分子克隆
分子克隆技术操作手册
分子克隆技术操作手册摘要:一、分子克隆技术简介1.分子克隆技术的定义2.分子克隆技术的发展历程二、分子克隆技术的原理1.基本原理2.克隆过程详解三、分子克隆技术的应用1.基因工程2.生物制药3.基因诊断4.转基因技术四、分子克隆技术的操作步骤1.设计引物2.PCR扩增3.酶切鉴定4.连接转化5.筛选重组子6.鉴定克隆子五、分子克隆技术的注意事项1.实验操作规范2.试剂选择与储存3.防止污染4.优化实验条件六、分子克隆技术的发展趋势1.高效自动化设备2.单细胞克隆技术3.基因编辑技术4.个性化医疗正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,主要用于复制特定DNA序列。
该技术在我国科研领域得到了广泛的应用,为基因研究、生物制药、转基因技术等领域提供了重要的技术支持。
自20世纪70年代以来,分子克隆技术不断发展,为生命科学研究带来了革命性的变革。
二、分子克隆技术的原理分子克隆技术的基本原理是将目标DNA片段通过PCR扩增,然后利用限制性内切酶切割得到特定片段,将这些片段连接到载体DNA上,最后将连接产物转化到受体细胞中。
在转化过程中,载体DNA与受体细胞的染色体DNA 结合,实现目标基因的复制和表达。
克隆过程详解:首先,设计一对特异性引物,使目标DNA片段在PCR扩增过程中产生特定的扩增子。
接下来,通过PCR扩增得到目的基因。
然后,利用限制性内切酶对扩增产物进行酶切,得到具有粘性末端的目的基因片段。
将目的基因片段与载体DNA连接,形成重组载体。
最后,将重组载体转化到受体细胞中,实现基因的克隆。
三、分子克隆技术的应用1.基因工程:分子克隆技术为基因工程提供了重要的技术支持,使得科学家可以对基因进行改造、编辑,进而创造新的生物品种和药物。
2.生物制药:分子克隆技术在生物制药领域具有广泛应用,如制备抗体、细胞因子、酶等生物制品。
3.基因诊断:通过分子克隆技术,可以快速、准确地检测特定基因序列,为遗传病诊断提供依据。
分子克隆名词解释
分子克隆名词解释分子克隆是指利用重组DNA技术,将一个生物体的遗传物质(DNA)复制并传递给另一个生物体的过程。
在分子克隆中,一个主要的步骤是将要克隆的DNA片段插入到载体DNA上,形成重组DNA,然后将其传递给宿主细胞进行复制和表达。
分子克隆有许多不同的应用领域,其中最著名的是基因工程和医学研究。
在基因工程中,分子克隆可以用于生产重组蛋白、生产转基因生物和制造药物。
在医学研究中,分子克隆可以用于研究疾病的发病机制、开发新型疗法和筛选药物靶点。
在分子克隆的过程中,有几个重要的术语需要理解。
首先是重组DNA。
重组DNA是将要克隆的DNA片段与载体DNA连接而形成的复合物。
载体DNA通常是质粒,可以在宿主细胞中自主复制和表达。
其次是限制性内切酶。
限制性内切酶是一类酶,可以识别DNA的特定序列,并在该序列上切割DNA。
这些酶在分子克隆中起到“剪刀”的作用,将DNA切割成特定的片段,用于进行重组。
另外一个重要概念是DNA合成。
DNA合成是通过化学合成方法制备DNA片段的过程。
这些合成的DNA片段可以与其他DNA片段连接,形成重组DNA。
在分子克隆的过程中,有几个关键的步骤。
首先是选择合适的限制性内切酶。
限制性内切酶的选择根据克隆的目的和需要选择不同的酶切位点。
然后是DNA切割和连接。
通过酶切和连接反应,将要克隆的DNA片段与载体DNA连接,并形成重组DNA。
接下来是转化过程。
将重组DNA导入宿主细胞,并使其进行自主复制和表达。
最后是筛选或鉴定过程。
通过筛选或鉴定宿主细胞中的重组DNA,筛选出目标克隆。
总之,分子克隆是一种利用重组DNA技术,将一个生物体的遗传物质复制并传递给另一个生物体的过程。
通过克隆可以研究基因功能、生产重组蛋白和制造药物。
分子克隆的关键步骤包括选择限制性内切酶、DNA切割和连接、转化和筛选或鉴定。
分子克隆在生物科学和医学研究中具有广泛的应用前景。
生物中的分子克隆
生物中的分子克隆克隆是指复制一个已经存在的个体或物品,分子克隆则是指复制分子。
在生物领域中,分子克隆技术极其重要,它能够让科学家们克隆出特定的蛋白质、基因和细胞等分子,不仅推动了基因工程、生物制药等领域的发展,还有助于对医学、生态学、进化论等问题的深入研究。
一、DNA的分子克隆DNA双链分子由四种核苷酸组成,克隆某个特定的DNA序列,需要寻找到该序列的特异性序列,一般采用如下方法:1.限制性内切酶切割法:将要克隆的DNA进行限制性内切酶切割,将切割后的DNA片段进行电泳分离,并用紫外线照射,使用UV灯观察DNA条带,选取符合要求的目标DNA条带作为模板,再使用电泳提取出目标DNA条带,进行下一步的操作。
2.基因库方法:将DNA切成片段后,将这些片段以随机顺序插入载体中,再将这些载体插入到宿主细胞中,寻找到目标片段所在的载体后,就可以从中将这个片段克隆出来。
通过上述方法,克隆出目标DNA后,还需要定位、测序、分析等步骤,才能够达到所需的效果。
二、基因的分子克隆基因是细胞中负责遗传物质传递的重要分子,克隆基因是基因工程活动中的一个重要环节。
1.针对已有的已知基因,可以使用上述DNA分子的克隆方法,将基因克隆出来,进行重组、改变等操作。
2.针对未知的基因,可以进行基因组测序与分析,利用反向遗传学法进行基因定位及功能分析。
3.对于人类常见疾病,例如乳腺癌、某些遗传性疾病等,深入研究它们的基因表达和调控,利用分子克隆技术进行基因治疗或转基因实验。
基因的克隆不仅促进了对于遗传学和基因学的深入研究,也能够产生特定的应用效果,甚至应用到生物治疗和治疗遗传性疾病等医学领域。
三、细胞的分子克隆细胞是生命活动的基本单位,克隆细胞可以使得相似的细胞在体外大量生长,提供研究的可操作性。
目前,主要有两种方法可以利用分子克隆技术克隆细胞:1.体外培养法:通过细胞培养基、激素等营养物质及生长因子,为细胞提供生长环境,使其在体外快速繁殖,而体外克隆细胞最广泛应用的领域就是生物制药,例如克隆出产生特殊蛋白质的细胞系,生产生物药品。
分子克隆
2
第一节 基因工程技术路线
载体和目的基因的分离; 载体和目的基因的切断; 载体和目的基因的重组; 重组DNA的转化和扩增; 重组DNA的筛选和鉴定。
3
第一节 基因工程技术路线
基因重组技术的两个基本目的:
1.直接利用基因 主导生长的基因、 作物的抗性基因、 基因诊断、基因治疗、 指纹图谱等。
2)可移动质粒(mobiliableplasmid)可以被传递,但不能使细菌接合。 3)自传递质粒(selftran missible plasmid)兼具1)2)两种功能因而可以自
40
第三节 分子克隆常用的载体
质粒发现和研究意义
1)理论意义 质粒能够复制、传递和表达遗传信息,从分子遗传学观点来看 是一种有机体,是比病毒更原始的生命形式,是生命起源研究的起一块体重要 基石。
2)实践意义 是基因工程的重要载体(vector),能把外源基因(目的基 因)送到宿主细胞中去克隆扩增或克隆表达。
医学分子生物学基础
分 子 克 隆
南京农业大学 动物医学院基础兽医系动物生化教研室
1
第五章 分子克隆
重组DNA技术(recombinant DNA technology)
是按照人的意愿、在体外对DNA分进行重组,再将 重组分子导入受体细胞,使其在细胞中扩增和繁殖, 以获得该DNA分子的大量拷贝。
克隆(clone)是指通过无性繁殖过程所产生的与亲
切平由核酸内切酶产的的3`粘性末端 DNA片段的同位素末端标记
29
第二节 分子克隆常用的工具酶
反转录酶 reverse transcriptase
1. 以RNA为模板,聚合形成cDNA链。 2. 双向外切DNA-RNA杂合链中的RNA链
分子克隆技术操作手册
分子克隆技术操作手册【最新版】目录1.分子克隆技术的概念2.分子克隆技术的操作步骤3.分子克隆技术的应用4.分子克隆技术的优缺点正文一、分子克隆技术的概念分子克隆技术是一种生物技术方法,用于在体外将各种来源的 DNA 片段进行拼接组合,形成新的 DNA 分子。
这种技术可以在短时间内大量复制特定 DNA 序列,为基因工程、生物制药等领域提供重要的研究手段。
二、分子克隆技术的操作步骤分子克隆技术主要包括以下几个操作步骤:1.提取 DNA:从实验材料中提取 DNA,并通过特定方法进行纯化。
2.切割 DNA:使用限制性内切酶将 DNA 切割成特定大小的片段。
3.链接 DNA:将切割好的 DNA 片段通过 DNA 连接酶进行拼接组合。
4.转化细胞:将拼接好的 DNA 分子转化到受体细胞中,让细胞表达新的 DNA 序列。
5.筛选克隆:通过特定筛选方法,选出含有目标 DNA 序列的克隆细胞。
三、分子克隆技术的应用分子克隆技术在生物领域有广泛的应用,主要包括:1.基因工程:通过分子克隆技术,可以对特定基因进行拼接组合,研究基因的功能和调控关系。
2.生物制药:利用分子克隆技术,可以大量生产具有特定功能的蛋白质,用于药物研发和生产。
3.基因诊断:通过分子克隆技术,可以制备特定基因片段作为诊断试剂,用于疾病的早期诊断。
4.基因治疗:将正常或功能性基因通过分子克隆技术导入患者细胞,以治疗遗传性疾病。
四、分子克隆技术的优缺点分子克隆技术的优点包括:操作简便、效率高、可大量制备特定 DNA 序列。
但其缺点是:可能产生非特异性拼接、克隆产物可能不稳定、需要使用有毒的化学试剂等。
总之,分子克隆技术是一种重要的生物技术手段,广泛应用于基因工程、生物制药等领域。
分子克隆技术操作手册
分子克隆技术操作手册摘要:一、分子克隆技术的概念与原理二、分子克隆技术的操作步骤1.提取目的基因2.构建基因表达载体3.将目的基因导入受体细胞4.目的基因的检测与表达三、分子克隆技术在科研和生产中的应用四、分子克隆技术的发展趋势正文:一、分子克隆技术的概念与原理分子克隆技术是指在体外将各种来源的遗传物质——DNA 片段,与适当的载体DNA 相结合,然后导入受体细胞,使这些DNA 片段在受体细胞内复制、表达的操作技术。
分子克隆技术的原理主要基于重组DNA 技术,通过切割、连接、导入等步骤,实现外源基因与载体DNA 的重组,从而形成一个新的基因表达载体,最终达到在受体细胞中表达目的基因的目的。
二、分子克隆技术的操作步骤1.提取目的基因提取目的基因是分子克隆技术的第一步,通常采用PCR 扩增或化学合成的方法获取目的基因。
PCR 扩增是一种常见的方法,通过设计特定的引物,从基因组DNA 中扩增出目的基因。
化学合成则是根据目的基因的序列,通过化学合成方法直接合成目的基因。
2.构建基因表达载体构建基因表达载体是分子克隆技术的核心步骤,主要包括以下几个方面:(1)选择合适的载体:常用的载体有大肠杆菌的质粒等,根据实验目的和受体细胞的类型选择合适的载体。
(2)切割载体:使用限制性内切酶切割载体,暴露出载体的粘性末端,便于与目的基因连接。
(3)连接目的基因:将提取到的目的基因与切割后的载体DNA 片段通过DNA 连接酶连接,形成重组载体。
(4)转化受体细胞:将重组载体导入受体细胞,使目的基因在受体细胞内表达。
3.将目的基因导入受体细胞将目的基因导入受体细胞是分子克隆技术的关键步骤,根据受体细胞的类型选择不同的导入方法。
常用的方法有转化、转染、显微注射等。
4.目的基因的检测与表达在将目的基因导入受体细胞后,需要对目的基因进行检测和表达。
检测方法包括PCR、Western blot、南方杂交等,表达方法包括实时荧光定量PCR、Western blot、酶联免疫吸附试验等。
分子克隆操作方法
分子克隆操作方法
分子克隆是一项常用的生物技术,用于将特定DNA 片段定向克隆到载体DNA 上,生成包含目的基因的重组DNA 分子。
以下是分子克隆的常用方法:
1. 限制酶切剪接:利用限制酶切剪配对的方式,将目的DNA 片段和载体DNA 上的相应区域进行切割,得到两个切口,然后将两个断裂的DNA 片段连接起来,形成含有目标DNA 片段的重组DNA 分子。
2. PCR 扩增:利用PCR 技术对目的DNA 片段进行扩增,并将其与载体DNA 进行连接,形成重组DNA 分子。
3. TA 克隆:TA 克隆是一种优化的克隆方法,使用缺十二碳酸二酯酶的Taq DNA 聚合酶进行PCR 扩增,将目的DNA 片段amplified 插入含有单一胞嘧啶(T)的TA 克隆载体上,然后将TA 克隆载体转化到大肠杆菌中进行筛选。
4. 原位杂交:将互补的DNA 探针标记并与目的细胞DNA 结合,发现目的DNA 片段的位置,然后将其在载体上克隆。
5. 基因文库筛选:将目的DNA 片段插入到原核或真核生物基因文库中,然后筛选出含有目的DNA 片段的重组DNA 分子。
6. 自主克隆:将目的DNA 片段插入到自主复制的质粒上,使其复制并表达出
目的蛋白质。
需要根据具体实验目的,选择适合的方法进行分子克隆,为后续的分子生物学研究提供可靠的材料基础。
分子克隆
分子克隆
基本原理是:将编码某一多肽或蛋白质的基因 (外源基因)组装到细菌质粒(质粒是细菌染色体 外的双链环状DNA分子)中,再将这种质粒(重组质 粒)转入大肠杆菌体内这样重组质粒就随大肠杆菌 的增殖而复制,从而表达出外源基因编码的相应多 肽或蛋白质。
质粒 质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够
分子克隆的实验流程操作
PCR扩增目的基因 双酶切 (PCR产物, 质粒)(切) 电泳 切胶 回收
柱式纯化
菌落 转化 PCR (转,增)
连接反应 (接) 挑选阳 电泳 性菌测 序(检)
分子克隆流程示意图 质粒 抽提
(PCR扩增)
将验证反馈的 菌株保存起来
测序验证
菌落PCR
1 实验操作目的DNA片段的来源
以免穿破凝胶的底部缓缓将蓝色的样品压入加样孔中。切不可使蓝色样品流到 孔外。
(5)打开电源120V,30min。
4 切胶回收
1,加3倍凝胶体积Buffer DE-A温浴75℃融化凝胶 2,加含0.5个Buffer DEA体积的Buffer DE-B
5,加入一定量 的d2H2O洗脱 3,加500 μl Buffer W1 4,加700 μl Buffer W2 加700 μl Buffer W2
1,超净工作台紫外灯10分钟。
2,把感受态细胞从-80℃的冰箱中取出放在已砸碎的冰块中5分钟。
3,取重组质粒加入到感受态细胞中,轻轻吹打,混匀。 4,冰浴放置30分钟。 5,再在水浴中42℃热激一般90秒钟后,再在冰中放置3分钟。 6,在超净工作台中向上述各管中分别加入1ml LB培养基(不含氨苄) 轻轻混匀,然后固定到摇床的弹簧架上37℃震荡1 h。 7,离心,5000rpm 1min吸取1ml上清液 8,把剩余感受态细胞涂布到含氨苄青霉素培养基上,将平板在37℃培 养箱倒置培养过夜。因为载体中含有氨苄青霉素的耐药基因,只有含质 粒的细菌能够生存,而不含质粒的细菌则死亡。
分子克隆法
分子克隆法
分子克隆法是一种分子生物学技术,用于在体外制备和复制DNA 分子,包括基因、DNA片段和整个染色体。
这种技术允许科学家复制和操纵DNA,以进行各种研究和应用,包括基因工程、药物开发和基因治疗。
下面是分子克隆法的主要步骤:
1.DNA提取:首先,需要从源材料(通常是细胞或组织样本)中
提取DNA。
这可以通过细胞裂解和蛋白质分离等方法来完成。
2.DNA切割:提取的DNA通常是大片段,需要将其切割成较小
的片段,以便后续克隆。
这一步通常使用限制性内切酶来实现,
这些酶可以在特定DNA序列上切割。
3.DNA连接:切割后的DNA片段可以通过DNA连接酶与载体
DNA(如质粒或病毒DNA)连接在一起,形成重组DNA分子。
这个过程称为DNA重组。
4.DNA转化:重组DNA可以被引入宿主细胞中,这个过程称为
DNA转化。
这可以通过热激冷却法、电穿孔法、化学法等方法
来实现。
5.宿主细胞培养:转化后的细胞被培养,以允许它们繁殖并扩增
重组DNA。
6.筛选与识别:在宿主细胞中,可以筛选出携带重组DNA的细
胞,通常使用抗生素抗性标记或荧光标记等方法来进行筛选。
7.DNA提取与纯化:从筛选出的细胞中提取和纯化重组DNA,
以便进一步的研究或应用。
8.分析与验证:最后,分析和验证克隆的DNA,确保它是所需的
目标DNA,并不包含错误或突变。
分子克隆法有许多应用,包括基因表达、基因编辑、蛋白质生产、疾病研究等。
它在生物学研究和生物工程领域发挥着关键作用,允许科学家操纵和研究DNA,以深入了解生命的分子机制。
分子克隆的实验报告(3篇)
第1篇一、实验目的本实验旨在学习分子克隆技术的基本原理和操作步骤,掌握目的基因的扩增、克隆及表达,为后续相关研究奠定基础。
二、实验原理分子克隆技术是指将目的DNA片段从供体细胞中分离出来,通过体外重组、转化和转导等方法,将其插入到克隆载体中,再将其引入宿主细胞进行复制和扩增。
本实验采用无缝克隆技术,通过T5核酸外切酶、DNA聚合酶和DNA连接酶三种酶的共同作用,实现单片段或多片段与载体连接。
三、实验材料1. 试剂:限制性内切酶、DNA连接酶、T5核酸外切酶、DNA聚合酶、dNTPs、Taq DNA聚合酶、PCR引物、载体DNA、目的基因DNA、质粒提取试剂盒、琼脂糖凝胶电泳试剂盒等。
2. 仪器:PCR仪、凝胶成像仪、电泳仪、紫外灯、超净工作台、离心机、恒温水浴锅、移液器等。
四、实验步骤1. 目的基因扩增(1)设计引物:根据目的基因的序列设计特异性引物,引物长度一般在18-25bp,5'端添加限制酶切位点。
(2)PCR反应:配制PCR反应体系,加入引物、模板DNA、dNTPs、Taq DNA聚合酶等,进行PCR反应。
2. 载体线性化(1)酶切:使用限制性内切酶对载体DNA进行酶切,获得线性化的载体。
(2)去磷酸化:对单酶切得到的线性化载体进行去磷酸化处理。
3. 目的基因与载体连接(1)同源臂连接:将目的基因PCR产物和线性化载体进行同源臂连接,确保目的基因正确插入载体。
(2)连接反应:配制连接反应体系,加入目的基因PCR产物、线性化载体、DNA连接酶等,进行连接反应。
4. 转化与筛选(1)转化:将连接产物转化至宿主细胞中。
(2)筛选:通过抗生素筛选、酶切鉴定和测序等方法筛选出含有目的基因的克隆。
5. 目的基因表达(1)重组质粒提取:从筛选出的阳性克隆中提取重组质粒。
(2)重组质粒转化:将重组质粒转化至表达宿主细胞中。
(3)表达产物检测:通过Western blot、ELISA等方法检测目的蛋白的表达水平。
分子克隆名词解释
分子克隆名词解释分子克隆又称“定向酶促融合”,是一种新型的微生物发酵技术。
它以生物学特性为基础,使用带有正电荷的生物导向剂进行定向扩增,再把含有该正电荷生物导向剂的细胞裂解液体与细胞固体分离开来,并将细胞固体保留在无菌管内,只是把细胞裂解液体与细胞导向剂混合在一起;然后利用酶切或其他方法将含有某一特殊酶切位点的导向剂片段或其他标记单位置于目的基因的两端,使这些单位被带有特定正电荷的生物导向剂定向吸引到相应的基因上,使得基因表达合成目的蛋白质,由此而制备目的基因的表达产物。
分子克隆的基本原理是利用核酸碱基对,通过磷酸二酯键、糖苷键、疏水键和氢键的形成,或同核苷酸链接等连接方式,将两个核酸分子结合在一起,形成长度足够的片段,以实现目的基因在特定位点上的高效表达。
简言之,就是利用核酸连接酶,把两个DNA分子的长链分解成为几个小片段,通过酶的催化作用,使这些小片段连接成较大的分子,从而获得不同长度的核酸分子,使这些小片段能够携带某些特定的遗传信息,转入所需的细胞中去,并在适当的条件下,使它们表达出相应的功能性产物。
分子克隆技术可用于发酵工业的重组菌株的构建,这一技术的应用,能将工业上不易获得的,甚至不可能获得的工业菌种或经济价值很高的生物大分子,迅速地大量生产出来,以满足人类社会的需要。
不论是从数量上还是质量上,都具有显著的优势。
分子克隆技术已广泛应用于酶、抗体、激素、核酸、氨基酸、抗菌肽等生物大分子的生产,如用基因克隆技术培育的小鼠生长素基因,每只小鼠用量只需0.01微克。
一个小鼠一年就可生产近30万单位的生长素。
利用基因克隆技术生产的胰岛素,每人一天仅需2单位,而且纯度高、活性强。
此外,有关基因克隆还被用于生产除草剂、抗病毒和抗肿瘤的药物,甚至还可以利用基因克隆技术改变动植物的遗传性状。
人们常说,科学的春天是创造的春天,创造性思维才是科学研究的真正源泉。
随着生命科学的发展,将给人类健康带来新的希望。
分子克隆技术操作手册
分子克隆技术操作手册(实用版)目录1.分子克隆技术的概念与原理2.分子克隆技术的操作步骤3.分子克隆技术的应用领域4.分子克隆技术的优势与局限性正文一、分子克隆技术的概念与原理分子克隆技术是一种在生物体外将特定 DNA 片段复制并插入到载体DNA 中的技术。
这种技术可以使得新的 DNA 分子与载体 DNA 相结合,形成一个具有自我复制能力的 DNA 分子。
在实际应用中,分子克隆技术主要通过将目的基因与载体 DNA 连接,从而实现对目的基因的扩增和表达。
二、分子克隆技术的操作步骤分子克隆技术的操作步骤主要包括以下几个方面:1.提取目的基因:从待研究的生物体中提取需要克隆的 DNA 片段,通常使用 PCR 技术进行扩增。
2.构建载体:选择合适的载体 DNA,将其与目的基因连接,构建成一个完整的克隆载体。
3.转化受体细胞:将构建好的克隆载体转化到受体细胞中,让受体细胞表达出目的基因。
4.筛选克隆子:通过特定的筛选方法,从转化后的细胞中筛选出含有目的基因的克隆子。
5.鉴定克隆子:对筛选出的克隆子进行鉴定,确认其是否含有目的基因。
三、分子克隆技术的应用领域分子克隆技术在生物学研究中具有广泛的应用,主要包括以下几个方面:1.基因工程:通过分子克隆技术,可以将目的基因与载体 DNA 连接,实现对目的基因的扩增和表达。
2.蛋白质工程:通过分子克隆技术,可以研究蛋白质的结构和功能,为药物研发提供重要依据。
3.基因组学:通过分子克隆技术,可以对基因组 DNA 进行拼接和分析,揭示生物体的基因组结构。
4.转基因技术:通过分子克隆技术,可以将目的基因插入到载体 DNA 中,实现对转基因生物的研究和开发。
四、分子克隆技术的优势与局限性分子克隆技术在生物学研究中具有明显的优势,如操作简单、扩增效率高、可控性强等。
然而,分子克隆技术也存在一定的局限性,如克隆效率受载体 DNA 大小限制、克隆过程中可能出现突变等。
分子克隆 名词解释
分子克隆名词解释
嘿,你知道啥是分子克隆不?分子克隆啊,就像是搭积木一样神奇!比如说,你有一堆不同形状的积木,你想搭出一个特别的城堡,这就
是分子克隆要干的事儿!
咱先来说说基因,这可是分子克隆里超级重要的一部分。
基因就好
比是一个独特的指令手册,决定着生物的各种特征。
想象一下,基因
就是一个超级厉害的密码本,里面藏着各种让生物变得独特的秘密!
然后呢,分子克隆就是要把特定的基因从一个生物体中分离出来。
这就好像是从一堆宝藏中精准地找出那颗最闪亮的宝石!比如说,科
学家们想要研究某个特定基因的功能,那他们就得把这个基因单独拎
出来。
接着,把这个基因放到一个载体里面。
载体就像是一辆小货车,带
着基因去到它该去的地方。
比如把基因放到细菌里,让细菌帮着大量
生产这个基因。
这整个过程不就像是一场奇妙的冒险吗?科学家们就像勇敢的探险家,在分子的世界里寻找着宝藏,然后把它们组合起来,创造出全新
的东西。
你想想,要是没有分子克隆,我们怎么能更好地了解基因的奥秘呢?怎么能制造出那么多有用的生物制品呢?分子克隆真的是太重要啦!
我的观点就是,分子克隆是现代生物学中极其关键的技术,它为我们打开了探索生命奥秘的大门,让我们有机会去创造更多的可能,这难道不是超级厉害的吗?。
分子克隆技术
分子克隆技术分子克隆技术是指利用体外的人工方法将一个DNA分子(称为目的DNA)复制到一组DNA分子(称为载体DNA)中的过程。
这项技术能够在体外精确复制和扩增DNA分子,从而可以用于研究基因功能、制备重组蛋白、基因治疗等领域。
下面是分子克隆技术的详细步骤:1.选择载体DNA:首先需要选择一个合适的载体DNA,一般会使用细菌的质粒作为载体,因为细菌质粒具有稳定、易扩增和实验操作简单的特点。
2.制备DNA片段:将目的DNA通过PCR扩增或者其他方法制备出来。
PCR扩增是指利用DNA聚合酶在体外将目的DNA的特定序列进行大规模复制的过程,一般需要利用引物引导PCR反应。
3.处理载体DNA:将载体DNA进行处理,一般需要进行酶切。
通过选择性酶切酶将载体DNA的一部分切除,形成切口,为接下来的目的DNA连接提供空位。
4.连接DNA:将目的DNA与处理后的载体DNA连接起来。
一般利用DNA连接酶进行连接,将目的DNA的末端与载体DNA的末端互补连接。
连接反应通常需要一定时间和温度来保证连接的效率和稳定性。
5.转化细胞:将连接好的DNA转化到细菌等宿主细胞中。
这一步可以通过热激转化、电转化等方法实现。
转化后,将细胞培养在含有相应抗生素的培养基上,只有携带目的DNA的细菌才能存活,从而筛选出含有目的DNA的克隆。
6.筛选克隆:通过筛选抗生素抗性或其他标记物的方法来筛选出含有目的DNA的细菌克隆。
一般需要进行筛选接种、PCR鉴定、酶切及测序等手段来确认克隆是否含有目的DNA,并进一步分析目的DNA的表达和功能。
这些步骤是分子克隆技术的基本流程,但在实际操作中可能会根据具体情况进行相应的调整和优化。
分子克隆技术的发展和应用使得我们可以对基因进行精确操作和研究,对于推动生命科学的发展和应用具有重要的意义。
分子克隆技术操作手册
分子克隆技术操作手册摘要:一、分子克隆技术简介二、分子克隆实验材料与设备三、分子克隆实验步骤1.设计引物2.合成目的基因3.构建表达载体4.转化受体细胞5.筛选转化子6.鉴定目的基因四、分子克隆实验注意事项五、实验结果分析与应用正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,通过复制特定DNA序列,将目的基因在受体细胞中稳定表达。
该技术在基因工程、生物科学等领域具有广泛应用,有助于研究基因功能、蛋白质表达及药物筛选等。
二、分子克隆实验材料与设备1.实验材料:DNA模板、引物、dNTPs、DNA聚合酶、缓冲液等。
2.实验设备:PCR仪、离心机、电泳仪、凝胶成像系统等。
三、分子克隆实验步骤1.设计引物根据目的基因序列,设计一对互补的引物。
引物应具备一定的特异性,避免非特异性扩增。
2.合成目的基因利用PCR技术,以DNA模板为基础,通过引物扩增目的基因。
反应条件需根据所使用DNA聚合酶的要求进行优化。
3.构建表达载体将目的基因与载体DNA连接,形成表达载体。
常用的载体有质粒、噬菌体等。
4.转化受体细胞将构建好的表达载体转化到受体细胞中,如大肠杆菌、酵母等。
转化方法有化学法、电转化法等。
5.筛选转化子转化后的受体细胞在含相应抗生素的培养基上生长,筛选出含有目的基因的转化子。
6.鉴定目的基因对筛选出的转化子进行进一步鉴定,如DNA测序、基因表达分析等。
四、分子克隆实验注意事项1.实验过程中要保持无菌操作,避免污染。
2.选择合适的引物长度和退火温度,以提高扩增特异性。
3.转化受体细胞时,注意操作力度,避免细胞损伤。
4.筛选转化子时,严格控制抗生素浓度,避免过度筛选。
五、实验结果分析与应用1.分析PCR产物,判断目的基因是否成功克隆。
2.鉴定目的基因的表达水平,评估实验效果。
3.将成功克隆的目的基因应用于基因敲除、基因表达等研究。
通过以上步骤,您可以顺利完成分子克隆实验。
实验过程中需严格操作,确保实验结果的准确性。
分子克隆
概述
• 分子克隆操作的主要对象是基因。 • 待研究或检测的特定基因被称为目的基因。
• 目的基因通过相应的基因载体导入宿主细 胞,并借助宿主细胞体系进行复制或表达, 所以对宿主细胞DNA而言,目的基因被称为 外源基因或外源DNA。
分子克隆的目的
• 分子克隆的目的就是研究基因与改造基因。 • 根据研究目的的不同,研究对象有所同 , 目的基因可大致分为三类:病毒基因、原 核基因及真核基因。 • 病毒基因组与原核生物基因组相对简单, 较易获得目的基因; • 而真核生物基因组庞大复杂,要从众多的 基因 中获得所需的目的基因难度相对较大。
限制性核酸酶内切酶活性及其 影响因素
• 限制性核酸酶内切酶活性大小体现在酶对DNA的 水解程度不同,常用酶的活性单位来衡量其活性 大小。 • 酶的活性单位是指1微克纯DNA在指定缓冲液中, 于37℃孵育1h完全酶解DNA中所以同一限制性内 切酶位点所需要的酶。 • 影响限制酶反应的因素很多,DNA制品中的污染 物(如蛋白质、酚、氯仿、乙醇、EDTA、SDS、 高盐浓度)及缓冲条件等,均能抑制酶的活性。
限制性核酸内切酶
• 通过切割相邻的两个核苷酸残基之间的磷 酸二酯键,导致核酸分子多核苷酸链水解 断裂的酶叫做核酸酶。
核糖核酸酶 核酸酶 脱氧核糖核酸酶
• 核糖核酸酶:专门水解RNA的核酸酶 • 脱氧核糖核酸酶:专门水解DNA分子的核酸酶 • 核酸按水解核酸分子的不同方式,又可分为两种 类型: • 核酸外切酶是从核酸分子的末端开始,逐个降解 核苷酸。 • 核酸内切酶:从核酸分子的内部水解磷酸二酯键, 使之断裂成小片段。
克隆的基本原理
• 将编码某一多肽或蛋白质的基因(外源基因)组 装到细菌质粒(质粒是细菌染色体外的双链环状 DNA分子)中,再将这种质粒(重组质粒)转入 大肠杆菌体内,这样重组质粒就随大肠杆菌的增 殖而复制,从而表达出外源基因编码的相应多肽 或蛋白质。
分子克隆技术(质粒DNA和DNA插入片段的制备、连接反应以及重组质粒的转化)
分子克隆技术(质粒DNA和DNA插入片段的制备、连接反应以及重组质粒的转化)克隆(Clone)是指通过无性繁殖过程所产生的与亲代完全相同的子代群体。
分子克隆(Molecular Cloning)是指由一个祖先分子复制生成的和祖先分子完全相同的分子群,发生在基因水平上的分子克隆称基因克隆(DNA克隆)。
其基本原理是:将编码某一多肽或蛋白质的基因(外源基因)组装到细菌质粒(质粒是细菌染色体外的双链环状DNA分子)中,再将这种质粒(重组质粒)转入大肠杆菌体内,这样重组质粒就随大肠杆菌的增殖而复制,从而表达出外源基因编码的相应多肽或蛋白质。
由于质粒具有不相容性,即同一类群的不同质粒常不能在同一菌株内稳定共存,当细胞分裂时就会分别进入到不同的子代细胞中,所以来源于一个菌株的质粒是一个分子克隆,而随质粒复制出的外源基因也就是一个分子克隆。
(一)质粒DNA的制备质粒是存在于细菌染色体外的能独立复制的双链闭环DNA分子,它能赋予细菌(宿主细胞)某些特定的遗传表型。
质粒并非细菌生长所必需,但由于其编码一些对宿主细菌有利的酶类,从而使宿主细菌具有抵抗不利自身生长的因素如抗药性等的能力。
目前发现的质粒主要分为F质粒(性质粒),R质粒(抗药性质粒),E.coli质粒(大肠杆菌肠毒素质粒)。
根据质粒在一个细胞周期内产生拷贝的数量,可将质粒分为严紧型(低拷贝,复制1-2次)和松弛型(高拷贝,复制10-200次)。
由于质粒的不相容性细菌经分裂后就只留下了拷贝数较高的一种质粒,例如R1和R2两种抗药性质粒同属于一类,由于不相容性使它们不能共存于同一细菌中,但不同类群的质粒可以在一个细菌中共存。
质粒存在于细菌中,所以制备质粒DNA时,首先应将含有质粒的细菌在含有相应抗生素的液体培养基中生长至对数期,使质粒在细菌中得到扩增。
通过离心收集细菌,经碱裂解细菌,使质粒和细菌染色体DNA变性,然后再加中和液,使溶液PH值恢复到中性,这样质粒DNA又可以复性至天然双链构象状态,而细菌染色体DNA不能或很难复性所以仍处在变性状态,这些变性的染色体DNA与变性蛋白质缠绕在一起,易被离心去处,而质粒DNA仍存在于水相中,再用无水乙醇沉质粒DNA,最后经离心即可得到质粒DNA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.与反转录相关的PCR扩增
RT-PCR(reverse transcriptase-PCR,RT-PCR): 又称反转录PCR, 是以反转录的cDNA作模板所进行的PCR,
可对基因的表达和序列多态性分析。
RT-PCR
反转录
逆转录酶
AAAnA mRNA
AAAnA
T T TnT
cDNA第一链
DNA聚合酶 cDNA
目的基因的获取-----PCR技术:
定义: PCR技术又称聚合酶链式反应(polymerase chain reaction),是通过模拟体内 DNA 复制的 方式,在体外选择性地将 DNA 某个特殊区域扩 增出来的技术。
Taq DNA多聚酶的发现
Heat-stable polymerase is vital to the ease of the process…
4.PCR反应程序
⑴94~96℃ ⑵94℃ ⑸ 25- ⑶50-60℃ 35个循 ⑷72℃ 环 ⑹72℃ ⑺4-10℃ 30’’-3’ 预变性(使模板DNA充分变性) 30’’ 变性 30’’-1’ 复性(使引物与模板充分退火) n’(按1’扩增1kb计算)延伸 3-7’ 总的延伸(使产物延伸完整) 保存
质粒自身含有复制起始点,与相应的顺式调控元件组成一个复制子(replicon), 能利用细菌的酶系统进行独立的复制及转录。质粒具有多种遗传选择标记, 包括各种抗药基因或营养代谢基因等。
氨苄青霉素抗性(ampicillin resistance,ampr)基因:
此基因编码ß 内酰胺酶,该酶能 水解氨苄青霉素ß —内酰胺环,使之 失效而使细菌产生耐药。
1988年Saiki 等从温泉 ( Hot spring)中分离 的一株水生嗜热杆菌 (thermus aquaticus) 中提取到一种耐热DNA 聚合酶。
thermus aquaticus
此酶具有以下特点:
①耐高温, ②在热变性时不会被钝化,不必在每次扩增反应后再加 新酶。 ③大大提高了扩增片段特异性和扩增效率,增加了扩增 长度(2.0Kb)。 酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使被PCR广泛应用。 在 1989 年,Science 将PCR中的Taq DNA多聚酶命 名为当年的风云分子 (Molecule of the year)
TaqDNA聚合酶主要用于聚合酶链式反应
(polymerase chain reaction,PCR)中, 能以DNA为模板,从结合在模板上的引物 出发,以dNTP为原料,按碱基配对方式, 从5’-3’方向合成新的DNA链。TaqDNA 聚合酶在70~75℃时具有最佳的生物活 性,随着温度的降低,酶活性明显下降。 同时此酶缺乏3’-5’外切酶活性,因而无 校正功能。
(1). 使核酸降解的核酸酶类:
核酸内切酶、核酸外切酶。
(2).催化核酸合成的酶类:
DNA聚合酶,RNA聚合酶,连接酶,逆转录酶。
是由细菌自己产生的一种能识别双链 DNA中的特定序列,并以内切方式水解 核酸中磷酸二酯键的核酸内切酶。在细菌 体内,这种内切酶可以分解外源性的 DNA物质,例如病毒等;而细菌本身的 DNA同一识别序列中的某些碱基被甲基 化所保护。
分子克隆的路线
载体DNA (vector)
目的DNA (target fragment)
DNA 重组
重组DNA (recombinant DNA ) 转化
筛选、扩增 宿主(host) 克隆(clone)
分—获取目的基因和载体 接—目的基因与载体的连接
转—重组DNA导入宿主细胞
筛—重组DNA的筛选与鉴定
用低渗CaCl2溶液在0℃时处理快速 生长的细胞,从而获得感受态细胞。 ②.此时细胞膨胀成球型,外源DNA 分子在此条件下易形成抗DNA酶的 羟基-钙磷酸复合物粘附于细胞表面。
(二)DNA进入细胞: ③.通过热激作用促进细胞对DNA 的吸收。 ④.然后将细胞接种于含相应抗生 素的培养基上,含有重组子的感受 态细菌将形成单菌落。 ⑤. 挑选单菌落进行相应的筛选及 鉴定分析。
DNA限制性内切酶
DNA连接酶 100μl
4.目的基因的分离与制备 ⑴、人工合成基因 ⑵、应用聚合酶链反应获取目的基因
5.目的基因的体外重组
DNA分子的体外重组:是DNA分 子之间的连接过程。这是一个DNA 连接酶催化的生物化学反应 。
6.重组子导入宿主细胞
体外重组生成的重组子必须导入到
2.PCR反应过程:
①94℃变性
20-40个 PCR循环 循环
1个PCR
② 50-65℃退火
③72℃延伸
5’ 3’
引物
3’
5’
变性、退火
延伸
变性、退火
延伸
PCR扩增原理
①模板:单链或双链DNA ②引物:16-30 bp合成的寡核苷酸 3.PCR基本要素 ③DNA聚合酶:耐热的DNA聚合酶 ④底物:四种脱氧三磷酸核苷 (dNTP: dATP、dTTP、dCTP、 dGTP) ⑤ Mg2+: DNA聚合酶的激活剂
分子克隆
(一)基本概念:
• 克隆(Clone) 指的是通过无性繁殖过程所产生的 与亲代完全相同的子代群体。
• 分子克隆(Molecular Cloning) 是在体外对DNA分 子按照既定的目的和方案进行人工重组,将重组分 子导入到合适的受体细胞中,使其在细胞中扩增和 繁殖,以获得DNA分子大量复制,并使受体细胞获 得新得遗传特征的过程。
PCR扩增
转化:以质粒作载体构建的重组体 导入受体细胞的过程
类 型
转染:以病毒作载体构建的重组பைடு நூலகம் 导入受体细胞的过程 转导:以噬菌体作载体构建的重组 体导入受体细胞的过程
重组DNA的筛选与鉴定方法 平板筛选(插入失活、蓝白筛选)
1
2 3 PCR筛选重组体 4 原位杂交技术
2.分子克隆中常用工具酶:
pEGFP-N2-PPARγ
pGL4-PPRE4-luc
PGL4-luc载体片段 pEGFP-N2载 体片段 PPARγ基因 片段 PPRE4基因片段
接种
菌液
7.阳性重组子的筛选和鉴定
大多数克隆载体均带有抗生素抗性基因, 常见的有抗氨苄青霉素基因(Ampr)、抗 四环素基因(Tetr)、抗卡那霉素基因 (Kanr)等。如果外源DNA片段插入载体 的位点在抗药性基因之外,不导致抗药 性基因的插入失活,仍能编码抗药性基 因,这种含有重组子的转化细胞能够在 含有相应药物的琼脂平板上生长成菌落。
合适的宿主细胞中才能进行复制、 扩增和表达。 宿主细胞分为两种:原核细胞和真 核细胞。
⑴感受态细胞(competent
cell): 系指利用理化的方法人工诱导 细菌,使之处于易于吸收和容纳外 源DNA分子的状态,这时的细胞就 称为感受态细胞。
⑵转化过程:
①.用冰预冷的CaCl2处理细胞:即
催化双链DNA中相邻碱基的5’磷酸
和3’羟基间磷酸二酯键形成的酶, 称为DNA连接酶(DNA ligase)。 DNA连接酶主要有两种: T4噬菌体DNA连接酶 大肠杆菌DNA连接酶
3.基因克隆常用载体
目前用于基因克隆的载体种类繁多,
包括在大肠杆菌中使用的质粒、噬菌 体载体、酵母菌质粒载体以及动、植 物病毒载体等