数为2y x =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2YX=在()0,4内概率密度()Y f y .解法一(分布函数法) 当0y<时,()0,4Y F y y =>时()1Y F y =,当04y ≤≤时,()(YXF y P X F =≤=从而 ()040 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x=在()0,2单增,由于反函数x=在()0,4可导,'y x =,从而由公式得()040 ,XYf y f y ⎧=≤≤⎪=⎨⎪⎩其余25. ,0)0 ,0xXe xf x x -⎧≥=⎨<⎩(,求XYe=的密度.解法一(分布函数法)因为0X≥,故1Y>,当1y >时,()()()ln ln YX F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Yf y e y y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)xye=的值域()1,+∞,反函数ln xy=,故()()[]21ln ln ' ,10 ,1X Yf y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量XY e =和ln Z X =的概率密度()Y f y 和()Z f z .解:X 的密度为1, 01() x fx ⎧<<⎪=⎨⎪⎩0,若其它,(1)函数xye=有唯一反函数,ln xy=,且1Ye<<,故(ln )(ln ), 1() X f y y y ef y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y e y ⎧<<⎪=⎨⎪⎩0,其它.(2)在区间(0,1)上,函数ln ln zx x==-,它有唯一反函数zxe-=,且0Z>,从而()(), () z z X Zf e e fz -->⎧'⎪=⎨⎪⎩z 00,其它, zz e ->⎧⎪=⎨⎪⎩0,其它. 27. 设()Xf x 为X 的密度函数,且为偶函数,求证X -与X 有相同的分布.证:即证Y X=-与X 的密度函数相同,即()()YXf y f y =.证法一(分布函数法)()()()()()11YX F y P X y P X y P X y F y =-≤=≥-=-≤-=--, ()()()()1YX Xp y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x=-为单调函数,∴()()()()()'YX X Xp y p y y p y p y =--=-=.28.设随机变量X 服从正态分布),(2σμN ,0,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y=.求证Y 服从区间]1,0[上的均匀分布.证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F - 存在,又因1)(0≤≤x F ,因此Y的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y FF ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章 思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P 2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P .由此可看出,即使两个离散随机变量Y X 与相互独立同分布, Y X 与一般情况下也不会以概率1相等. 2解:由∑∑ijij p =1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立.7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P3解:)()1,1(11AB P Y X P p====,121)()(==A B P A P)()0,1(12B A P Y X P p====613241)()(=⋅==A B P A P因为: ,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p12812161121122=---=p,结果如表所示.4 解: X 的边缘分布律为32}2{,31}1{====X P X PY 的边缘分布律为21}2{,21}1{====X P Y P1=Y 的条件下X 的条件分布为0}1{}1,1{}11{=======Y P Y X P Y X P1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ====== .1,0;1,0}{}{=====j i j Y P i X P于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故 ,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x a x b x a a b x f X,0,1)(, )(y f Y =⎪⎩⎪⎨⎧><≤≤-d y c y d y c d c ,0,1随机变量X 及Y 是独立的. 7 解 (1)),(y x f =yx y x F ∂∂∂),(2=)9)(4(6222y x ++π(2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg=)22(1x arctg+ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxd x f X X )4(22x +π同理可得随机变量Y 的边分布函数=+∞=),()(y F y F Y )32)(22(12y arctg++ππππ=)32(1y arctg+ππY 的边缘分布密度函数==)()(y F dyd y f y Y )9(32y +π(3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立.8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x ey f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====12012110222222222,12121}2{y x rry x e erdr ed dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x rry x ee erdr ed dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x rry x eerdr ed dxdye Z P πθππ所以,Z 的分布律为:.1}2{,}1{,}0{212212-----==-====e Z P ee Z P e Z P9解:(1)由 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121A dxdy eA y x ,即12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x (2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy ey x =xe33-, 当0>y ,)(y f Y =⎰∞0),(dx y x f =⎰∞+-0)43(12dx ey x =ye44-,可知边缘分布密度为:)(x f X=⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12eedxdy ey x10解 因为 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=1121dy y xdxc , 6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=1226x dy xy ,所以)(x f X =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=122,36y dx xy ,所以)(y f Y =⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x f X )(y f Y ,所以X 与Y 相互独立.11解 由 2ln 12211===⎰e eDxdx xS当21e x ≤≤时,,2121),()(11xdy dy y x f x fx x X===⎰⎰其它)(x f X =0.所以:.41)2(=Xf12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=x xx x dy 10,21)(y f Y =⎰<<--=111,11yy y dx故)(y x f YX=)(),(y f y x f Y =⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f XY=)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X )(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx xdy y f dxx f dxdy y f x f Y X P )()()()(}{⎰⎰⎰⎰>∞+∞-∞+==>yx ydx x f dyy f dxdy y f x f Y X P )()()()(}{交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dxx f )()(⎰⎰∞+∞+∞-ydx x f dyy f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P .14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p +()1p --p )1p -=9712=+-p p解得:,32,3121==p p 因而a 有两个值.由于2121}{)(1-==≤=⎰a dx a X P A P a,所以,当311=p 时,由21-a =31得35=a当322=p 时,由21-a =32得37=a .15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P,41}2{}2{}4{=====+Y P X P Y X P 故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P(2)由已知易得 ;21}42{,21}22{====X P X P16解 由已知得所以有17证明:对任意的,,,1,021n n k += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n ik ik nin ii n qpC qp C 0)(2211=∑=-+-ki kn n ki k n i n qp C C2121)( (利用组合公式 ∑=+-=ki kn m ik ni m C C C 0)=kn n kkn n qp C -++2121即YX Z+=~),(21p n n b +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z fdx x z fx fz fYYXZ-=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。
概率论课后习题解答
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论第四章习题解答(全)
(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )
而
P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k
概率论高等数学习题解答(可编辑修改word版)
2 ⎪⎨ ⎪1 算了一次)或C 15 1种,故 P 1 2 2 ,其他结果类似 ⎩习 题 二(A )三、解答题1. 一颗骰子抛两次,以 X 表示两次中所得的最小点数(1) 试求 X 的分布律; (2) 写出 X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36 种,如果 X=1,则表明两次中至少有一点数为 1,其余一个 1 至 6 点均可,共有C 1 ⨯ 6 -1(这里C 1 指任选某次点22数为 1,6 为另一次有 6 种结果均可取,减 1 即减去两次均为 1 的情形,因为C 1 ⨯ 6 多⨯ + { = } = C 1 ⨯ 6 -1 = C 1⨯ 5 + 1 =11可得. (2)2⎧ 0 于 x < 136 36 36 ⎪P {X = 1}于1 ≤ x < 2 ⎪P {X = 1} + P {X = 2} 于 2 ≤ x < 3 F (x ) = ⎪P {X = 1} + P {X = 2} + P {X = 3} 于 3 ≤ x < 4⎪P {X = 1} + P {X = 2} + P {X = 3} + P {X= 4}于 4 ≤ x < 5 ⎪P {X = 1} + P {X = 2} + P {X = 3} + P {X = 4} + P {X = 5}于 5 ≤ x < 6 ⎪于 x ≥ 6X⎪ ⎨36 ⎪36 k != 10⎧ 0 于 ⎪11x < 1 ⎪ 于1 ≤ x < 2 ⎪36 ⎪ 20于 2 ≤ x < 3 ⎪36 = ⎪ 27 于⎪ ⎪32 于⎪3 ≤ x <4 4 ≤ x <5 ⎪35 于 5 ≤ x <6 ⎪36 ⎪⎩1 于 x ≥ 62. 某种抽奖活动规则是这样的:袋中放红色球及白色球各 5 只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5 只球,若 5 只球同色,则获奖 100 元,否则无奖, 以 X 表示某抽奖者在一次抽取中净赢钱数,求 X 的分布律.解:- 199i注意,这里 X 指的是赢钱数,X 取 0-1 或 100-1,显然 P {X = 99} =2 1 .5 126 3 k.设随机变量 X 的分布律为 P {X = k } = a k ! , k = 0,1,2, ;> 0 为常数,试求常数 a .∞k--解:因为∑ a= ae k =0= 1 ,所以a = e .4.设随机变量 X 的分布律为X -1 2 3 p i1/41/21/4(2) 求 P {X ≤ 1}, P {3 < X ≤ 5}, P {2 ≤ x ≤ 3} .2 2 2 解:C22 222 22i 2 ∞ ⎭ - ⎪ 0于x -10于 1 x -1(1) P { X 1}于 F ( x ) x 2 于 4 x 2 , P { X } P { X 2}于 2 x 33于2 x 3 1于 x 34 1于x 3⎧ ≤ 1 ⎫ = p {X= -1} = 1 、 P ⎧ 3 < X ≤ 5 ⎫ = P {X = 2} = 1 ,(2) P ⎨X ⎬⎩ ⎭ ⎨ ⎬ 4 ⎩ ⎭2 P {2 ≤ X ≤ 3} = P {{X = 2} {X = 3}} = P {X = 2}+ P {X= 3} = 3. 45. 设随机变量 X 的分布律为 P {X = k } =1 , k = 1,2, 求: 2k(1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3 的倍数}解:(1) P {X = 于于} = 1+ 1 + + 1⎛ 1 ⎛ 1 ⎫ ⎫1 ⎪ + = lim ⎝ ⎭ ⎪ = 1 ,22 24 22ii →∞ ⎝1 ⎪ 3 22 ⎪(2) P X 1 X 1 1 11 11 15 1 , 22 1⎡ 23⎛ 1 ⎫i ⎤ 24 16 163 ⎢1 - 3 ⎪ ⎥ (3) P {X = 3于于于}= ∑ 1 = lim 2 ⎢⎣ ⎝ 2 ⎭ ⎥⎦ = 1 . i =1 23i i →∞1 -1 7 236. 某公安局在长度为 t 的时间间隔内收到的紧急呼救的次数 X 服从参数为 0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午 12 时至下午 3 时没有收到紧急呼救的概率. (2) 求某一天中午 12 时至下午 5 时至少收到一次紧急呼救的概率. 解:(1) X ~ P (0.5t ) = P (1.5) P {X = 0}= e -1.5 .(2) 0.5t = 2.5P {x ≥ 1}= 1 - P {x = 0}= 1 - e -2.5 .7. 某人进行射击,每次射击的命中率为 0.02,独立射击 400 次,试求至少击中 2 次的概率.1 -4005 ⎪解:设射击的次数为 X ,由题意知 X ~ B (400,0.2),1P {X ≥ 2}= 1- P {X ≤ 1}= 1- ∑C k0.02k 0.98400-k , k =0由于上面二项分布的概率计算比较麻烦,而且 X 近似服从泊松分布 P (λ)(其中λ=400×0.02),所以查表泊松分布函数表得:P {X ≥2}8k e 8k !P {X ≥2} ≈ 1- 0.28 = 0.99728. 设事件 A 在每一次试验中发生的概率为 0.3,当 A 发生不少于 3 次时,指示灯发出信号.现进行 5 次独立试验,试求指示灯发出信号的概率.解:设 X 为事件 A 在 5 次独立重复实验中出现的次数, X ~ B (5于0.3) 则指示灯发出信号的概率p = P {X ≥ 3}= 1 - P {X < 3}= 1 - (C 0 0.300.75 + C 1 0.310.74 + C 2 0.320.73 )555= 1 - 0.8369 = 0.1631 .9. 设顾客在某银行窗口等待服务的时间 X (以分钟计)服从参数为 5 指数分布.某顾客在窗口等待服务,若超过 10 分钟,他就离开.他一个月要到银行 5 次,以 Y 表示他未等到服务而离开窗口的次数.写出 Y 的分布律,并求 P {Y ≥ 1}.- x解:因为 X 服从参数为 5 的指数分布,则 F (x ) = 1 - e5, P {X > 10}= 1 - F (10) = e -2 ,Y ~ B (5 于 e -2 ),则 P {Y = k } = C k (e -2 )k (1 - e -2 )5-k , k = 0,1, 5 . P {Y ≥ 1} = 1- P {Y = 0} = 1-于 1- e -2于5 = 0.5167⎧a cos x , 10.设随机变量 X 的概率密度为 f ( x ) = ⎨ | x |≤ 2 ,试求:(1) 系数 a ;(2) X 落在区间(0,) 内的概率.4⎪ 0, ⎩ | x |> 2解:(1) 由归一性知:1 =+∞f (x )dx -∞ 2a cos xdx = 2a ,所以 a = 1. - 22⎰ ⎰ , =0 ⎨ ⎨ ⎨ ≤ 1 1 2 (2) . P {0 < X < } = 4 4 cos xdx = 0 2sin x | 4 = 2 ⎧0, . 4 x < 0 11. 设连续随机变量 X 的分布函数为 F ( x ) = ⎪ Ax 2, ⎪⎩1, 0 ≤ x < 1x ≥ 1 试求:(1) 系数 A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度.解 (1)由 F (x )在 x =1 的连续性可得lim F (x ) = lim F (x ) = F (1) ,即 A=1.x →1+x →1-(2)P {0.3 < X < 0.7}= F (0.7) - F (0.3) = 0.4 . (3)X 的概率密度 f (x ) = F '(x ) =⎧2x ,0 < x < 1.⎩0,12. 设随机变量 X 服从(0,5)上的均匀分布,求 x 的方程 4x 2 + 4 X x + X + 2 = 0 有实根的概率.⎧1解:因为 X 服从(0,5)上的均匀分布,所以 f (x ) = ⎪5 ⎪⎩0 < x < 5其他 若 方 程 4x 2 + 4 X x 2 + X + 2 = 0 有 实 根 , 则 ∆ = (4 X )2 - 16 X - 32 ≥ 0 , 即(x - 2)( X +1) ≥ 0 ,得 X ≥ 2 或 X ≤ -1,所以有实根的概率为 p = P {X ≥ 2}+ P {X ≤ -1}= 51dx + -1 0dx = 1 x 5 = 313.设 X ~N (3,4)⎰2 5 ⎰-∞5 2 5(1) 求 P {2 < X ≤ 5}, P {-4 < X ≤ 10}, P { X (2) 确定 c 使得 P {X > c } = P {X ≤ c };> 2}, P {X > 3}; (3) 设 d 满足 P {X > d } ≥ 0.9 ,问 d 至多为多少?解: (1) 因为X ~ N (3于4) 所以 P {2 < X ≤ 5} = P {2 -3 < X - 3 5 - 3} = P {-0.5 < X - 3 ≤ 1} 2 2 2 2(1) (0.5) (1) (0.5) 1 0.8413 0.6915 1 0.5328⎰ 0( P {- 4 < X ≤ 10} = = 10 - 3) -( - 4 - 3)2 2P {X =(3.5) -(-3.5) = 2(3.5) - 1 = 2 ⨯ 0.9998 - 1 = 0.9996> 2}= 1 - P {X ≤ 2} = 1 - P {- 2 ≤ X ≤ 2}= 1 - [F (2) - F (-2)] = 1 - [ Φ(-0.5) - Φ(-2.5) ] = 1 - [ Φ(2.5) - Φ(0.5) ] = 1 - 0.3023 = 0.6977P {X > 3} = 1 - P {X ≤ 3} = 1 - F (3) = 1 - Φ(0) = 1- 0.5 = 0.5 .(2)P {X > c }= 1- P {X ≤ c },则 P {X ≤ c } = 1 = F (c ) = Φ( c - 3) = 1,经查表得2 2 2Φ(0) = 1 ,即 c - 3= 0 ,得c = 3 ;由概率密度关于 x=3 对称也容易看出。
(完整版)概率论高等数学习题解答
1(A )三、解答题1•一颗骰子抛两次,以 X表示两次中所得的最小点数(1) 试求X 的分布律; (2)写出X 的分布函数.解:(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有C 2 6-1 (这里C 2指任选某次点 数为1, 6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C ; 6多1 1算了一次)或C 2 5 1种,故P X 1 C 26-1C25 1耳,其他结果类似36 3636可得•0, X1P{X 1} ,1X 2P{X 1} P{X 2} ,2X3F(x)P{X 1} P{X 2} P{X 3}, 3 x 4P{X 1} P{X 2} P{X3}P{X 4}, 4 x 5 P{X1} P{X2} P{X 3} P{X4} P{X5}, 5 x 61 ,x 622 •某种抽奖活动规则是这样的:袋中放红色球及白色球各 5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里 X 指的是赢钱数,X 取0-1或100-1,显然P X 99k3.设随机变量 X 的分布律为P{X k} a ,k 0,1,2, k!k解:因为 a ae 1,所以a e k 0 k!4.设随机变量X 的分布律为X -1 2 3 p1/41/21/4(1)求X 的分布函数;1 3 512627,3 翌,4 3635,5 36x 2 x 3x 4 x 5x 6 62 1 C ;0 1260为常数,试求常数 a .3⑵求P{X 丄},P{- X 5},P{2 x 3}.2 2 2解:40, x -1布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) X ~ P 0.5t P 1.5 P X 0 e 1.5. (2) 0.5t2.50, x -1P{X 1}, 1 x2(1) F (x)P{X 1} P{X 2}1, x 3⑵P 1XX1 124P 2 X 3 P X 2X 3 5.设随机变量X 的分布律为 P{X k}(1) P{X =偶数}(2) P{ X 5}(3) P{ X=3的倍数}2 x 33 , ,2x341, x 33 51 P — X P X2 —222P X2 3 P X 3.4扌,k 1,2, 求:解:(1) P X 偶数丄1丄 22 221 lim i1(2) P X 51 P X 4115 1 16 16⑶P X 3的倍数23236.某公安局在长度为i123ilim123t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分2.5丄,1x2 45 7.某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概6解:设射击的次数为 X ,由题意知X ~ B 400,0.2i k k 400 kP X 2 1 P X 11 C 4000.02 0.98k 0查表泊松分布函数表得:P{X 2} 1 0.28 0.99728.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信(1)系数a ;(2) X 落在区间(0,[)内的概率.号•现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,则指示灯发出信号的概率 X ~ B 5,0.3 p P X 3 1 P X 3 1 (C 00.3°0.75 C 50.310.74 C ;0.320.73) 1 0.8369 0.1631. 9.设顾客在某银行窗口等待服务的时间 X (以分钟计) 在窗口等待服务,若超过 务而离开窗口的次数.写出 服从参数为 5 10分钟,他就离开.他一个月要到银行 5次,以 Y 的分布律,并求P{Y 1}.指数分布•某顾客 Y 表示他未等到服 x 解:因为X 服从参数为5的指数分布,则F(x) 1 e T , P X 10 Y~ B5, e 2 , 1 F(10) e 2 ,则 P{Y k} C5 (e 2)k (1 e 2)5k,k 0,1, 5 P{Y 1} 1- P{Y 0} 1 (1 e 2)5 0.5167 a cosx. 10.设随机变量 X 的概率密度为 f(x)0,|x|~2,试求:|x |2解:(1)由归一性知:1 f (x)dx2a cosxdx 2a ,所以 a2由于上面二项分布的概率计算比较麻烦, 所以而且X 近似服P{X 2}18k ek 0k!7⑵-11.2.P{0 X —} ; cosxdx sin x |(424 .0,x011 . 设连续随机变量X的分布函数为F(x)Ax,0x 11,x1⑶X的概率密度.试求:(1) 解系数(1)A;由⑵X落在区间(0.3, 0.7)内的概率;的连续性可得lim F(x)F(x )在x=1 lim F(x) F(1),即A=1.x 1(2) 0.3 X 0.7 F(0.7) F(0.3) 0.4.(3) X的概率密度 f (x) F (x)2x,00,12.设随机变量X服从(0, 5)上的均匀分布,求的概率.x的方程4x2 4Xx X 0有实根解:因为X服从(0, 5)上的均匀分布,所以1f(x) 50x5其他2 2方程4x 4Xx X(x 2)( X2(4X) 16X1,所以有实根的概率为0有实根,则32 51dx2510dxX〜N(3, 4)13.设求P{2 X 5}, P{(1) X 10}, P{ X 2}, P{X解: 确定c使得P{X c}设d满足P{X d} 0.9,问d至多为多少?(1)因为X ~ N(3,4)所以P{X c};2 3P{2 X 5} P{〒穿}P{1}(1) (0.5) (1) (0.5) 1 0.8413 0.6915 0.5328P 4 X 108F(2)(2.5)经查表得1 (0),即2专)故斗214.设随机变量1.29,解:P XF(所以(k)15.设随机变量如何变化的?(3.5)2 0.999810 3 4 3(^)2 2(3.5) 2 (3.5)1 0.99962) 1(0.5)0.1,解:X ~ N(,(0.5)0.3023F(3),则P X2X2(2.5)0.6977(0)得c 3 ;由概率密度关于即(-d 3)20.42.X服从正态分布2 2 (k)0.95 , p XN(0,1 0.5 0.5.c 3 1F(c)(〒)-,x=3对称也容易看出。
概率论课后习题解答
一、习题详解:写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7)在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8)在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论课后习题答案第一章
2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。
则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。
ⅱB r1r2r3r4。
1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。
⑵ABCC等价于CAB表示全系运动员都是三年级的男生。
⑶当全系运动员都是三年级学生时。
⑷当全系女生都在三年级并且三年级学生都是女生时。
1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。
1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。
1.5 解样本点总数为28A8×7。
所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。
于是PA23698714。
1.6 解样本点总数为5310。
所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。
所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。
17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。
所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。
概率论课后习题答案
概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。
概率论习题解答
第4章习题答案三、解答题1. 设随机变量X求)(X E ,)(2X E ,)53(+X E .解:E (X ) =∑∞=1i ixp= ()2-4.0⨯+03.0⨯+23.0⨯=E (X 2) = ∑∞=12i i p x = 44.0⨯+ 03.0⨯+ 43.0⨯=E (3 X +5) =3 E (X ) +5 =3()2.0-⨯+5 =2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望.解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为6,,2,1,6/1}{ ===i i X P记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的. (1) 某天恰有n 个读者,求借阅甲种图书的人数的数学期望.(2) 某天恰有n 个读者,求甲乙两种图书至少借阅一种的人数的数学期望. 解:(1) 设借阅甲种图书的人数为X ,则X~B (n , p 1),所以E (X )= n p 1 (2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y ~B (n , p ),记A ={借甲种图书}, B ={借乙种图书},则p ={A ∪ B }= p 1+ p 2 - p 1 p 2 所以E (Y )= n (p 1+ p 2 - p 1 p 2 )4. 将n 个考生的的录取通知书分别装入n 个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X 表示n 个考生中收到自己通知书的人数,求E (X ).解:依题意,X~B (n ,1/n ),所以E (X ) =1.5. 设)(~λP X ,且}6{}5{===X P X P ,求E (X ). 解:由题意知X ~P (λ),则X 的分布律P {}k X ==λλ-e k k!,k = 1,2,...又P {}5=X =P {}6=X , 所以λλλλ--=e e!6!565解得 6=λ,所以E (X ) = 6.6. 设随机变量X 的分布律为,,4,3,2,1,6}{22 --===k kk X P π问X 的数学期望是否存在解:因为级数∑∑∑∞=+∞=+∞=+-=-=⨯-11212112211)1(6)6)1(()6)1((k k k k k k kk k k πππ, 而 ∑∞=11k k 发散,所以X 的数学期望不存在.7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为⎪⎩⎪⎨⎧>=-.0,0,91)(3/其它x xe x f x 求一天的平均耗电量.解:E (X ) =⎰⎰⎰∞-∞-∞∞-==03/203/9191)(dx e x dx xe xdx x f x x x =6.8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为⎪⎩⎪⎨⎧>-=.0,5,251)(2其它x x x F求这种家电的平均寿命E (X ).解:由题意知,随机变量X 的概率密度为)()(x F x f '=当x >5时,=)(x f 3350252xx =⨯--,当x ?5时,=)(x f 0. E (X ) =10|5050)(5-53=-==∞++∞∞+∞⎰⎰xdx x x dx x xf所以这种家电的平均寿命E (X )=10年.9. 在制作某种食品时,面粉所占的比例X 的概率密度为⎩⎨⎧<<-=.0,10,)1(42)(5其它x x x x f 求X 的数学期望E (X ).解:E (X ) =dx x x dx x xf ⎰⎰+∞∞-=-152)1(42)(=1/410. 设随机变量X 的概率密度如下,求E (X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=.010,)1(2301)1(23)(22其它,,,,x x x x x f解:0)1(1023)1(0123)()(22=-++-=+∞∞-=⎰⎰⎰dx x x dx x x dx x xf X E .111. 设),4(~p B X ,求数学期望)2(sinX E π. 解:X 的分布律为k n kk n p p C k X P --==)1(}{, k = 0,1,2,3,4,X 取值为0,1,2,3,4时,2sin X π相应的取值为0,1,0,-1,0,所以)21)(1(4)1(1)1(1)2(sin 13343114p p p p p C p p C X E --=-⨯--⨯=π12. 设风速V 在(0,a )上服从均匀分布,飞机机翼受到的正压力W 是V 的函数:2kV W =,(k > 0,常数),求W 的数学期望.解:V 的分布律为⎪⎩⎪⎨⎧<<=其它 ,00 ,1)(a v a v f ,所以 ===+∞∞-=⎰⎰aa v a k dv a kv dx v f kv W E 03022|)31(1)()(231ka13. 设随机变量(X , Y )的分布律为求E (X ),E (Y ),E (X – ).解:E (X )=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E (Y )=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E (X -Y ) = E (X )- E (Y )=1/2-3/4= -1/4.14. 设随机变量(X ,Y )具有概率密度⎩⎨⎧≤+≤≤≤≤=其它,01,10,10,24),(y x y x xy y x f ,求E (X ),E (Y ),E (XY )解:E (X )=⎰⎰⎰⎰-=⋅11022424xDydydx x xydxdy x dx x x ⎰-⋅=1022)1(2124dx x x x ⎰+-=10432)2412(52)51264(1543=+-=x x x.152)34524638()1(31242424)(5/22424)(10654311010322210102=-+-=-⋅==⋅===⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰--x x x x dx x x dydx y xxydxdy xy XY E xdxdy y xydxdy y Y E DxDy15. 某工厂完成某批产品生产的天数X 是一个随机变量,具有分布律所得利润(以元计)为)12(1000X Y -=,求E (Y ),D (Y ).解: E (Y) = E [1000(12-X )]=1000×[(12-10)×+(12-11)]×+(12-12)×+(12-13)×+(12-14)×] = 400E (Y 2) = E [10002(12-X )2]=10002[(12-10)2×+(12-11)2×+(12-12)2×+(12-13)2×+(12-14)2×]=×106D (Y )=E (Y 2)-[E (Y )]2=×106- 4002=×10616. 设随机变量X 服从几何分布 ,其分布律为,,2,1,)1(}{1 =-==-k p p k X P k 其中0 < p < 1是常数,求E (X ),D (X ).解:令q=1- p ,则∑∑∑∑∞=∞=-∞=-∞==⨯=⨯==⨯=111111)()}{()(k kk k k k k dqdq p qk p p qk k X P k X Ep q dq d p q dq d p k k /1)11(0∑∞==-==∑∑∑∑∞=-∞=-∞=-∞=⨯+⨯-=⨯==⨯=1111112122])1([)()}{()(k k k k k k k q k qk k p p qk k X P k X Ep qk k pq k k /1)1(12+⨯-=∑∞=-p qdq d pq p q dqd pq k k kk /1)(/1012222∑∑∞=∞=+=+=p p q p q pq p q dq d pq /1/2/1)1(2/1)11(2322+=+-=+-= D (X ) = E (X 2)- E (X ) =2q /p 2+1/p -1/p 2 = (1-p )/p 217. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<-=其它,01||,11)(2x x x f π,试求E (X ),D (X ).解:E (X )= 011)(112=-=⎰⎰-∞∞-dx xxdx x f x πD (X )=E (X 2)= ⎰⎰⎰--∈-∞∞-=-=2/2/2]2/,2/[11222cos sin sin 11)(ππππππdt tt tx dx xxdx x f x t2122cos 122/0=-=⎰ππdt t 18. 设随机变量(X ,Y )具有D (X ) = 9,D (Y ) = 4,6/1-=XY ρ,求)(Y X D +,)43(+-Y X D .解:因为)()(),(Y D X D Y X Cov XY =ρ,所以)()(),(Y D X D Y X Cov XY ρ==-1/6×3×2=-1,11249),(2)()()(=-+=++=+Y X Cov Y D X D Y X D51)1(6369)3,(2)(9)()43(=--+=-++=+-Y X Cov Y D X D Y X D19. 在题13中求Cov (X ,Y ),?XY . 解:E (X ) =1/2, E (Y ) =3/4,E (XY )=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14,E (X 2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7,E (Y 2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28,D (X )=E (X 2) -[E (X )]2 = 4/7-(1/2)2= 9/28,D (Y )=E (Y 2)- [E (Y )]2=27/28-(3/4)2= 45/112,Cov (X ,Y )= E (XY )- E (X ) E (Y ) =3/14- (1/2) ×(3/4)= -9/56, ?XY = Cov (X ,Y ) /()(X D )(Y D )=-9/56 ? (28/9112/45)= -5/520. 在题14中求Cov (X ,Y ),?XY ,D (X + Y ).解:52)()(==Y E X E ,,)(152=XY E 752)()()(),(-=-=Y E X E XY E Y X Cov)(5124)(2101032Y E dydx y x X E x ===⎰⎰-[])(25125451)()()(22Y D X E X E X D ==-=-=752),(2)()()(32)()(),(=++=+-==Y X Cov Y D X D Y X D Y D X D Y X Cov XYρ21. 设二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤+=.0,1,1),(22其它y x y x f π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:0/12/)(112111122=-==⎰⎰⎰-----dx x x dydx x X E x xππ 0/)(111122==⎰⎰----x x dydx y Y E π 0/)(111122==⎰⎰----x x dydx xy XY E π,所以Cov (X ,Y )=0,?XY =0,即X 和Y 是不相关.Ox2x2⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122x x x dy dy y x f x f x x X ππ ⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122y y y dx dx y x f y f y y Y ππ 当x 2+ y 2≤1时,f ( x,y )≠f X ( x ) f Y (y ),所以X 和Y 不是相互独立的22. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=.010,2||,2/1),(其它x x y y x f 验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:由于f ( x,y )的非零区域为D : 0 < x < 1, | y |< 2x32221102212====⎰⎰⎰⎰⎰-dx x xdydx dxdy y x xf X E xx D ),()(,0211022⎰⎰⎰⎰-===xx Dydydx dxdy y x yf Y E ),()(,0211022⎰⎰⎰⎰-===xx Dxydydx dxdy y x xyf XY E ),()(,所以Cov (X ,Y )=0,从而0)()(),(==y D x D y x Cov xy ρ,因此X 与Y 不相关 .⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-其他,010,221),()(22Xx x dy dy y x f x x x f⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-=<<-+===⎰⎰⎰-∞+∞-其他,020,421202,42121),()(1212Y y y dx y y dx dx y x f y y y f所以,当0<x <1, -2<y<2时,)()(),(y f x f y x f Y X ≠,所以X 和Y 不是相互独立的 . 四、应用题.1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m 元,而积压一件产品导致n 元的损失,再者,他们预测销售量Y (件)服从参数θ的指数分布,问若要获利的数学期望最大,应该生产多少件产品(设m,n ,θ均为已知).⎪⎩⎪⎨⎧≤>>=⎩⎨⎧≥<<--==-0,00,0,1)(,0),()(y y e y f Y x Y mx xY Y x n mY Y Q Q y Y θθθ的密度函数为[]()()()取最大值时,当又则令)(n ln 0n m )(d n ln,n 0)(1)()(d )()()()(1.1.)()(.)()( 20000000Q E n m x e dx Q E n m x n m e n e n m n e n m dx Q E nxn m e n m mxenx nxe e n m xe n m mxe nxe dy n m e ye n m mxde de nx yde n m dye mx dy e y x n my dy Yf Y Q Q E xxxx x x x x y x xyx y x y x y x y x y y x x y x y Y +-=∴<+-=+-=∴+==-+=-⎪⎭⎫ ⎝⎛-+-=-+++-=+-++-+-=-+⎥⎥⎦⎤⎢⎢⎣⎡+-+=-++-=+--==---------∞+----∞+---∞+--∞∞-⎰⎰⎰⎰⎰⎰⎰θθθθθθθθθθθθθθθθθθθθθθθθθθθ解:设生产x 件产品时,获利Q 为销售量Y 的函数2. 设卖报人每日的潜在卖报数为X 服从参数为λ的泊松分布,如果每日卖出一份报可获报酬m 元,卖不掉而退回则每日赔偿n 元,若每日卖报人买进r 份报,求其期望所得及最佳卖报数。
概率论第一章习题解答(全)
10 9 8 120 ; 3 2 1
事件 A 所包含基本事件数(即 5 固定,再从 6,7,8,9,10 这 5 个数中任选 2 个) :
C52
5 4 10 2
事件 B 所包含的基本事件数(即 5 固定,再从 1,2,3,4 这 4 个数中任选 2 个) :
故
43 6 2 10 1 6 1 P ( A) ; P( B) 120 12 120 20
1 1 1 1 1 1 1 17 ; 2 3 5 10 15 20 30 20 17 3 (ⅳ) P ( ABC ) P ( A B C ) 1 P ( A B C ) 1 ; 20 20
(ⅴ) 且 因为 ABC ( A B )C ( s ( A B ))C C ( AC BC )
P ( ABC ) P (( A B )C ) P (C ) P ( AC ) P ( BC ) 1 1 1 7 5 15 20 60
(ⅵ)
因为
P ( AB C ) P ( AB ) P (C ) P ( ABC )
已知 P ( AB )
4 7 , P ( ABC ) ,故 15 60
而 故
ABC AB , P ( AB ) 0 ,所以
P ( ABC ) 0
P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC ) 1 1 1 1 5互不相容,所以 AB , AB A , P ( AB ) P ( A) (ⅱ)因为 A A( B B ) AB AB ,且 AB AB , 所以
概率论第一章习题解答
概率论第一章习题解答一、填空题:1.设,()0.1,()0.5,A B P A P B ⊂==则()P AB = ,()P A B = , ()P A B = 。
分析:()(,)0.1;A P B P AB A ==⊂()()0.5;P A B P B ==()()()1()0.9P A B P A B P AB P AB ===-=2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。
分析:设A 为抽正品事件,B 为抽一级品事件,则条件知()1()0.98P A P A =-=,()0.85P B A =,所求为()()()0.980.850.833P B P A P B A ==⨯=;3.设A ,B ,C 为三事件且P(A)=P(B)=P(C)=41,81)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 .分析:,()()0,()0ABC AB P ABC P AB P ABC ⊆≤=∴= 所求即为5()()()()()()()()8P A B C P A P B P C P AB P BC P AC P ABC =++---+=; 4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 .分析:第二次取到次品的概率为112111211C C ⨯或者为111110*********C C C C +=⨯ 5. 设A ,B 为两事件, ()0.4,()0.7,P A P A B == 当A ,B 不相容时, ()P B = 当A ,B 相互独立时, ()P B = 。
分析: (1)当A ,B 不相容时, ()0P AB =;()()()()P A B P A P B P AB =+- 由;则()()()()0.3P B P A B P A P AB =⋃-+=;(2)当A ,B 相互独立时, ()()()()()()()P AB P A P B P A B P A P B P AB =⎧⎨=+-⎩ ;则()(()(()))P A B P A P P P B B A =+- 由,代入求得()0.5P B =二.、选择题2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论习题解答李勇张余辉March 27,20181第二章概率空间§2.1.1练习题练习2.1.1在例2.1.1中定义P(Ω)= P (A )=1, P(A )= P (∅)=0,试证明 P为概率.证明:显然,对任意B ∈F 有 P (B ) 0且 P (Ω)=1.下面验证可列可加性.即对于两两互不相容的{B n }⊂F ,要证明P (∞∪n =1B n)=∞∑n =1P(B n ).只有四种情形,(a)全是∅;(b)只有一个A 且其余全是∅;(c)只有一个A 且其余全是∅;(d)只有一个A 和一个A 且其余全是∅.对于情形(a),上式两边都为零;对于(b),上式两边都为1;对于(c),上式两边都为0;对于(d),上式两边都为1.故等号总成立.因此,满足可列可加性. P 为F 上的概率.练习2.1.2将一枚质地均匀的骰子掷n 次,求所得最大点数为4的概率.解:用A 表示所得最大点数为4,A k 表示最大点数不超过k 点,则A ⊂A 4−A 3,A 4⊂A 3,所以P (A )=P (A 4)−P (A 3)=4n −3n6n.练习2.1.3从一副扑克牌中有放回地任意抽取n 张(n 4),求这n 张牌包含了全部4种花色的概率.解:用E 表示这n 张牌包含了全部4种花色,A 表示这n 张牌没有红桃,B 表示这n 张牌没有黑桃,C 表示这n 张牌没有方块,D 表示这n 张牌没有梅花.则E =A ∪B ∪C ∪D .由加法公式,P (A ∪B ∪C ∪D )=4P (A )−(42)P (AB )+(43)P (ABC )−(44)P (ABCD )=4(34)n −6(24)n +4(14)n .所以,P (E )=1−P (A ∪B ∪C ∪D )=4n +6·2n −4(3n +1)4n.2练习2.1.4n(n>1)对夫妇任意围成一圆桌就坐,求有夫妇不相邻的概率.解:用A表示有夫妇不相邻,则A表示所有夫妇全相邻.取一椅子作为参考点,称为a座,记B1={a座与顺时针方向邻座为夫妇}∩A,B1={a座与逆时针方向邻座为夫妇}∩A.则A=B1∪B2,B1B2=∅.因此,P(B i)=n!2n(2n)!=1(2n−1)!!,i=1,2,P(A)=P(B1)+P(B2)=2(2n−1)!!,从而P(A)=1−P(A)=1−2(2n−1)!!.练习2.1.5从n阶行列式的一般展开式中任意抽取一项,问这项包含主对角线元素的概率是多少.解:记A=(a ij)n×n,则|A|=∑(i1,i2,···,i n)∈Ω(−1)τ(i1,i2,···,i n)a1i1a2i2···a ni n,其中Ω={1,2,···,n的排列全体}.对Ω中的任何点,该点被取到的概率为1n!.记B={(i1,i2,···,i n):存在1 k n,使得i k=k},B k={(i1,i2,···,i n):i k=k},1 k n.则B=n∪k=1B k.由加法定理得P(B)=n∑k=1(−1)k−1∑1 i1<···<i k nP(B i1···B ik)=n∑k=1(−1)k−1(nk)(n−k)!n!=n∑k=1(−1)k−11k!.练习2.1.6向画满间隔为a的平行直线的桌面上任投一三角形.假设该三角形的三条边的边长ℓ1,ℓ2和ℓ3均小于a,求此三角形与某直线相交的概率.解:用A表示此三角形与某直线相交,A i表示此三角形的第i条边与某直线相交(i=1,2,3).显然, A1=(A1A2)∪(A1A3),A2=(A2A3)∪(A2A1),A3=(A3A2)∪(A3A1).注意到P(A1A2A3)=0.由加法定理得P(A1)=P(A1A2)+P(A1A3)−P(A1A2A3)=P(A1A2)+P(A1A3)和P(A2)=P(A2A3)+P(A1A2),P(A3)=P(A2A3)+P(A1A3).三个式子相加可得P(A1)+P(A2)+P(A3)=2(P(A1A2)+P(A1A3)+P(A2A3)).3再注意到P(A i)=2ℓiaπ,则有P(A1A2)+P(A1A3)+P(A2A3)=ℓ1+ℓ2+ℓ3aπ.对A=(A1A2)∪(A1A3)∪(A2A3)利用加法定理得P(A)=P(A1A2)+P(A1A3)+P(A2A3)=ℓ1+ℓ2+ℓ3aπ.练习2.1.7设P(A)+P(B)=1,试证明P(AB)=P(A B).证明:由1−P(A B)=P(A∪B)=P(A)+P(B)−P(AB)=1−P(AB)知,结论正确.练习2.1.8试证明P (limn→∞A n)limn→∞P(A n),P (limn→∞A n)limn→∞P(A n).证明:注意到lim n→∞A n=∞∪n=1∞∩k=nA k,∞∩k=nA k⊂∞∩k=n+1A k,由概率的下连续性得P (limn→∞A n)=limn→∞P(∞∩k=nA k)limn→∞P(A n).注意到lim n→∞A n=∞∩n=1∞∪k=nA k,∞∪k=nA k⊃∞∪k=n+1A k,由概率的上连续性得P (limn→∞A n)=limn→∞P(∞∪k=nA k)limn→∞P(A n).或者,由对偶法则可得(limn→∞A n)=limn→∞A n,所以,1−P (limn→∞A n)=P(limn→∞A n)limn→∞P(A n)=1−limn→∞P(A n)即lim n→∞P(A n) P(limn→∞A n).4练习2.1.9对于任意n 个事件A n ,试证明P (n ∩k =1A k )n ∑k =1P (A k )−n +1.证明:由次可加性得P(n∪k =1A k)n ∑k =1P (A k )=n −n ∑k =1P (A k ),从而P (n ∩k =1A k )=1−P (n ∪k =1A k ) n∑k =1P (A k )−n +1.练习2.1.10有编号为正整数的可数多个球和一个空箱子.对于n 1,在11点58+n −1∑i =0(12)i分时往箱中放入编号为从10n −9号到10n 号之间的球,同时按如下的三种方式之一从箱中取出球:(a)取出第10n −9号球;(b)取出第n 号球;(c)从箱中任取一球.分别在上述三种情况下求事件A ={在12点整箱子空}的概率.解:(a)此时显然A =∅,P (A )=0;(b)此时显然A =Ω,P (A )=1;(c)给定正整数i ,用F i 表示在12点整第i 号球在箱中.则A =∞∪i =1F i .由次可加性,P (A )∞∑i =1P (F i ).下面讨论F i 发生的概率.用E n 表示经过n 次取球后第i 号球还在箱中,则有E n ⊂E n +1.由概率的上连续性得P (F i )=P(∞∩n =i +1E n )=lim n →∞P (E n ),当i 10n 时有P (E n )=(∏[i/10]k =1(9k+1))(∏nk =1+[i/10](9k ))∏nk =1(9k +1)=1∏nk =1+[i/10](1+1/(9k ))→0,当n →∞(因为∑∞k =mlog(1+19k )=+∞).从而P (F i )=lim n →∞P (E n )=0,进而P (A )=0,立即有P (A )=1−P (A )=1.练习2.1.11参加集会的n 个人各自的帽子放在一起,会后每人任取一顶戴上,求恰有k 人戴对自己帽子的概率.5解:用A k表示恰有k个人戴对自己帽子(k=1,2,···,n),A0表示n个人无人戴对自己帽子,B i表示第i个人戴对自己帽子(i=1,2,···,n),则根据加法定理得到P(A0)=n∑i=1P(B i)−∑1 i<j jnP(B i B j)+···+(−1)n−1P(B1···B n),而n(B i)=(n−1)!,n(B i B j)=(n−2)!,n(B i B j B k)=(n−3)!,···,n(B1˙B n)=0!=1,n(Ω)=n!,代入可得P(A0)=n∑i=11n−∑1 i<j jn1n(n−1)+···+(−1)n−11n!=11!−12!+···+(−1)n−11n!.因此,P(A0)=n∑i=0(−1)i1i!.下面求P(A k),k 1.一个解法如下.用C k表示恰好某指定的k个人戴对自己帽子,则n(A k)=(nk)n(C k).注意到:恰好某指定的k个人戴对自己帽子也即是其余n−k个人无人戴对自己帽子.因此由上面A0的结论有:P(C k)=n−k∑i=0(−1)i1i!,而P(C k)=n(C k)(n−k)!,由此可得n(C k)=(n−k)!n−k∑i=0(−1)i1i!,最终得到P(A k)=(nk)n(C k)n!=1k!n−k∑i=0(−1)i1i!,此结果对于k=0,1,···,n均成立.另一解法.用A k表示恰有k个人戴对自己帽子(k=1,2,···,n),A0表示n个人无人戴对自己帽子, C(i1,···,i k)表示仅第i i,···,i k人戴对自己帽子,其中1 i1<···<i k n.显然诸C(i1,···,i k)互不相容,但有相同的概率,且当k 1时有A k=∪1 i1<···<i k nC(i1,···,i k),由概率的有限可加性得P(A k)=∑1 i1<···<i k nP(C(i1,···,i k)),所以当1 k n时,P(A k)=(nk)P(C(1,···,k)).为计算上式右边的概率,用B k表示第k人戴对自己帽子.则C(1,···,k)=(k∩i=1B i)∩(n∩j=k+1B j)=(k∩i=1B i)−(n∪j=k+1(B j B1···B k)).6利用概率的可减性得P (C (1,···,k ))=P (B 1···B k )−P(n∪j =k +1(B j B 1···B k )).由古典概率计算公式得P (B i 1···B i k )=(n −k )!n !.再由概率的加法定理得P (n ∪j =k +1(B j B 1···B k ))=n −k ∑j =1(−1)j −1(n −k j )(n −k −j )!n !.因此,P (C (1,···,k ))=n −k ∑j =0(−1)j(n −k j )(n −k −j )!n !.由此得到P (A k )=(n k )n −k ∑j =0(−1)j(n −k j )(n −k −j )!n !=1k !n −k∑j =0(−1)j 1j !,其中1 k n .§2.2.5练习题练习2.2.1试用全概率公式计算例2.2.1中事件A 的概率.解:记A n 表示n 根绳恰结成n 个圈,B 表示第一次结成绳圈,则B 和B 构成一个分割.记p n =P (A n ),则p 1=1.由全概率公式得p n =P (A n )=P (B )P (A n |B )+P (B )P (A n |B )=12n −1p n −1+2n −22n −1·0=12n −1p n −1,由此递推得P (A )=p n =n ∏k =212k −1p 1=n ∏k =112k −1=1(2n −1)!!.练习2.2.2盒中放有10个乒乓球,其中7个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的球都是新球的概率.解:用A 表示第二次取出的球都是新球,B i 表示第一次取出的有i 个新球(i =0,1,2,3),则B 0,B 1,B 2,B 3构成样本空间的一个分割,从而则由全概率公式知,P (A )=3∑i =0P (B i )P (A |B i ).注意到P (B i )=(7i )(33−i )(103),P (A |B i )=(7−i 3)(103),i =0,1,2,3.7可得P(A)=3∑i=0(7i)(33−i)(103)·(7−i3)(103)=49576.练习2.2.3试卷中有一道单项选择题,共有3个选项.任一学生如果会解这道题,则一定能选出正确的答案;如果他不会解这道题,则他会任意选择一个答案.设考生会解这道题的概率是0.7,求:(1)考生能够选出正确答案的概率;(2)已知某考生所选择的答案是正确的,他确实会解这道题的概率.解:用A表示考生能够选出正确答案,B表示考生会解这道题.则B和B构成样本空间的一个分割.(1)由全概率公式知P(A)=P(B)P(A|B)+P(B)P(A|B)=0.7·1+0.3·13=0.8.(2)由Bayes公式知P(B|A)=P(B)P(A|B)P(B)P(A|B)+P(B)P(A|B)=0.7·10.8=0.875.练习2.2.4已知一只母鸡生k个蛋的概率为λkk!exp(−λ)(λ>0,并且每一个鸡蛋能孵化成小鸡的概率为p.求一只母鸡恰好孵出r只小鸡的概率.解:用A表示一只母鸡恰好孵出r只小鸡,B k表示这只母鸡生k个蛋(k 0).则{B k}构成样本空间的一个分割.由全概率公式知,P(A)=∞∑k=0P(B k)P(A|B k)=∞∑k=rP(B k)P(A|B k)=∞∑k=rλkk!e−λ(kr)p r(1−p)k−r=(λp)rr!e−λ∞∑k=r(λ(1−p))k−r(k−r)!=(λp)rr!e−λeλ(1−p)=(λp)rr!e−λp.练习2.2.5接连投掷一枚质地均匀的硬币,直至第一次连续出现两个正面为止.求恰投掷n次的概率.解:记A n={恰在第n次抛出连续两个正面},B k={第k次抛出为正面},p n=P(A n).则B1,B1B2和B1B2恰为概率空间的一个分割.当n 2时,由全概率公式知,p n=P(B1)P(A n|B1)+P(B1B2)P(A n|B1B2)+P(B1B2)P(A n|B1B2)=12p n−1+0+14p n−2=12p n−1+14p n−2.为求解此差分方程,可将其改写为如下便于递推的形式p n−ap n−1=b(p n−1−ap n−2),其中a和b是待定常数.将上式代入差分方程有(a+b)p n−1−abp n−2=12p n−1+14p n−2,8即a+b=12,ab=14,解之得a=1+√54,b=1−√54.另一方面,注意到p2=14,p1=0,通过递推得p n−ap n−1=b n−2(p2−ap1)=14b n−2,即p n=14b n−2+ap n−1,n 2,递推得p n=14n−2∑k=0a kb n−2−k+a n−1p1=14b n−2n−2∑k=0(ab)k=14b n−21−(ab)n−11−ab.将a和b的值代入整理得p n=12√5((1+√54)n−1−(1−√54)).练习2.2.6在例2.2.5中,在已知A发生的情况下,哪一车间应该对这件次品负责?解:记B={取到第i车间产品},则由Bayes公式P(B1|A)=P(B1)P(A|B1)P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=12·0.010.0125=0.4,P(B2|A)=P(B2)P(A|B2)P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=14·0.010.0125=0.2,P(B3|A)=P(B3)P(A|B3)P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=14·0.020.0125=0.4,所以应该应该由第1或第3车间对这件次品负责.练习2.2.7在信号传递中,发送信号“0”或“1”,它们分别占13和23,由于外界的随机干扰和信号传递系统内部的噪声,接收到的信号可能出错的概率均为0.05,若已知接收到的信号为“1”,试问发送的信号也是“1”的概率多大?解:用A表示发送的信号是“1”,B表示接收到的信号为“1”,由Bayes公式P(A|B)=P(A)P(B|A)P(A)P(B|A)+P(A)P(B|A)=23·0.9523·0.95+13·0.05=3839≈0.97.§2.3.5练习题练习2.3.1如果三个事件A,B,C相互独立,试证A∪B,AB,AB均与C独立.9证明:事实上,P((A∪B)C)=P((AC)∪(BC))=P(AC)+P(BC)−P(ABC)=P(A)P(C)+P(B)P(C)−P(A)P(B)P(C)=(P(A)+P(B)−P(A)P(B))P(C)=(P(A)+P(B)−P(AB))P(C)=P(A∪B))P(C),即A∪B与C相互独立.注意到P((AB)C)=P(A)P(B)P(C)=P(AB)P(C),得AB与C相互独立.类似地,P((AB)C)=P(A)P(B)P(C)=P(AB)P(C),即AB与C相互独立. 练习2.3.2试证明事件A1,A2,···,A n相互独立的充要条件为:对每个事件ˆA k=A k或者A k(k= 1,2,···,n),总有P(ˆA1ˆA2···ˆA n)=P(ˆA1)P(ˆA2)···P(ˆA n).证明:对n用数学归纳法.显然当n=2时结论成立.设在n时结论成立,往证n+1结论还成立.n+1时必要性的证明.记B i=A i(1 i n−1),B n=A n A n+1,则对于2 s n,1 i1<···< i s−1 n−1,P(B i1···B i s−1B n)=P(B i1)···P(B i s−1)P(A n)P(A n+1)=P(B i1)···P(B i s−1)P(B n),从而P(B i1···B i s−1B i s)=P(B i1)···P(B i s−1)P(B i s),1 i1<···<i s n.即B1,···,B n相互独立.由归纳假设P(ˆB1ˆB2···ˆB n)=P(ˆB1)P(ˆB2)···P(ˆB n).再由P(B n)=P(A n)P(A n+1),得P(ˆA1ˆA2···ˆA n−1A n A n+1)=P(ˆA1)P(ˆA2)···P(ˆA n−1)P(A n)P(A n+1).类似地,把A n A n+1,A n A n+1或A n A n+1看成B n可得P(ˆA1ˆA2···ˆA n−1A n A n+1)=P(ˆA1)P(ˆA2)···P(ˆA n−1)P(A n)P(A n+1),P(ˆA1ˆA2···ˆA n−1A n A n+1)=P(ˆA1)P(ˆA2)···P(ˆA n−1)P(A n)P(A n+1),P(ˆA1ˆA2···ˆA n−1A n A n+1)=P(ˆA1)P(ˆA2)···P(ˆA n−1)P(A n)P(A n+1).因此,n+1时必要性成立.10n +1时充分性的证明.为此仅需证明P (A i 1···A i k )=P (A i 1)···P (A i k ),2 k n,1 i 1<···<i k n +1.(1.1)事实上,取j ∈{1,2,···,n +1}−{i 1,i 2,···,i k },有P (ˆA1···ˆA j −1A j ˆA j +1···ˆA n +1)=P (ˆA 1)···P (ˆA j −1)P (A j )P (ˆA j +1)···P (ˆA n +1),P (ˆA1···ˆA j −1A j ˆA j +1···ˆA n +1)=P (ˆA 1)···P (ˆA j −1)P (A j )P (ˆA j +1)···P (ˆA n +1),将两式相加有P (ˆA1···ˆA j −1ˆA j +1···ˆA n +1)=P (ˆA 1)···P (ˆA j −1)P (ˆA j +1)···P (ˆA n +1).由归纳假设知,A 1,···,A j −1,A j +1,···,A n +1相互独立.再注意到{i 1,···,i k }⊂{1,···,j −1,j +1,···,n +1},得(1.1).练习2.3.3设事件A 与B 独立,仅A 发生和仅B 发生的概率分别是38和18,求P (A )和P (B ).解:由概率的有限可加性得P (A )=P (A −B )+P (AB )=38+P (A )P (B ),P (B )=P (B −A )+P (AB )=18+P (A )P (B ),所以P (A )−P (B )=14,进而P (B )=P (A )−14;另外38=P (A )(1−P (B ))=P (A )(1−P (A )+14)=54P (A )−(P (A ))2,即P (A )=58±18,P (B )=38±18.因此,得:P (A )=34,P (B )=12;或者P (A )=12,P (B )=14.练习2.3.4若A 1,A 2,···,A m +n 相互独立,B ∈σ({A 1,···,A m }),C ∈σ({A m +1,A m +2,···,A m +n }),试证明B 与C 相互独立.证明:记M ={1,2,···,m }和A ={∅}∪{A :存在S ⊂M ,使得A =(∩k ∈SA k )∩(∩k ∈M −SA k )},约定∩k ∈∅A k =Ω,则A 中事件互不相容,对于任何A ∈A ,A ,A m +1,···,A m +n 相互独立,且Ω=∪A ∈AA ∈F .(1.2)11记F={B:B为A中事件之并}.若A∈F,则存在B k∈A(k=1,···,s),使得A=s∪k=1B k,从而A=Ω−(s∪k=1B k)=∪A∈A−{B1,B2,···,B s}A∈F.(1.3)若A k∈F(k 1),注意到A中仅有有限多个互不相容的事件知∞∪k=1A k∈F.(1.4)由(1.2),(1.3)和(1.4)知F=σ({A1,A2,···,A n}).对于任何事件B∈F,存在B k∈A(k=1,···,s),使得B=s∪k=1B k.注意到B1,B2,···,B s互不相容,并且B k,A m+1,A m+2,···,A m+n相互独立,可得B,A m+1,A m+2,···,A m+n相互独立.进而对于任何C∈σ({A m+1,A m+2,···,A m+n}),B和C相互独立. 练习2.3.5有一个均匀正四面体,其中的三个面分别只涂上红、黄和蓝色,在剩下的一个面上同时涂有红、黄和蓝三色.掷此四面体落地后,事件A表示四面体的底面有红色,事件B表示四面体的底面有黄色,事件C表示四面体的底面有蓝色.试证明A,B和C两两独立,但不相互独立.证明:显然,P(A)=P(B)=P(C)=12,P(AB)=P(AC)=P(BC)=14,P(ABC)=14,所以P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C),即A,B和C两两独立,但不相互独立. 练习2.3.6现有如下系统,其中元件A,B,C互相独立,而且可靠性分别为p1,p2,p3,求系统不正常工作的概率.解:系统正常工作的概率为P(A∪(BC))=1−P(A∩(BC))=1−P(A)P((BC)),系统不能正常工作的概率为P(A)P((BC))=(1−P(A))(1−P(BC))=(1−p1)(1−p2p3).练习2.3.7设事件A,B,C两两独立,且满足ABC=∅及P(A)=P(B)=P(C)=x,求max(x).解:因为A−(B∪C)=A−((AB)∪(AC)),所以P(A−(B∪C))=P(A)−P((AB)∪(AC)).(1.5)12注意到A,B,C 两两独立得P ((AB )∪(AC ))=P (AB )+P (AC )−P (ABC )=P (AB )+P (AC )=2x 2,代入(1.5)有P (A −(B ∪C ))=x −2x 2.注意到概率取值于[0,1]得0 x −2x 2 1.(1.6)而f (x ) x −2x 2在[0,1]上的极大值点为1/4,并且f (0)=f (12)=0,再注意到(1.6)得0 x12.例如,有一个均匀正四面体,其中的三个面分别涂上红黄、红蓝和黄蓝色,在剩下的一个面上涂有白色.掷此四面体落地后,事件A 表示四面体的底面有红色,事件B 表示四面体的底面有黄色,事件C 表示四面体的底面有蓝色.则P (A )=P (B )=P (C )=12,A,B 和C 两两独立且ABC =∅.所以x 的最大值为12.练习2.3.8已知事件A 和B 相互独立且互不相容,求min {P (A ),P (B )}.解:由独立性P (AB )=P (A )P (B ).由A 与B 互不相容得P (A )P (B )=P (∅)=0,所以P (A )=0或P (B )=0,故min {P (A ),P (B )}=0.练习2.3.9假设事件B 发生的概率为P (B )∈(0,1),试证明事件A 与B 独立的充要条件为P (A |B )=P (A |B ).证明:必要性.注意到0<P (B )<1,有P (A |B )=P (A ),P (B )>0.再注意到A 和B 也相互独立,有P (A |B )=P (A ),13即得必要性.充分性.由于P(AB) P(B)=P(AB) P(B),导致P(B)P(AB)=P(B)P(AB),即(1−P(B))P(AB)=P(B)(P(A)−P(AB)),整理得P(AB)=P(A)P(B).即充分性成立. 练习2.3.10称事件A与B关于事件C条件独立,如果事件A,B,C满足P(AB|C)=P(A|C)·P(B|C),其中P(C)>0.试证明:(1)当P(BC)>0时,上述条件独立性的充要条件是P(A|BC)=P(A|C);(2)举例说明“独立”与”条件独立”两者没有蕴含关系.证明:(1)由P(BC)>0知:P(AB|C)=P(A|C)P(B|C)⇐⇒P(ABC)P(C)=P(AC)P(BC)P(C)P(C)⇐⇒P(ABC)P(BC)=P(AC)P(C)⇐⇒P(A|BC)=P(A|C),即(1)成立.(2)反例:掷质地均匀硬币两次,用A表示第一次得正面,B表示第二次得正面,C表示得正面和反面各一次.则A与B相互独立.但是P(AB|C)=0=14=P(A|C)P(B|C),即A与B不是关于C条件独立.正例:掷一枚质地均匀硬币,用A表示出现正面,B表示出现反面,C=A.则A与B不相互独立,但是P(AB|C)=0=P(A|C)P(B|C),即A与B关于C条件独立. 练习2.3.11若对于i=1,2,Ωi={1,2,3},F i由Ωi的所有子集构成,试证明C={A1×A2:A1∈F1,A2∈F2}对于并运算不封闭.证明:显然{(1,1)}∈C,{(2,2)}∈C,但是{(1,1)}∪{(2,2)}={(1,1),(2,2)}/∈C.。