c换底公式D

合集下载

换底公式的6个推论

换底公式的6个推论

换底公式的6个推论首先,我们来介绍一下换底公式:对于任意实数a,b,c,且a≠1,b≠1,有以下的换底公式:1. logₐb = logcₐ / logcₒb2. logₐ(b^c) = c * logₐb3. logₐ1 = 04. logₐa = 15. logₐ(ab) = logₐa + logₐb6. logₐ(b/c) = logₐb - logₐc接下来,我们将详细说明这些换底公式的推论:推论一: logₐb = 1 / logbₐ根据换底公式 logₐb = logcₐ / logcₒb,取c = b,并将logcₐ化简为1,得到 logₐb = logbₐ / logbₐ,再根据对数的倒数性质,可得 logₐb =1 / logbₐ。

推论二: loga(b^c) = logb(a^c)根据换底公式 logₐb = logcₐ / logcₒb,将c替换成a^c,可得loga(b^c) = log(a^c)ₐ / log(a^c)ₒb,再根据log的指数性质loga(b^c) = logₐ(b^c),log(a^c)ₐ = c,log(a^c)ₒb = c * log(a)ₒb,可得loga(b^c) = log(b)ₐ / log(b)ₒa^c = logb(a^c)。

推论三: loga1 = 0根据换底公式 logₐb = logₐ1 / logₐb,可以判断 logₐ1 = 0。

推论四: logaa = 1根据换底公式 logₐa = logₐa / logₐb,可以判断 logₐa = 1推论五: log(ab) = loga + logb根据换底公式 logₐb = logcₐ / logcₒb,取c = a * b,并将logcₐ化简为loga + logb,可得 log(ab) = loga + logb。

推论六: log(b/c) = logb - logc根据换底公式 logₐ(b/c) = logcₐ / logcₒ(b/c),取c = b,logcₐ化简为1 / logbₐ,logcₒ(b/c)化简为logbₒ(b) - logbₒ(c),可得 log(b/c) = logb - logc。

对数换底公式及其应用.

对数换底公式及其应用.
导入新课
1.同底的两个对数可以进行加减运算, 对数的加减运算是利用那两个性质?
a 0, 且a 1. 1 loga M loga N loga M N ; M 2loga M loga N loga N
.
2.遇到同底两个对数相除,怎么办?
换底公式及其应用
提出问题
利用对数的换底公式化简下列各式:
利用换底公式证明:
例2.利用换底公式证明 : m m loga n b loga b.a 0, 且a 1, b 0, m R, n R n
换底时选择好底数:
例3. 已知log3 2 a, log3 7 b, 用a, b表示log14 49
log2 16 log2 16 1求 与 log4 16的值, 并看看 与 log4 16 log2 4 log2 4 的值有何关系 ?
2你能用以c(c 0, 且c 1)为底的两个对数的比来
表示log4 16吗?表示出来的等式成立吗 ?
3一般地, 如果a 0, 且a 1, b 0, c 0, 且c 1.
logc b 那么loga b , 如何证明? logc a
换底公式:
如果a 0, 且a 1, b 0, c 0, 且c 1 : logc b 那么loga b logc a
换底公式的应用示例:
例1.利用对数的换底公式求 下列各式的值 .
1 log2 3 log3 2 2 log8 9 log27 32
log2 9 log3 64 3 log2 3 log3 4
课堂练习:
利用对数的换底公式化简下列各式:
1 loga b logb a; 2 log2 3 log3 4 log4 5 log5 2; 3 log4 3 log8 3log3 2 log9 2

换底公式

换底公式

换底公式的形式:
换底公式是一个比较重要的公式,在很多对数的计算中都要使用,也是高中数学的重点。

log(a)(b)表示以a为底的b的对数。

所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a)
换底公式的推导过程:
若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)
则 log(a)(b)=log(n^x)(n^y)
根据对数的基本公式log(a)(M^n)=nloga(M) 和基本公式log(a^n)M=1/n×log(a) M
易得 log(n^x)(n^y)=y/x
由 a=n^x,b=n^y 可得 x=log(n)(a),y=log(n)(b)
则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)
得证:log(a)(b)=log(n)(b)/log(n)(a)
例子:log(a)(c) * log(c)(a)=log(c)(c)/log(c)(a) *log(c)(a)=log(c)(c)=1
换底公式的应用:
1.在数学对数运算中,通常是不同底的对数运算,这时就需要换底.
通常在处理数学运算中,将一般底数转换为以e为底(即In)的自然对数或者是转换为以10为底(即lg)的常用对数,方便于我们运算;有时
也通过用换底公式来证明或求解相关问题;
2.在工程技术中,换底公式也是经常用到的公式,例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数;只有以常用对数10为底的对数或自然对数e为底的对数(即Ig、In),此时就要用到换底公式来换成以e或者10为底的对数来表示出以a为底b为真数的对数表达式,从而来处理某些实际问题。

对数的运算法则及公式换底

对数的运算法则及公式换底

对数的运算法则及公式换底
对数是一种数学运算,用来描述幂运算的指数。

对数运算有一些特殊的法则和公式,其中包括换底公式。

以下是对数的运算法则和公式:
1. 对数的定义
对数是指一个数在某个基数下的指数。

例如,2的以10为底的对数是0.30103,这意味着10的0.30103次方等于2。

2. 对数的性质
对数具有以下几个性质:
a. 对数是一个实数。

b. 对于任何正实数a和b,loga(ab) = loga a + loga b。

c. 对于任何正实数a、b和c,loga (b/c) = loga b - loga c。

d. 对于任何正实数a、b和c,loga b^c = c loga b。

e. 对于任何正实数a和b,loga b = ln b/ln a,其中ln表示以e为底的自然对数。

3. 换底公式
换底公式是指将一个对数的底数改变为另一个底数时使用的公式。

换底公式如下:
loga b = logc b / logc a
其中a、b、c都是正实数,且a、c不等于1。

这个公式可以用于计算任何底数的对数。

例如,要计算以2为底数的对数,可以使用换底公式将其转换为以10为底数的对数计算。

以上是对数的运算法则及公式换底的相关内容。

对数是数学中的基础概念,掌握好对数的性质和运算法则,对于解决数学问题会有很大的帮助。

3.4.2 换底公式

3.4.2 换底公式

3.4.2 换底公式导入新课问题 从对数的定义可以知道,任意不等于1的正数都可作为对数的底,数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数,这样,如果能将其他底的对数转换为以10为底或以e 为底的对数就能方便地求出任意不等于1的正数为底的对数,那么,怎么转化呢?这就需要一个公式,即对数的换底公式,从而引出课题.新知探究提出问题①已知lg 2=0.301 0,lg 3=0.477 1,求log 23的值.②根据①,如a >0,a ≠1,你能用含a 的对数式来表示log 23吗?③更一般地,我们有log a b =log c b log c a,如何证明?④证明log a b =log c b log c a的依据是什么?⑤你能用自己的话概括出换底公式吗?⑥换底公式的意义是什么?有什么作用?活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,必要时提示学生解题的思路,给学生创造一个互动的学习环境,培养学生的创造性思维能力.对①目前还没有学习对数的换底公式,它们又不是同底,因此可考虑对数的定义,转化成方程来解;对②参考①的思路和结果的形式,借助对数的定义可以表示;对③借助①②的思路,利用对数的定义来证明;对④根据证明的过程来说明;对⑤抓住问题的实质,用准确的语言描述出来,一般是按照从左到右的形式;对⑥换底公式的意义就在于对数的底数变了,与我们的要求接近了.讨论结果:①因为lg 2=0.301 0,lg 3=0.477 1,根据对数的定义,所以100.301 0=2,100.477 1=3.不妨设log 23=x ,则2x =3,所以(100.301 0)x =100.477 1,100.301 0×x =100.477 1,即0.301 0x =0.477 1,x =0.477 10.301 0=lg 3lg 2. 因此log 23=lg 3lg 2=0.477 10.301 0≈1.585 1. ②根据①我们看到,最后的结果是log 23用lg 2与lg 3表示,是通过对数的定义转化的,这就给我们以启发,本来是以2为底的对数转换成了以10为底的对数,不妨设log 23=x ,由对数定义知道,2x =3,两边都取以a 为底的对数,得log a 2x =log a 3,x log a 2=log a 3,x =log a 3log a 2,也就是log 23=log a 3log a 2. 这样log 23就表示成了以a 为底的3的对数与以a 为底的2的对数的商.③证明log a b =log c b log c a. 证明:设log a b =x ,由对数定义知道,a x =b ;两边取c 为底的对数,得log c a x =log c b x log c a =log c b ;所以x =log c b log c a ,即log a b =log c b log c a. 一般地,log a b =log c b log c a(a >0,a ≠1,b >0,c >0,c ≠1)称为对数换底公式. ④由③的证明过程来看,换底公式的证明要紧扣对数的定义,证明的依据是:若M >0,N >0,M =N ,则log a M =log a N .⑤一个数的对数,等于同一底数的真数的对数与底数的对数的商,这样就把一个对数变成了与原来对数的底数不同的两个对数的商.⑥换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题,为使用运算法则创造条件,更方便化简求值.说明:我们使用的计算器中,“log”通常是常用对数,因此要使用计算器计算对数,一定要先用换底公式转化为常用对数.如log 23=lg 3lg 2, 即计算log 23的值的按键顺序为:“log”→“3”→“÷”→“log”→“2”→“=”.再如:在前面要求我国人口达到18亿的年份,就是要计算x =log 1.011813, 所以x =log 1.011813=lg 1813lg 1.01=lg 18-lg 13lg 1.01≈1.255 3-1.1390.043=32.883 7≈33年. 可以看到运用对数换底公式,有时要方便得多.应用示例例1计算:(1)log 927;(2)log 89·log 2732.活动:学生观察题目,思考讨论,互相交流,教师适时提示,学生板演,利用换底公式统一底数;根据题目的特点,底数不同,所以考虑把底数统一起来,可以化成常用对数或以2为底的对数,以3为底的对数也可.(1)解:log 927=log 327log 39=32. (2)解法一:log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=109. 解法二:log 89·log 2732=log 29log 28·log 232log 227=2log 233·53log 23=109. 解法三:log 89·log 2732=log 39log 38·log 332log 327=23log 32·5log 323=109. 点评:灵活运用对数的换底公式是解决问题的关键.例2 用科学计算器计算下列对数(精确到0.001):log 248;log 310;log 8π;log 550;log 1.0822.解:log 248=5.585;log 310=2.096;log 8π≈0.550;log 550=2.431;log 1.0822=8.795.例3 (1)证明log a x log ab x=1+log a b ; (2)已知log a 1b 1=log a 2b 2=…=log a n b n =λ,求证:log a 1a 2…a n (b 1b 2…b n )=λ.活动:学生思考、讨论,教师适当提示:(1)运用对数换底公式,统一成以a 为底的对数,或利用对数的定义,分别把三个式子设出,再由定义转化成指数形式,利用指数幂的性质得解,利用换底公式可直接得解;(2)这是条件证明问题,应在现有条件下利用换底公式,转化成积的形式,从题目的结论来看,真数是积的形式,因此要创造对数的和的形式,这就想到先换底,再利用等比性质来解.(1)证法一:设log a x =p ,log ab x =q ,log a b =r ,则x =a p ,x =(ab )q =a q b q ,b =a r .所以a p =(ab )q =a q (1+r ),从而p =q (1+r ).因为q ≠0,所以p q =1+r ,即log a x log ab x=1+log a b (获证). 证法二:左边=log a x log ab x =log x ab log x a=log a ab =1+log a b =右边. (2)证明:因为log a 1b 1=log a 2b 2=…=log a n b n =λ,所以由换底公式得lg b 1lg a 1=lg b 2lg a 2=…=lg b n lg a n=λ.由等比定理,所以lg b 1+lg b 2+…+lg b n lg a 1+lg a 2+…+lg a n =λ.所以b 1b 2…b n a 1a 2…a n=λ. 所以log a 1a 2…a n (b 1b 2…b n )=b 1b 2…b n a 1a 2…a n=λ. 点评:在解题过程中,根据题目的需要,把底数转化,换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简.例4 一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,估计约经过多少年,该物质的剩留量是原来的一半(结果保留1个有效数字).活动:学生审题,教师引导,学生交流,展示自己的思维过程,教师强调实际问题的注意事项.根据题目给出的数学模型及其含义来解决.这是实际问题,但题目给出了数学模型即关系式,关系式是以常用对数的形式给出,因此要利用对数的定义和运算性质,同时要使实际问题有意义.解:设最初的质量是1,经过x 年,剩留量是y .则经过1年,剩留量是y =0.84;经过2年,剩留量是y =0.842;……经过x 年,剩留量是y =0.84x .即约经过4年,该物质的剩留量是原来的一半.方法二:依题意得0.84x =0.5,用科学计算器计算得x =log 0.840.5=ln 0.5ln 0.84=3.98, 即约经过4年,该物质的剩留量是原来的一半.拓展提升 探究换底公式的其他证明方法:活动:学生讨论、交流、思考,教师可以引导:大胆设想,运用对数的定义及运算性质和指数幂的运算性质.证法一:设log a N =x ,则a x =N ,两边取以c (c >0且c ≠1)为底的对数,得log c a x =log c N ,所以x log c a =log c N ,即x =log c N log c a .故log a N =log c N log c a. 证法二:由对数恒等式,得N =a log a N ,两边取以c (c >0且c ≠1)为底的对数,得log c N=log a N ·log c a ,所以log a N =log c N log c a. 证法三:令log c a =m ,log a N =n ,则a =c m ,N =a n ,所以N =(c m )n =c mn .两边取以c (c >0且c ≠1)为底的对数,得mn =log c N ,所以n =log c N m ,即log a N =log c N log c a. 对数换底公式的应用:换底公式log a N =log c N log c a(c >0且c ≠1,a >0且a ≠1,N >0)的应用包括两个方面,即由左端到右端的应用和由右端到左端的应用,前者较为容易,而后者则易被学生忽视,因此,教学时应重视后者的用法,下面仅就后者举例说明:例:化简:log a M log a N +log b M log b N +log c M log c N +log d M log d N. 解:原式=log N M +log N M +log N M +log N M =4log N M .课堂练习:P86 练习2,3,4课堂小结:1.对数换底公式.2.换底公式可用于对数式的化简、求值或证明.若对数式的底数和真数可转化成同底数的幂的形式,则该幂底数可被选作换底公式的底数,也可把对数式转化成以10为底的常用对数或以任意数a (a >0且a ≠1)为底的对数式的形式,进行化简、求值或证明.课后作业:P88 习题3-4B 组 4 补充:已知1271log 7=a ,131log 5=b ,求log 81175的值. 2.求证:(log 23+log 49+log 827+…+log 2n 3n )log 9n32=52.。

对数换底公式推导过程及总结

对数换底公式推导过程及总结

对数换底公式推导过程及总结
对数换底公式是解决不同底数下对数之间的转换问题的公式。

在数学中,对数换底公式是一个非常重要且常用的公式,它可以简化对数计算的过程,提高计算的效率。

下面我们将介绍对数换底公式的推导过程及总结。

对数换底公式的推导过程如下:
假设a、b为任意的正数且a≠1,我们需要推导loga(b)和logc(b)之间的关系,其中c是任意的正数且c≠1。

首先,我们知道对数的定义:loga(b)表示以a为底,b的对数。

所以有以下等式:
b = a^(loga(b))
接着,我们将b表示为以c为底的对数,即:
b = c^(logc(b))
将上面两个等式相等,得到:
a^(loga(b)) = c^(logc(b))
两边取对数,分别以a和c为底,得到:
loga(b) * loga(a) = logc(b) * logc(c)
由对数的定义可知,loga(a) = 1,logc(c) = 1,所以上式化简为:
loga(b) = logc(b) / logc(a)
这就是对数换底公式的推导过程。

总结一下对数换底公式:
对数换底公式的表达式为:loga(b) = logc(b) / logc(a),其中a、b为任意的正数,a≠1,c为任意的正数,c≠1。

对数换底公式的应用非常广泛,可以简化对数计算的过程,特别是在解决实际
问题或进行数学推导时,对数换底公式可以大大简化计算的复杂度,提高计算的效率。

通过对数换底公式的推导过程和总结,我们更深入地理解了对数的性质和应用,也为我们在数学计算中更灵活地运用对数提供了有力的工具和方法。

希望以上内容对您有所帮助。

对数 换底公式(二)

对数 换底公式(二)

对数换底公式(二)
对数换底公式
一、定义
对数换底公式是指将一个对数的底换成另一个底的公式。

对于任
意正数a、b和c,且a≠1,b≠1,c≠1,对数换底公式可以表示为:loga b = logc b / logc a
二、公式解释及示例
1.对数换底公式可以用来计算不同底数下的对数值。


如,若要计算以3为底的对数7的值,可以利用对数换底公式进
行转换:
log3 7 = log10 7 / log10 3 ≈
这里利用了常用对数(底数为10)进行计算。

2.对数换底公式也可以用来转换为以e为底的自然对数。

例如,若要计算以e为底的对数8的值,可以利用对数换底公式
进行转换:
ln 8 = loge 8 = log10 8 / log10 e ≈
这里利用了常用对数和自然对数之间的换底关系。

3.另外,对数换底公式还可以用于解决一些复杂的指数
方程。

例如,要求解方程x^log5 2 = 3的解x,可以利用对数换底公式进行转换:
x^log5 2 = 3
logx (x^log5 2) = logx 3
log5 2 * logx x = logx 3
logx x = logx 3 / log5 2
x = 3^(logx 3 / log5 2)
这里利用对数换底公式将指数方程转化为对数方程,从而解得x的值。

以上是对数换底公式的相关公式及示例解释,希望对你的学习有所帮助。

换底公式怎么用

换底公式怎么用

换底公式怎么用
1、对数计算
通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底公式来证明或求解相关问题。

在计算器上计算对数时需要用到这个公式。

例如,大多数计算器有自然对数和常用对数的按钮,但却没有log2的。

要计算
只有计算
(或
两者结果一样)。

2、工程技术
在工程技术中,换底公式也是经常用到的公式。

例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。

此时就要用到换底公式来换成以e或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题。

高中数学同步学案 换底公式

高中数学同步学案 换底公式

2.2.2 换底公式换底公式1.换底公式log a N =log c Nlog c a (a>0,a≠1,c>0,c≠1,N>0)2.几个常见结论: (1)log a b·log b a =1; (2)log a n b n=log a b ; (3)log a m b n=n mlog a b ;(4)log a b·log b c·log c d =log a d.1.换底公式如何证明? [提示] 设x =log a b,则a x=b, 两边取以c 为底的对数得 log c a x=log c b 即xlog c a =log c b, 所以x =log c b log c a ,即log a b =log c blog c a .2.写出下面几个式子的值.(1)log 28;(2)log 416;(3)log 24;(4)log 322;(5)log 6416. [提示] (1)3 (2)2 (3)4 (4)110 (5)23对数式的求值[例1] 求值:(1)log 23·log 35·log 516;(2)(log 32+log 92)(log 43+log 83).[思路点拨] 先利用换底公式化同底,再运用运算性质. [解] (1)因为log 23=lg3lg2,log 35=lg5lg3,log 516=lg16lg5.所以log 23·log 35·log 516=lg3lg2·lg5lg3·lg16lg5=lg16lg2=4lg2lg2=4. (2)原式=⎝ ⎛⎭⎪⎫lg2lg3+lg2lg9⎝ ⎛⎭⎪⎫lg3lg4+lg3lg8=⎝⎛⎭⎪⎫lg2lg3+lg22lg3⎝ ⎛⎭⎪⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54.借题发挥 换底公式即将底数不同的对数转化为底数相同的对数,进而化简、计算与证明,在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简和求值.1.计算: (1)log 927; (2)log 89·log 2732; (3)log 21125·log 3132·log 513.解:(1)log 927=log 327log 39=log 333log 332=3log 332log 33=32. (2)log 89·log 2732=lg9lg8·lg32lg27=lg32lg23·lg25lg33=2lg33lg2·5lg23lg3=109. (3)log 21125·log 3132·log 513=log 25-3·log 32-5·log 53-1=-3log 25·(-5log 32)·(-log 53) =-15·lg5lg2·lg2lg3·lg3lg5=-15.条件等式的求值与证明[例2] 设a,b,c 都是正数,且3a =4b =6c,证明:a +b =c.[思路点拨] 解答本题可以先令3a =4b =6c=k,两边取对数后,表示出a,b,c,再用换底公式代入证明. 证明:法一:设3a=4b=6c=k(a,b,c 均为正数,k>0), 则a =log 3k,b =log 4k,c =log 6k. ∴1a =log k 3,1b =log k 4,1c =log k 6, ∴2log k 3+log k 4=2log k 6, 即2a +1b =2c. 法二:对3a=4b=6c 同时取以10为底的对数, 得lg3a=lg4b=lg6c, ∴alg3=blg4=clg6,∴c a =lg3lg6=log 63,c b =lg4lg6=log 64, ∵2log 63+log 64=log 636=2, 即2c a +c b =2,∴2a +1b =2c. 借题发挥 换底公式的主要作用就是化不同底为同底,只有化同底后方可使用对数的运算性质,在条件求值中,常常是把所求靠拢已知,根据已知的条件,逐步消除已知与未知之间的差异,使问题顺利解决.2.已知2x=3,log 483=y,求x +2y 的值.解:因为2x=3,所以x =log 23.所以x +2y =log 23+2log 483=log 23+log 283=log 23+log 28-log 23=log 223=3.1.log 89log 23的值为( ) A .2 B .3 C.32 D.23答案:D2.已知lg2=a,lg3=b,则log 36=( ) A.a +b a B.a +bbC.a a +b D.b a +b解析:选B log 36=lg6lg3=lg2+lg3lg3=a +b b.3.已知log 34·log 48·log 8m =log 416,则m 的值为( ) A.12 B .9 C .18D .27解析:选B 由题知lg4lg3·lg8lg4·lgm lg8=lg16lg4,∴lgm lg3=lg16lg4=2,∴lgm =lg32=lg9,m =9. 4.若log a b·log 3a =4,则b 的值为________. 解析:log a b·log 3a =lg b lg a ·lg a lg 3=lg blg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81. 答案:815.已知log a x =1,log b x =2,log c x =4,则log abc x =________. 解析:由已知得log x a =1,log x b =12,log x c =14.∴log abc x =1log x abc =1log x a +log x b +log x c =11+12+14=47. 答案:476.求(log 23+log 89)(log 34+log 98+log 32)的值. 解:原式=(log 23+log 2332)(log 322+log 3223+log 32)=⎝ ⎛⎭⎪⎫53log 23⎝ ⎛⎭⎪⎫92log 32=152.已知log 189=a,18b=5,求log 3645,你能用不同的方法解决这个问题吗?让我来试试吧! ∵18b=5,∴log 185=b,于是log 3645=log 1845log 1836=log 189×5log 1818×2=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a.看我的!∵18b=5,∴log 185=b,于是log 3645=log 189×5log 181829=log 189+log 1852log 1818-log 189 =a +b2-a.我也能解. ∵log 189=a,18b=5, ∴lg9=alg18,lg5=blg18. ∴log 3645=lg45lg36=lg9×5lg 1829=lg9+lg52lg18-lg9 =alg18+blg182lg18-alg18=a +b2-a.一、选择题1.下列各式中正确的是( ) A .log 23·log 8116=1 B.log 24log 28=-1 C .lg4·lg9=lg36D .(log 515)3=-3解析:选A log 23·log 8116=lg3lg2·lg16lg81=lg3lg2·4lg24lg3=1.2.若log 37·log 29·log 49a =log 412,则a 的值等于( )A.14B.22C. 2D .4解析:选B 原方程可化为log 37·2log 23·12log 7a =-12,即log 2a =-12,∴a =212-=22.3.设lg2=a,lg3=b,那么lg 1.8等于( ) A.12(a +2b -1) B .a +b -1 C.12(2a +b -1) D .a +b解析:选A lg 1.8=12lg(0.1×9×2)=12(lg2+lg9+lg0.1)=12(a +2b -1). 4.已知lga 、lgb 是方程2x 2-4x +1=0的两根,则⎝ ⎛⎭⎪⎫lg a b 2的值是( )A .4B .3C .2D .1解析:选C lga +lgb =2,lga·lgb=12,⎝ ⎛⎭⎪⎫lg a b 2=(lga -lgb)2=(lga +lgb)2-4lga·lgb=22-4×12=2.二、填空题5.已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,3x,x≤0,那么f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14的值为________.解析:f ⎝ ⎛⎭⎪⎫14=log 214=-2,f(-2)=3-2=19.答案:196.已知2x =72y=A,且1x +1y =1,则A 得值是________.解析:∵2x=72y=A,∴x =log 2A,2y =log 7A ∴1x +1y =1log 2A +2log 7A =log A 2+2log A 7 =log A 2+log A 49=log A 98=1. ∴A =98. 答案:98 三、解答题7.(1)计算log 53·log 27125; (2)计算log 2125·log 318·log 519.解:(1)log 53·log 27125=lg3lg5·lg125lg27=lg3lg5·3lg53lg3=1.(2)log 2125·log 318· log 519=-log 225·log 38·log 59=-2lg5lg2·3lg2lg3·2lg3lg5=-12.8.若a,b 是方程2(lg x)2-lg x 4+1=0的两个实根,求lg(ab)·(log a b +log b a)的值. 解:原方程可化为2(lg x)2-4lg x +1=0. 设t =lg x,则方程化为2t 2-4t +1=0, ∴t 1+t 2=2,t 1·t 2=12.又∵a,b 是方程2(lg x)2-lg x 4+1=0的两个实根, ∴t 1=lg a,t 2=lg b,即lg a +lg b =2,lg a·lg b=12.∴lg(ab)·(log a b +log b a) =(lg a +lg b)·⎝⎛⎭⎪⎫lg b lg a +lg a lg b=(lg a +lg b)·lg b 2+lg a2lg a·lg b=(lg a +lg b)·lg a +lg b 2-2lg a·lg blg a·lg b=2×22-2×1212=12,即lg(ab)·(log a b +log b a )=12.。

换底公式

换底公式

log927
lg9
lg32
2
⑵ lo g 89lo g 2 73 2llg g3 2 2 3llg g3 2 5 32 3llg g3 25 3 llg g2 31 9 0
点评:灵活应用对数的换底公式是解决问题的关键.
再思考活动:从例题的解答过程中,引导学生思考一 般真上(2)数 题性原 式 的也结 次 可论lo g 2 方 直,3 l3 o2 g数 接alo mg 为 这b3 3 n2 分 样5 m n子 算2 3 lloo g :)g,2 a3 bl(o(15 3 强g)lo ag 原 调b3 式 2 l 底o1 g9 l0 数o bga32的331次(强3 2方lo调g3数3互为3 2为分倒母数,).
知识点——
换底公式
换底公式
【定义】
根据相等的两个正数的同底对数相等,若N=bx ,
两边取以 a为底的对数,得 ㏒a N=㏒abx
而㏒abx =x㏒ab,所以 ㏒a N= x㏒ab
由于b ≠1 ,则 ㏒ab ≠0 ,解出x ,得
因为 x= ㏒bN,所以 ㏒bN =
lo g a N lo g a b
x loga N loga b
换底公式
【变式训练】
解法二:对已知条件取以6为底的对数,得:
a log 6 3 2, b log 6 2 1
2
1

a

log 6
3, b

log 6
2

2 a

1 b

log 6
3

log 6
2

1
点评:本题考查对数的性质,一个等式的两边取
对数,是一种常用的技巧,一般地说,给出的等

对数换底公式

对数换底公式

对数换底公式
换底公式,即自然对数的换底公式,是一个有力的数学工具,可
以用来解决多种多样的数学问题。

换底公式的全称叫“换底重要性定理”,它可以将任何字符串的对数从一个底数转换到另外一个底数。

换底公式的数学表述为:如果y=loga(x),则logb(x)=loga (x)/loga(b)。

其中a和b是常数,而x为等式的变量,换句话说,将任何数字从一个底数转换到另外一个底数需要除以固定的数值,即a 除以b。

例如,如果要将一个数从底数2转换到底数10,那么需要除
以2对10的比例,即log2(x)/log2(10)。

换底公式在很多领域中都有广泛的应用,例如科学计算、数学建模、统计分析等。

它可以用来计算指数函数关系、确定对数函数的斜
率和定义复杂的对数函数。

此外,换底公式还在大部分计算硬件中都
有应用,可以提高系统的计算效率。

换底公式的应用十分广泛,它能有效解决很多复杂的问题。

它是
很多数学问题的基础,可以帮助我们更好的理解不同的知识和方法。

所以,换底公式确实对学习数学有着重要的意义。

换底公式推导过程

换底公式推导过程

换底公式推导过程如下:
换底公式:$log_{b}a=log_{c}a \div log_{c}b$,其中$c>0$且$c \neq 1$。

证明:设$log_{b}a=x$,则$b^{x}=a$。

同时,设$log_{c}a=y$,则$c^{y}=a$。

因为$c^{x}=a$,所以有$c^{x}=c^{y}$,根据指数函数的性质可知,当底数相等时,指数相等。

所以$x=y$,即$log_{b}a=log_{c}a \div log_{c}b$。

换底公式在各种数学、物理、工程领域都有广泛的应用。

拓展资料
换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。

计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。

通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底
公式来证明或求解相关问题;
在计算器上计算对数时需要用到这个公式。

例如,大多数计算器有自然对数和常用对数的按钮,但却没有[log2]的。

要计算,你只有计算(或,两者结果一样);
在工程技术中,换底公式也是经常用到的公式。

例如,在编程语言中,有些编程语言(例如C语言)没有以a 为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。

此时就要用到换底公式来换成以e 或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题。

换底公式的证明范文

换底公式的证明范文

换底公式的证明范文换底公式是指对于任意实数a、b、c,且a、b、c>0,有如下等式成立:logb a = logc a / logc b下面给出换底公式的证明。

首先,我们利用对数的定义来证明换底公式。

对于任意实数x、y,且x、y>0,有以下两个对数定义:logx a = m 表示 x^m = alogy b = n 表示 y^n = b我们要证明:logx a = logy a / logy x首先,根据对数的定义,我们有:x^logx a = a (1)y^logx a = a (2)接下来,我们将公式(2)代入公式(1)中,即:x^(logx a) = y^logx a即:(y^logx a)^(logx a) = y^logx a利用指数幂的性质,左侧可以化简为:y^(logx a * logx a) = y^logx a由于y>0,因此可以把上式两边取对数,得到:logy (y^(logx a * logx a)) = logy (y^logx a)即:logx a * logy x = logy a将上式左侧的logx a除以logy x,得到:logx a = (logx a * logy x) / logy x即:logx a = logy a / logy x因此,我们证明了换底公式logb a = logc a / logc b的正确性。

通过以上证明,我们可以得出结论:对于任意的实数a、b、c,且a、b、c>0,换底公式logb a = logc a / logc b是成立的。

换底公式在解决对数计算问题时非常有用,可以简化计算过程,提高计算效率。

换底公式

换底公式

教材: 换底公式目的:要求学生掌握对数的换底公式,并能解决有关的化简、求值、证明问题。

过程:一、复习:对数的运算法则导入新课:对数的运算的前提条件是“同底”,如果底不同怎么办? 二、换底公式:aNN m m a log log log =( a > 0 , a ≠ 1 ) 证:设 log a N = x , 则 a x = N两边取以 m 为底的对数:N a x N a m m m x m log log log log =⇒= 从而得:a N x m m log log = ∴ a N N m m a log log log =两个较为常用的推论:1︒ 1log log =⋅a b b a 2︒ b m n b a n am log log =( a , b > 0且均不为1)证:1︒ 1lg lg lg lg log log =⋅=⋅ba ab a b b a2︒ b m n a m b n ab b a m n nam log lg lg lg lg log === 三、例一、计算:1︒ 3log 12.05- 2︒ 421432log 3log ⋅解:1︒ 原式 =15315555531log 3log 52.0===2︒ 原式 = 2345412log 452log 213log 21232=+=+⋅例二、已知 log 18 9 = a , 18 b = 5 , 求 log 36 45 (用 a , b 表示) 解:∵ log 18 9 = a ∴a =-=2log 1218log 1818 ∴log 18 2 = 1 - a∵ 18 b = 5 ∴ log 18 5 = b∴ a b a -+=++==22l o g 15l o g 9l o g 36log 45log 45log 181818181836 例三、设 1643>===t z y x 求证:yx z 2111=-证:∵1643>===t z y x ∴ 6lg lg 4lg lg 3lg lg t z t y t x ===,,∴ y t t t t x z 21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-例四、若log 8 3 = p , log 3 5 = q , 求 lg 5解:∵ log 8 3 = p ∴)5lg 1(32lg 33lg 33log 2-==⇒=p p p 又∵ q ==3lg 5lg 5log 3 ∴ )5lg 1(33lg 5lg -==pq q∴ pq pq 35lg )31(=+ ∴ pqpq 3135lg +=以下例题备用:例五、计算:421938432log )2log 2)(log 3log 3(log -++解:原式452133222log )2log 2)(log 3log 3(log 232-++=45)2l o g 212)(l o g 3l o g 313l o g 21(3322+++=254545452l o g 233l o g 6532=+=+⋅= 例六、若 2log log 8log 4log 4843=⋅⋅m 求 m解:由题意:218lg lg 4lg 8lg 3lg 4lg =⋅⋅m ∴3lg 21lg =m ∴3=m 四、小结:换底公式及其推论 五、作业:1. 求下列各式的值:1︒ 65353log 9--+ )(41-2︒ 7log 15log 1864925+ (10)3︒ )5.0log 2)(log 2.0log 5(log 25542++ )(414︒ )243log 81log 27log 9log 3(log 32log 321684269++++ )(12252. 已知 )23lg(lg )23lg(2++=-x x x 求 222l o g x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 1 0 求证:abc=1 x y z
6、求值: lg 5 log 7、求值: 2
log
2
10
20 (lg 2 2 ) 2 3log3 21
3)
3
log ( 2
(7 4 3 ) 10 2 lg 2 (189)
n
两个较为常用的推论: 1 loga b logb a 1 2 log a m b 例一、计算:1 5
1 log 0.2 3
n log a b (a,b>0 且均不为 1) m 2 log 4 3 log 1 4 32
2
解:1原式=
5 5
log0.2 3
5
5
1 log5 3
换底公式: loga N
logm N (a>0,a1) logm a
证:设 logaN=x,则 ax=N 两边取以 m 为底的对数: logm a x logm N x logm a logm N 从而得: x
logm N logm N ∴ loga N logm a logm a
lg 5 q ∴ lg 5 q lg 3 3 pq(1 lg 5) lg 3
3 pq 1 3 pq
∴ (1 3 pq) lg 5 3 pq ∴ lg 5 以下例题备用:
例五、计算: (log 4 3 log 8 3)(log 3 2 log 9 2) log 1

5 15 1 3
2原式=
1 1 5 1 5 3 log 2 3 log 3 2 log 2 2 2 2 4 4 4 2 18 1 log 18 2 a ∴log182=1a 2
例二、已知 log189=a,18b=5,求 log3645(用 a,b 表示) 解:∵log189=a∴ log 18 ∵18b=5∴log185=b ∴ log36 45
例六、若 log3 4 log4 8 log8 m log4 2 求 m 解:由题意:
1 lg 4 lg 8 lg m 1 ∴ lg m lg 3 ∴ m 3 2 lg 3 lg 4 lg 8 2
1、求下列各式的值:1 log9
1 log6 5 1 log8 7
3 5 3 5 6
x
1 4
பைடு நூலகம்
25 ) 12
7 2 2 2 的值。 ( ) 4 3(1 m ) ) 3、已知 lg5=m,lg3=n 用 m,n 表示 log308 ( 1 m 1 a 4、已知 log 3 2 求 log123(a) a
5、设 a,b,c 为不等于 1 的正数,若 a b c 且
x y z

1 1 lg 6 lg 3 lg 2 lg 4 1 z x lg t lg t lg t 2 lg t 2 y
例四、若 log83=p,log35=q,求 lg5 解:∵log83=p∴ log2 3 3 p lg 3 3 p lg 2 3 p(1 lg 5) 又∵ log3 5
1 ( ) 4
2 25
49
(10)
3 (log2 5 log4 0.2)(log5 2 log25 0.5) ( ) 4 log9 6 32(log2 3 log4 9 log8 27 log16 81 log32 243 )( 2、已知 2 lg(3x 2) lg x lg(3x 2) 求 log
log18 45 log18 9 log18 5 a b log18 36 1 log18 2 2a
y z
例三、设 3 4 6 t 1 求证:
x
1 1 1 z x 2y
证:∵ 3 4 6 t 1 ∴ x
x y z
lg t lg t lg t ,y ,z lg 3 lg 4 lg 6
2
4
32
5
解:原式 (log22 3 log23 3)(log3 2 log32 2) log 1 2 4
2
1 1 1 5 ( log 2 3 log 2 3)(log 3 2 log 3 2) 2 3 2 4 5 3 5 5 5 5 log 2 3 log 3 2 6 2 4 4 4 2
相关文档
最新文档