生物化学名词解释——蛋白质

合集下载

生物化学名词解释完整版

生物化学名词解释完整版

生物化学名词解释完整版生物化学名词解释完整版1. 蛋白质蛋白质是生物体内一类重要的高分子物质,由氨基酸构成,主要作用是构成细胞的结构和代谢物质的合成,也是细胞信号传递、能量传递和免疫防御的重要组成部分。

蛋白质的种类多样,包括酶、激素、抗体、细胞骨架、肌肉等。

2. 氨基酸氨基酸是蛋白质的组成单元,由一羧基和一氨基组成,此外还有一个侧链。

人体内有20种不同的氨基酸,其中9种是必需氨基酸,必须从食物中摄取。

氨基酸不仅是蛋白质的重要组成部分,还是细胞代谢和酶活性的调控物质。

3. 核酸核酸是一类生物体内的高分子物质,包括DNA和RNA两种,由核苷酸组成,主要作用是储存和传递遗传信息。

DNA存储了生物的遗传信息,RNA则参与了生物的蛋白质合成过程。

生物体内的核酸种类多样,包括单链RNA、双链RNA、转录因子、siRNA等。

4. 核苷酸核苷酸是核酸的组成单元,由糖、碱基和磷酸组成。

碱基分为嘌呤和嘧啶两类,糖分为脱氧核糖和核糖两类,磷酸则是核苷酸分子中的反式结构。

生物体内的核苷酸种类多样,包括腺苷酸、鸟苷酸、胞苷酸、尿苷酸等。

5. 酶酶是一类催化生物体代谢反应的蛋白质,由氨基酸构成,能够加速化学反应的速度,催化生成或者分解特定的分子。

酶在生物体内发挥了极为重要的作用,参与了代谢、能量转化、信号转导、免疫防御等生理活动。

6. 代谢代谢是生物体内所有化学反应的总称,包括能量代谢、物质代谢等。

代谢是维持生命所必需的过程,能够维持生物体内部环境的稳态。

代谢活动的主要物质是蛋白质、碳水化合物、脂类和核酸等。

7. 糖原糖原是动物体内储存能量的一种多糖物质,由许多葡萄糖分子组成。

糖原主要储存于肝脏和肌肉组织中,当身体需要能量时,肝脏和肌肉会将糖原分解成葡萄糖,通过血液输送到需要能量的器官。

8. 糖类糖类是生物体内的一类重要的有机化合物,主要由碳、氢和氧三种元素组成,包括单糖、双糖和多糖等多种类型。

糖类在生物体内发挥了极为重要的作用,参与能量代谢、合成酶和抗原等生理活动。

生化名词解释

生化名词解释

生物化学名词解释第一章蛋白质化学1、别构效应:别构效应又称变构效应,当某些寡聚蛋白与别构效应剂发生作用时,可以通过蛋白质构象的变化来改变蛋白质的活性,这种改变可以是活性的增加或减少。

这里的别构效应剂可以是蛋白质本身的作用物也可以是作用物以外的物质。

2、蛋白质的变性作用:天然蛋白质分子受到某些物理、化学因素,如热、声、光、压、有机溶剂、酸、碱、脲、胍等的影响,生物活性丧失,溶解度下降,物理化学常数发生变化,这种过程称为蛋白质的变性作用。

蛋白质的变性作用的实质就是蛋白质分子中次级键的破坏,而引起的天然构象被破坏,使有序的结构变成无序的分子形式。

蛋白质的变性作用只是三维构象的改变,而不涉及一级结构的改变。

3、两性解离:氨基酸在水溶液中或在晶体状态时都以两性离子的形式存在,即,同一个氨基酸分子上带有能放出质子的正离子和能接受质子的负离子。

4、等电点:在某一pH环境下,氨基酸解离成阳性离子及阴性离子的趋势相等,所带净电荷为零,在电场中不运动。

此时,氨基酸所处环境的pH值称为该氨基酸的等电点(pI)。

第二章核酸化学1、DNA的解链(溶解)温度(Tm):DNA热变性呈现出协同性,同时伴随A260增大,吸光度增幅中点所对应的温度叫做链解(溶解)温度,用符号Tm表示,其值的大小与DNA中G+C碱基对含量呈正相关。

2、核酸的变性:指双螺旋区氢键断裂,空间结构破坏,形成单链。

核酸的变性并不涉及磷酸二酯键的断裂,所以它的一级结构(碱基顺序)保持不变。

3、核酸的复性:变性DNA在适当的条件下,又可以使两条彼此分开的链重新缔合成为双螺旋结构,这一过程称为复性。

4、增色效应:核酸变性或降解时光吸收值显著增加。

5、减色效应:当核酸复性后,光吸收值又回复到原有水平。

6、分子杂交:退火条件下,不同来源的DNA互补区形成氢键,或DNA单链和RNA链的互补区形成DNA-RNA杂合双链的过程。

7、退火:热变性DNA经过缓慢冷却后即可复性,称为退火。

生化名解(完整版)

生化名解(完整版)

生物化学名词解释1、蛋白质(protein):是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。

2、等电点(isoelectric point, pI) :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

3、茚三酮反应(ninhydrin reaction):氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。

由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法。

脯氨酸与茚三酮反应后生成黄色化合物。

4、肽键(peptide bond):肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,具有部分双键性能,不能自由旋转。

(所以肽单元在同一平面)5、氨基酸残基(residue):肽链中的氨基酸分子因脱水缩合而基团不全,被称为氨基酸残基(residue)。

6、寡肽(oligopeptide):由十个以内氨基酸相连而成的肽称为寡肽(oligopeptide)7、多肽(polypeptide):由十个以上的氨基酸相连形成的肽称多肽(polypeptide)8、谷胱甘肽(glutathione, GSH):由谷氨酸、半胱氨酸和甘氨酸组成的三肽。

9、一级结构(primary structure):蛋白质的一级结构指多肽链N到C端中氨基酸的排列顺序。

10、二级结构(secondary structure):蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

主要的化学键:氢键11、三级结构(tertiary structure):整条肽链中全部氨基酸残基的相对空间位置。

即肽链中所有原子在三维空间的排布。

主要的化学键:疏水键、离子键、氢键和范德华力等。

12、四级结构(quaternary structure):蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,以共价键相连接,称为蛋白质的四级结构。

生物化学名词解释

生物化学名词解释

第一章:蛋白质蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。

蛋白质的一级结构:是指多肽链中氨基酸(残基)的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。

维持其稳定的化学键是-肽键。

蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。

蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-片层、β-转角和无规则卷曲等。

蛋白质的三级结构:是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。

因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。

蛋白质的四级结构:是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。

蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。

蛋白质变性的实质是空间结构的破坏。

蛋白质沉淀:蛋白质从溶液中聚集而析出的现象。

构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。

一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。

构象改变不会改变分子的光学活性。

结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。

构型的转变伴随着共价键的断裂和重新形成。

构形的改变往往使分子的光学活性发生变化。

生物活性肽:生物体内具有调节及保护作用的小分子肽。

模体:模体是具有特殊功能的超二级结构。

分子伴侣:分子伴侣是一类帮助新生多肽连正确折叠的蛋白质,参与蛋白质空间构想的正确形成。

蛋白质的变构效应:蛋白质变构效应指在某些代谢物或调节因子与蛋白质结合,其结构发生适应性改变的现象。

基础生物化学的名词解释

基础生物化学的名词解释

第一章蛋白质1.两性离子(dipolarion):指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸(essential amino acid):指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

3. 氨基酸的等电点(isoelectric point,pI):指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。

4.稀有氨基酸(rare amino acid):指存在于蛋白质中的20种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

5.非蛋白质氨基酸(nonprotein amino acid):指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型(configuration):指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。

构型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构(protein primary structure):指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

8.构象(conformation):指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。

一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。

构象改变不会改变分子的光学活性。

9.蛋白质的二级结构(protein secondary structure):指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

10.结构域(domain):指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

11.蛋白质的三级结构(protein tertiary structure):指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

12.氢键(hydrogen bond):指负电性很强的氧原子或氮原子与N-H或O-H的氢原子间的相互吸引力。

生物化学名词解释

生物化学名词解释

生物化学名词解释第一章蛋白质结构与功能1.肽单元(peptide unit):参与肽键的6个原子—Cα1,C,O,N,H,Cα2位于同一平面,Cα1和Cα2在平面上所处的位臵为反式(trans)构型,此同一平面上的6个原子构成肽单元。

2.模体(motif):由二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象, 并发挥特殊的功能,如锌指结构,β α β等。

模体通常有其特征性的氨基酸序列。

有的模体仅由几个氨基酸残基组成,如RGD (Arg-Gly-Asp)模体。

3.结构域(domain):分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。

4.蛋白质等电点(Isoelectric point, pI):在某一pH溶液中,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,其所带的净电荷为零,此时溶液的pH值称为该蛋白质的等电点。

5.蛋白质的变性(denaturation of protein):在某些物理和化学因素(如加热,强酸,强碱,有机溶剂, 重金属离子等)作用下,蛋白质的特定空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。

变性不涉及一级结构中氨基酸序列的改变。

第二章酶1.酶的活性中心(active center of enzyme):酶分子中与酶活性密切相关的基团(必需基团)在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合,并将其转变为产物,该区域称酶的活性中心。

辅酶参与酶活性中心的组成。

2.同工酶(isoenzyme):催化相同的化学反应,但酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶。

3.变构酶和变构调节(allosteric enzyme and allosteric regulation):一些代谢物(变构效应剂)可与酶蛋白分子活性中心外的某一部位可逆地结合,使酶发生变构而改变其催化活性。

(完整)生物化学名词解释

(完整)生物化学名词解释

生物化学名词解释第一章蛋白质的结构与功能1。

肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。

2. 等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。

3. 模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。

4. 结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域.5。

亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。

6. 肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。

7. 蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。

第二章核酸的结构与功能1。

DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性.2。

Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度.在Tm时,核酸分子50%的双螺旋结构被破坏。

3. 增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应.4. HnRNA:核内不均一RNA。

在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。

hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中.5。

核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。

6. 核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交.第三章酶1. 酶:由活细胞产生的具有催化功能的一类特殊的蛋白质。

生物化学名词解释

生物化学名词解释

糖类:1、糖:是多羟基的醛或酮及其缩聚物和某些衍生物以及可以水解产生这些化合物的物质的总称。

2、单糖:是最简单的糖,不能再被水解为更小的单位。

3、寡糖:也称低聚糖,是由2-10个分子单糖缩合而成,水解后产生单糖。

4、多糖:是由多个单糖分子缩合而成。

多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。

5、糖异生:糖异生是指从非糖物质合成葡萄糖的过程。

动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。

6、糖原:糖原是动物体内葡萄糖的储存形式。

7、糖酵解:酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程,又称EMP途径,缺氧时在细胞胞浆中进行。

脂质:1、脂质:脂类是脂肪酸(C4以上的)和醇[包括甘油醇、鞘氨醇(成称神经醇)、高级一元醇和固醇]等所组成的酯类及其衍生物。

2、单脂:为脂酸与醇(甘油醇、高级一元醇)所组成的酯类。

3、复脂:脂酸与醇(甘油醇,鞘氨醇)所生成的酯,同时含有其他非脂性物质,如糖、磷、酸及氮碱。

4、磷脂:含磷酸与氮碱的脂类,分甘油醇磷脂和鞘氨醇磷脂两类。

鞘氨醇磷脂不含甘油醇而含鞘氨醇。

5、糖脂:含糖分子的脂类,由鞘氨醇或甘油醇与脂酸和糖所组成,如脑苷脂和神经节苷脂。

6、水解:脂肪在酸碱及脂肪酶作用下酯键断裂,产生甘油与脂酸;7、皂化:碱水解脂肪产生的脂酸盐称皂,因此碱水解脂肪的作用称皂化作用;8、皂化值:皂化1g脂肪所需的KOH的质量(mg)。

与脂酸的分子量成反比(为什么?1g中的mol数不同)。

作用:可用来推算油脂的平均分子量。

9、氢化:不饱和脂肪在催化剂影响下,不饱和双键可加入氢而成饱和脂,这个作用称为氢化。

10、卤化:溴碘同样可加入不饱和脂肪的双键上,产生饱和的卤化脂,这种作用称为卤化。

11、碘价(值):100g脂质样品所能吸收的碘的质量(g)。

作用:可推知脂酸的不饱和程度。

可用来测定油脂中脂肪酸的不饱和度。

12、氧化:不饱和脂肪酸与分子氧作用,产生脂酸过氧化物。

生物化学名词解释

生物化学名词解释

生物化学名词解释第一章蛋白质的结构与功能1.肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。

2.等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。

3.模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。

4.结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域。

5.亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。

6.肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。

7.蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。

第二章核酸的结构与功能1. DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性。

2. Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度。

在Tm时,核酸分子50%的双螺旋结构被破坏。

3.增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应。

4. HnRNA:核内不均一RNA。

在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。

hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中。

5.核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。

6.核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交。

《生物化学》名词解释大全

《生物化学》名词解释大全

《生物化学》名词解释大全第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。

4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。

构型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。

一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。

构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。

如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

生物化学名词解释(临床医学)

生物化学名词解释(临床医学)

1、等电点(isoelectric point):在某一pH值的溶液中,氨基酸解离成阴/阳离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH 值称该氨基酸的等电点。

2、肽单元(肽平面):参与肽键的6个原子——C-α1,C,O,N,H,C-α2。

位于同一平面,C-α1 和C-α2 在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成肽单元。

3、蛋白质一级结构:蛋白质分子中氨基酸的排列顺序称蛋白质的一级结构。

一级结构的主要化学键是肽键,有的还包含二硫键。

一级结构是蛋白质空间构象和特异生物学功能的基础。

4、二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

蛋白质二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲。

维持蛋白质二级结构的化学键是氢键。

5、三级结构:多肽链中全部氨基酸残基的相对空间位置,也就是整条多肽链所有原子在三维空间的排布位置。

6、亚基:在蛋白质的四级结构中,每个具有独立三级结构的多肽链就是一个亚基,亚基与亚基间呈特定的三维空间排布,并以非共价键相连接。

7、四级结构:由两条或两条以上多肽链组成的蛋白质,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

8、α-螺旋(α-helix):是蛋白质多肽链主链二级结构的主要类型之一,肽链主链骨架围绕中心轴盘绕成有规律的右手螺旋状。

9、β-折叠(βpleated sheet):是蛋白质二级结构的一种,其主要特征是:①多肽链充分伸展,每个肽单元以C-α为旋转点,依次折叠成锯齿结构;②氨基酸侧链交替地位于锯齿状结构的上、下方;③两条以上肽链或一条肽链内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,从而稳固β-折叠结构;④肽链有顺式平行和反式平行两种。

生物化学名词解释——蛋白质

生物化学名词解释——蛋白质

简单蛋白质:完全由氨基酸构成的蛋白质结合蛋白质:由AAs和其他非蛋白质化合物所组成球状蛋白质:多肽链能够折叠,使分子外形成为球状的蛋白质。

纤维状蛋白质:能够聚集为纤维状或细丝状的蛋白质。

主要起结构蛋白的作用,其多肽链沿一个方向伸展或卷曲,其结构主要通过多肽链之间的氢键维持。

单体蛋白质:仅含有AAs寡聚蛋白质:由两个以上、十个以下亚基或单体通过非共价连接缔合而成的蛋白质。

等电点:蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH,此时蛋白质或两性电解质在电场中的迁移率为零。

符号为pI。

氨基酸残基:在多肽链中的氨基酸,由于其部分基团参与了肽键的形成,剩余的结构部分则称氨基酸残基。

它是一个分子的一部分,而不是一个分子。

氨基酸的氨基上缺了一个氢,羧基上缺了一个羟基。

简单的说,氨基酸残基就是指不完整的氨基酸。

一个完整的氨基酸包括一个羧基(—COOH),一个氨基(—NH2),一个H,一个R基。

缺少一个部分都算是氨基酸残基,并没有包括肽键的。

钛键:氨基和羧基脱去一分子水形成的化学键。

钛键平面:肽键所在的酰胺基成为的刚性平面。

由于肽键具有部分双键性质,使得肽基的六个原子共处一个平面,称为肽平面。

同源蛋白质:在不同有机体中实现同一功能的蛋白质。

(结构和功能类似的蛋白质。

)蛋白质一级结构:蛋白质多肽链的氨基酸通过肽键连接形成的线性序列。

蛋白质二级结构:指多肽链借助H键折叠盘绕成沿一维方向具有周期性结构的构象。

构象:分子的三维结构即分子中的所有原子在空间的位置总和。

构型:分子中的原子在空间的相对取向。

α-螺旋:它是蛋白质当中最为常见、最丰富的二级结构。

多肽主链沿中心轴盘绕成右手或左手螺旋;每个螺旋周期有3.6个氨基酸残基,螺距0.54nm,螺旋直径0.5nm;氨基酸残基侧链伸向外侧;同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键,并且与螺旋轴保持大致上的平行。

此外,肽键上的酰胺氢和羰基氧既能形成内部氢键,也能与水分子形成外部氢键。

生物化学名词解释

生物化学名词解释

生物化学名词解释2.motif 模序在蛋白质分子中,可发现二个或者三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,并具有相应的功能,被称之模序。

3.protein denature蛋白质变性。

在某些理化因素作用下,致使蛋白质的空间构象破坏,从而改变蛋白质的理化性质与生物活性,称之蛋白质变性。

4. glutathione谷胱甘肽由谷氨酸、半胱氨酸与甘氨酸构成的三肽,半胱氨酸的巯基是该三肽的功能基团。

它是体内重要的还原剂,以保护体内蛋白质或者酶分子等中的巯基免遭氧化。

5.β-pleated sheet在多肽链β折叠结构中,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方。

两条以上肽链或者一条肽链内的若干肽段的锯齿状结构可平行排列,其走向可相同,也可相反。

并通过肽链间的肽键羰基氧与亚氨基氢形成氢键从而稳固β-折叠结构。

6.chaperon 分子伴侣是一类帮助新生多肽链正确折叠的蛋白质。

它可逆的与未折叠肽段的疏水部分结合随后松开,如此重复进行能够防止错误的聚集发生,使肽链正确折叠。

分子伴侣关于蛋白质分子中二硫键的正确形成起到重要作用。

7.protein quaternary structure 蛋白质的四级结构数个具有三级结构的多肽链,在三维空间作特定排布,并以非共价键维系其空间结构稳固,每一条多肽链称之亚基。

这种蛋白质分子中各个亚基的空间排布及亚基间的相互作用,称之蛋白质的四级结构。

8.结构域蛋白质的三级结构常可分割成1个与数个球状区域,折叠得较为紧密,各行其能,称之结构域。

9.蛋白质等电点在某一pH溶液中,蛋白质分子所带的正电荷与负电荷相等,净电荷为零,此溶液的pH值,即为该蛋白质的等电点。

10.α-螺旋α-螺旋为蛋白质二级结构类型之一。

在α-螺旋中,多肽链主链围绕中心轴作顺时钟方向的螺旋式上升,即所谓右手螺旋。

每3.6个氨基酸残基上升一圈,氨基酸残基的侧链伸向螺旋的外侧。

生物化学名词解释

生物化学名词解释

蛋白质化学等电点(isoelectric point, pI):当氨基酸在溶液中净电荷为零的pH。

在等电点时,氨基酸主要以两性离子形式存在肽键(peptide bond):由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

肽:由二个或两个以上氨基酸通过肽键相连而形成的化合物。

蛋白质的一级结构:指多肽链中氨基酸的排列顺序与键合方式。

二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

肽单元:参与组成肽键的6个原子位于同一平面,又叫酰胺平面或肽键平面。

它是蛋白质构象的基本结构单位。

α-螺旋( α -helix ) :是蛋白质中最常见的一种二级结构,多肽链主链围绕中心轴形成右手螺旋β-折叠:若干条肽链或一条肽链的若干肽段平行排列,相邻肽链之间靠氢键维持。

超二级结构(supersecondary struture):蛋白质分子中,由若干相邻的二级结构单元组合在一起,形成有规则的、在空间上能辨认的二级结构组合体结构域(domain):在超二级结构基础上组装成的相对独立的三维实体。

折叠得较为紧密,各行使其功能。

蛋白质的变性:在某些物理和化学因素作用下,蛋白质分子特定空间构象被破坏,导致其理化性质改变和生物活性的丧失。

复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能。

酶化学全酶:对结合酶而言,酶蛋白与辅助因子结合之后所形成的复合物,称为全酶,只有全酶才有催化活性,将酶蛋白和辅助因子分开后均无催化作用。

全酶= 酶蛋白+ 辅助因子酶原:某些酶在细胞内合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原酸碱催化:通过瞬时地向反应物提供质子或从反应物接收质子以稳定过渡态、达到降低反应活化能、加速反应的一种催化机制。

共价催化:通过与底物形成反应活性很高的共价过渡物降低反应活化能,从而提高反应速度的过程。

生物化学名词解释 最全

生物化学名词解释 最全
生物化学名词解释
第一章 蛋白质
1. 两性离子:指同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2. NF-kB nuclear factor-kappa B:细胞核中的转录因子,能与免疫球蛋白 kappa 轻链基因的增强子 B 序列特异性结
合,促进 κ 轻链基因表达,故而得名。 3. 氨基酸 amino acid:含一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上,是蛋白质的构件分子。 4. 亲水氨基酸:即极性氨基酸,R 基团呈极性,一般能和水分子形成氢键,对水分子具有一定的亲和性。 5. 疏水氨基酸:即非极性氨基酸,R 基团呈非极性,对水分子的亲和性不高或者极低,但对脂溶性物质的亲和性较高。 6. 必需氨基酸 essential amino acid:人体(其他脊椎动物)必不需而机体内又不能合成必须从食物中补充的氨基酸。 7. 非必需氨基酸 nonessential amino acid:动物体自身可以进行有效合成的氨基酸。 8. 蛋白质氨基酸:即标准氨基酸,在蛋白质生物合成中,由专门的 tRNA 携带,直接参入到蛋白质分子中。 9. 非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸,不能
成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。 16. 蛋白质的一级结构 primary structure:蛋白质多肽链中氨基酸的排列顺序以及二硫键的位置。 17. 肽 peptide:两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 18. 模体 motif:
指在蛋白质或核酸一级结构上,具有特殊生化功能的特定氨基酸或碱基序列,称序列模体; 指具有特定功能的或作为一个独立结构域一部分的相邻的二级结构的聚合体,被称为功能模体或结构模体,相当

生化名词解释

生化名词解释

58.一碳单位:指具有一个碳原子的基团
59.从头合成:生物体内用简单的前体物质合成生物分子的途径
60.补救合成:将已分解的生物体的一部分物质加以利用,再次进行该物质的生物合成的一个途径
61.复制:以亲代DNA分子为模板合成一个新的子代DNA分子的过程
62.转录:遗传信息由DNA转换到RNA的过程
31.糖原的合成与分解:合成:指葡萄糖合成糖原的过程.分解:肝糖原分解成为 葡萄糖,是一个非耗能过程.
32.三羧酸循环:是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸
33.乳酸循环:肌肉收缩通过糖酵解生成乳酸。肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝脏内异生为葡萄糖。葡萄糖释入血液后又被肌肉摄取,这就构成了一个循环(肌肉-肝脏-肌肉),此循环称为乳酸循环。
15.DNA的变性:DNA变性指理化因素下,DNA分子中氢键断裂,双螺旋结构松开,形成无规则的单键线状结构.
16.退火:变性DNA有适应条件下,两条彼此分开后的单链从新缔合成双螺旋结构。称为DNA的复性退火
17.酶:由活细胞产生的具有催化功能的生物催化剂.
18.结合酶:由蛋白质和非蛋白质成分组成,其中蛋白质部分称酶蛋白,非蛋白质部分称辅酶因子.
63.翻译:转录合成mRNA可以作为模版合成蛋白质.
64.逆转录:也称反转录以RNA为模板合成DNA的过程,是RNA病毒的复制形式,需逆转录酶的催化种
65.半保留复制:一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板
66.前导链和后随链:
9.蛋白质的电泳:在同一PH环境下,由于各种蛋白质所带电荷的性质和数量不同分子量大小不一,因此它们在同一电场中移动速率不同.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单蛋白质:完全由氨基酸构成的蛋白质
结合蛋白质:由AAs和其他非蛋白质化合物所组成
球状蛋白质:多肽链能够折叠,使分子外形成为球状的蛋白质。

纤维状蛋白质:能够聚集为纤维状或细丝状的蛋白质。

主要起结构蛋白的作用,其多肽链沿一个方向伸展或卷曲,其结构主要通过多肽链之间的氢键维持。

单体蛋白质:仅含有AAs
寡聚蛋白质:由两个以上、十个以下亚基或单体通过非共价连接缔合而成的蛋白质。

等电点:蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH,此时蛋白质或两性电解质在电场中的迁移率为零。

符号为pI。

氨基酸残基:在多肽链中的氨基酸,由于其部分基团参与了肽键的形成,剩余的结构部分则称氨基酸残基。

它是一个分子的一部分,而不是一个分子。

氨基酸的氨基上缺了一个氢,羧基上缺了一个羟基。

简单的说,氨基酸残基就是指不完整的氨基酸。

一个完整的氨基酸包括一个羧基(—COOH),一个氨基(—NH2),一个H,一个R基。

缺少一个部分都算是氨基酸残基,并没有包括肽键的。

钛键:氨基和羧基脱去一分子水形成的化学键。

钛键平面:肽键所在的酰胺基成为的刚性平面。

由于肽键具有部分双键性质,使得肽基的六个原子共处一个平面,称为肽平面。

同源蛋白质:在不同有机体中实现同一功能的蛋白质。

(结构和功能类似的蛋白质。


蛋白质一级结构:蛋白质多肽链的氨基酸通过肽键连接形成的线性序列。

蛋白质二级结构:指多肽链借助H键折叠盘绕成沿一维方向具有周期性结构的构象。

构象:分子的三维结构即分子中的所有原子在空间的位置总和。

构型:分子中的原子在空间的相对取向。

α-螺旋:它是蛋白质当中最为常见、最丰富的二级结构。

多肽主链沿中心轴盘绕成右手或左手螺旋;每个螺旋周期有3.6个氨基酸残基,螺距0.54nm,螺旋直径0.5nm;氨基酸残基侧链伸向外侧;同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键,并且与螺旋轴保持大致上的平行。

此外,肽键上的酰胺氢和羰基氧既能形成内部氢键,也能与水分子形成外部氢键。

β-折叠:常见的蛋白质的二级结构之一。

呈片状,肽链主链取锯齿状折叠构象;肽链走向可能是平行的,也可能是反平行的。

两条或多条肽链之间侧向聚集在一起,相邻多肽链羰基氧和酰胺氢之间形成氢键,氢键与肽链的长轴几乎呈直角;侧链R基交替分布于片层平面两侧。

β-转角:它大多分布在球状蛋白质分子表面,以改变肽链。

它是一个发夹式转折,其特点是在于多肽链中第n个残基的一CO基与第n+3个残基的-NH基形成氢键。

因此,一个多肽链的走向可以得到很好的扭转。

因此,β-转角在球状蛋白质中是重要的二级结构,起到连接其他二级结构的作用。

超二级结构:蛋白质中,由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则、在空间上能辨认的二级结构组合体,以充当三级结构的构件。

结构域:对于较大的蛋白质分子(或亚基),多肽链往往由两个或两个以上相对独立的三维实体缔合而成三级结构,这种独立的折叠单位称为结构域。

蛋白质三级结构:指多肽链在二级结构的基础上借助各种次级键进一步盘绕成具有特定肽链走向的紧密球状构象。

蛋白质四级结构:具三级结构的球状蛋白质以非共价键缔合在一起,形成的聚集体称为蛋白质的四级结构。

其中每个球状蛋白质称为亚基。

疏水相互作用:非极性的基团在极性溶液中相互靠近的相互作用。

别构蛋白质:是指除了具有结合底物的活性部位,还具有结合调节物别构部位的蛋白质。

别构蛋白的活性部位和别构部位可以分属不同的亚基(活性亚基和调节亚基),活性部位之间以及活性部位与调节部位之间通过蛋白质构象的变化而相互作用。

别构效应:指蛋白质与配基结合改变蛋白质的构象,进而改变蛋白质生物活性的现象。

透析:利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质分开。

(无机盐、单糖等)
超过滤:利用压力或离心力,强行使水和其他小分子溶质通过半透膜,而蛋白质被截留在膜上,以达到浓缩和脱盐的目的。

盐析:增加中性盐浓度使有些蛋白质从水溶液中析出的现象。

蛋白质的沉淀:蛋白质在溶液中的条件发生改变,破坏了蛋白质溶液的稳定性,蛋白质就会从溶液中沉淀出来。

蛋白质的变性作用:天然蛋白质分子在某些物理化学因素的影响下,次级键被破坏,天然构象解体,致使物化性质和生物学性质发生改变的现象。

分配层析:,利用固定相与流动相之间对待分离组分溶解度的差异来实现分离。

分配层析的固定相一般为液相的溶剂,依靠图布、键合、吸附等手段分布于层析柱或者担体表面。

分配层析过程本质上是组分分子在固定相和流动相之间不断达到溶解平衡的过程。

离子交换层析:根据物质的酸碱性、极性不同,它们与离子交换剂的亲和力不同,通过改变洗脱液离子强度和pH,使物质按照亲和力大小顺序从层析柱中洗脱下来的分离方法。

凝胶过滤层析:利用一定大小孔隙的具有网状结构的凝胶作层析介质(如葡聚糖凝胶、琼脂糖凝胶、聚丙烯酰胺凝胶等),根据被分离物质的分子大小、形状不同扩散到凝胶孔隙内的速度不同,因而通过层析柱的快慢不同而分离的一种层析法。

电泳:在外电场的作用下,带电颗粒向着与其电性相反的电极移动的现象。

聚丙烯酰胺凝胶电泳:用于分离蛋白质和寡糖核苷酸。

作用原理聚丙烯酰胺凝胶为网状结构,具有分子筛效应。

它有两种形式:非变性聚丙烯酰胺凝胶及SDS-聚丙烯酰胺凝胶(SDS-PAGE);非变性聚丙烯酰胺凝胶,在电泳的过程中,蛋白质能够保持完整状态,并依据蛋白质的分子量大小、蛋白质的形状及其所附带的电荷量而逐渐呈梯度分开。

等电聚焦:使电泳的介质中形成一定范围的pH梯度,每种蛋白质按照各自的等电点将移向并“聚集”在相应的pH梯度处。

该技术特别适用于分子量相近而等电点不同的蛋白质分离和分析。

双向电泳:是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。

蛋白质组学:1.阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科。

包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。

2. 研究基因组编码的全部蛋白质的结构、性质和功能的学科。

3. 研究细胞内全部蛋白质的组成、结构与功能的学科。

相关文档
最新文档