阿波罗尼斯圆专题汇编(史上最全原创)
高考数学一轮复习专题训练之阿波罗尼斯圆(20200615195315)
![高考数学一轮复习专题训练之阿波罗尼斯圆(20200615195315)](https://img.taocdn.com/s3/m/c15bec6eba0d4a7303763a48.png)
1 x2 x1
2
2 2,即
为三角形高的最大值, 即 △ABC 高的最大值是 2 2 .故△ ABC 6 年高考数学四川卷)已知两个定点
A 2,0 , B 1,0 .如果动点 P 满足
PA 2 PB , 则点的轨迹所包围的面积等于 ( )A.
B. 4 C. 8 D. 9
NA MA
NB MA
C
①
;
②
2;
NB MB
NA MB
N
NB ③
NA
MA 2 2 .其中正确结论的序号是
MB
M .(写
A OT
x
出所有正确结论的序号)
解 :( 1 ) 易 知 半 径 r
2
x1 y
2
2 2;
2 , 所 以圆 的方程为
( 2)易知 A 0, 2 1 , B 0, 2 1 , 设 P x, y 为圆 C 上任意一点, 则
于是“阿波罗尼斯圆”在我国又被称为“内外圆” .因此, 题 2 又有如下的轴上简洁解法 :
∵动点 C 到定点 A ( - 1 , 0 ) 和 B (1 , 0) 距离之比为 2 , 则有
| x 1| 2 | x 1| x2 2x 1 2 x2 2x 1 x2 6x 1 0 x 3 2 2 ,
∴ 得 x1 3 2 2 为内分点, x2 3 2 2 为外分点. 圆半径 r
2
PA
x2 y 2 1
4 2 2 2 2 1y 2 2 1 2 y
PB
2
x2 y 2 1
4 2 2 2 2 1y
2 21 2 y
21
, 故①正确;
NB MA NA MB
21
2 1 2, ②正确;
中考专题 阿氏圆专题(解析版)
![中考专题 阿氏圆专题(解析版)](https://img.taocdn.com/s3/m/30dcbc9bb307e87100f696de.png)
阿氏圆专题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=25OB ,连接 PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有25PB=PC 。
故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。
【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM△△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④= EABC DP例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),△C 的半径为10,点B 在△C 上一动点,AB OB 55的最小值为________.[答案]:5. 变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,△AB=BD=4,BD是切线,△△ABD=90°,△BAD=△D=45°,△AB是直径,△△APB=90°,△△P AB=△PBA=45°,△P A=PB,PO△AB,△AC=PO=2,AC△PO,△四边形AOPC是平行四边形,△OA=OP,△AOP=90°,△四边形AOPC是正方形,△PM=PC,△PC+PD=PM+PD=DM,△DM△CO,△此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,△B的半径为2,P是△B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:△如图,连接PB、在BC上取一点E,使得BE=1.△PB2=4,BE•BC=4,△PB2=BE•BC,△=,△△PBE=△CBE,△△PBE△△CBE,△==,△PD+PC=PD+PE,△PE+PD≤DE,在Rt△DCE中,DE==5,△PD+PC的最小值为5.△连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF △BC 于F .△PB 2=4,BE •BD =×4=4,△BP 2=BE •BD ,△=,△△PBE =△PBD ,△△PBE △△DBP , △==,△PE =PD ,△PD +4PC =4(PD +PC )=4(PE +PC ),△PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,△EC =,△PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152.AB CDPABCDP MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,△B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.△==,==,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG==.△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF△BC于F.△==2,==2,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,△DCF=60°,CD=4,△DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴=,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=或p=﹣(由于E(﹣2,0),所以舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM=.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM△AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y =0,则ax 2+(a +3)x +3=0, △(x +1)(ax +3)=0,△x =﹣1或﹣,△抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0), △﹣=4,△a =﹣.△A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得,△直线AB 解析式为y =﹣x +3.(2)如图1中,△PM △AB ,PE △OA ,△△PMN =△AEN ,△△PNM =△ANE ,△△PNM △△ANE ,△=,△NE △OB ,△=,△AN =(4﹣m ),△抛物线解析式为y =﹣x 2+x +3,△PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,△=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . △OE ′=2,OM ′•OB =×3=4, △OE ′2=OM ′•OB , △=,△△BOE ′=△M ′OE ′,△△M ′OE ′△△E ′OB , △==,△M ′E ′=BE ′,△AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:3. 如图,等边⊙ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A,()0,2B,()4,0C,()3,2D,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]6. 如图,Rt△ABC,△ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC△△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,△四边形CDEF是正方形,△CF=CD,△DCF=△ACB=90°,△△ACF=△DCB,△AC=CB,△△FCA△△DCB(SAS).(2)解:△如图2中,当点D,E在AB边上时,△AC=BC=2,△ACB=90°,△AB=2,△CD△AB,△AD=BD=,△BD+AD=+1.△如图3中,当点E,F在边AB上时.BD=CF=,AD==,△BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.△CD=,CM=1,CA=2,△CD2=CM•CA,△=,△△DCM=△ACD,△△DCM△△ACD,△==,△DM=AD,△BD+AD=BD+DM,△当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;△AB=AC,AE=EC,AD=CD,△AE=AD,△AB=AC,△A=△A,AD=AE,△△BAD△△CAE(SAS),△BD=CE.(2)如图2中,在AD上截取AE,使得AE=.△P A2=9,AE•AD=×6=9,△P A2=AE•AD,△=,△△P AE=△DAP,△△P AE△△DAP,△==,△PE=PD,△PC+PD=PC+PE,△PC+PE≥EC,△PC+PD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=6,DE=,△EC==,△PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.△MA2=225,AE•AD=9×25=225,△MA2=AE•AE,△=,△△MAE=△DAM,△△MAE△△DAM,△===,△ME=MD,△MC+MD=MC+ME,△MC+ME≥EC,△MC+MD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=18,DE=16,△EC==2,△MC+MD的最小值为2.。
(完整版)阿氏圆问题归纳(2),推荐文档
![(完整版)阿氏圆问题归纳(2),推荐文档](https://img.taocdn.com/s3/m/40e3a85bad51f01dc381f10d.png)
阿氏圆题型的解题方法和技巧以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.习题【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+1PC 的最小值为_________.6.如图,边长为47.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+21PC 的最小值为______;2PD+4PC 的最小值为______.8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+21FA 的最小值.11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+21PC 的最小值和PD-21PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+32PC 的最小值为______,PD-32PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+21PC 的最小值为______,PD-21PC 的最大值为________.2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax ²+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C1,△AEN 的周长为C2,若5621=C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+32E ′B 的最小值.问题背景:如图1,在△ABC中,BC=4,AB=2AC.问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决:求△ABC的面积的最大值.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2 AB,试探究BC,BD的数量关系.(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.。
(完整版)阿波罗尼斯圆问题
![(完整版)阿波罗尼斯圆问题](https://img.taocdn.com/s3/m/6a680f2565ce0508763213a6.png)
APB阿波罗尼斯圆问题一【问题背景】苏教版《数学必修2》P.112第12题:已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.二、【阿波罗尼斯圆】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆.证:设PB PA m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B . 又设),(y x C ,则由PB PA λ=得2222)()(y m x y m x +-=++λ,两边平方并化简整理得)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆.上述课本习题的一般化情形就是阿波罗尼斯定理.三、【范例】例1 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B ,设),(y x C ,由BC AC 2=得2222121y x y x +-⋅=++)()(,平方化简整理得88316222≤+--=-+-=)(x x x y ,∴22≤y ,则 22221≤⋅⨯=∆y S ABC ,∴ABC S ∆的最大值是22. 变式 在ABC ∆中,边BC 的中点为D ,若AD BC AB 2,2==,则ABC ∆的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B , 由AD BC CD BD 2,==知,BD AD 2=,D 的轨迹为阿波罗尼斯圆,方程为8322=+-y x )(,设),(y x C ,BC 的中点为D 得)2,21(yx D +,所以点C 的轨迹方程为 8)2(32122=+-+y x )(,即32522=+-y x )(, ∴2432221=≤=⋅⨯=∆y y S ABC ,故ABC S ∆的最大值是24.例2 在平面直角坐标系xOy 中,设点(1,0),(3,0),(0,),(0,2)A B C a D a +,若存在点P ,使得,PA PC PD ==,则实数a 的取值范围是 .解:设(,)P x y =,整理得22(5)8x y -+=,即动点P 在以(5,0)为圆心,为半径的圆上运动. 另一方面,由PC PD =知动点P 在线段CD 的垂直平分线1y a =+上运动,因而问题就转化为直线1y a =+与圆22(5)8x y -+=有交点,所以1a +≤a 的取值范围是[1,1]-.例3 在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1 ,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.解: 设(),24C a a -,则圆方程为()()22241x a y a -+-+= 又设00(,)M x y ,2MA MO = ()22220000344x y x y ∴+-=+, 即()220014x y ++=这说明M 既在圆()()22241x a y a -+-+=上,又在圆()2214x y ++=上,因而这两个圆必有交点,即两圆相交或相切,2121∴-≤≤+,解得1205a ≤≤,即a 的取值范围是12[0,]5. 例4 已知⊙22:1O x y +=和点(4,2)M . (1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.解:(1)设切线l 方程为)4(2-=-x k y ,易得11|24|2=+-k k ,解得815k ±=,∴切线l 方程为24)y x -=-. (2)圆心到直线12-=x y r ,则9)5(2222=+=r∴⊙M 的方程为9)2()4(22=-+-y x(3)假设存在这样的点),(b a R ,点P 的坐标为),(y x ,相应的定值为λ,根据题意可得122-+=y x PQ ,∴λ=-+--+2222)()(1b y a x y x ,即)22(12222222b a by ax y x y x ++--+=-+λ (*),又点P 在圆上∴9)2()4(22=-+-y x ,即114822-+=+y x y x ,代入(*)式得:[])11()24()28(1248222-++-+-=-+b a y b x a y x λ若系数对应相等,则等式恒成立,∴⎪⎩⎪⎨⎧-=-+=-=-12)11(4)24(8)28(22222b a b a λλλ,解得310,51,522,1,2======λλb a b a 或,∴可以找到这样的定点R ,使得PRPQ为定值. 如点R 的坐标为)1,2(时,比值为2; 点R 的坐标为)51,52(时,比值为310. 四、【练习】1.如图,在等腰ABC ∆中,已知AC AB =,)0,1(-B ,AC 边的中点为)0,2(D ,点C 的轨迹所包围的图形的面积等于 .解:∵AD AB 2=,所以点A 的轨迹是阿波罗尼斯圆,易知其 方程为4)3(22=+-y x ,设),(y x C ,由AC 边的中点为)0,2(D 知),4(y x A --,所以C 的轨迹方程为4)()34(22=-+--y x ,即4)1(22=+-y x ,面积为π4.2.如图,已知平面α⊥平面β,A 、B 是平面α与 平面β的交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,求PAB ∆的面积的最大值. 解:将空间几何体中的线、面、角的关系转化 为平面内点P 所满足的几何条件.DA α⊥ DA PA ∴⊥,∴在PAD Rt ∆中, APAP AD APD 4tan ==∠, 同理8tan BC BPC BP BP∠==, APD BPC ∠=∠AP BP 2=∴ ,这样就转化为题3的题型.在平面α上,以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则)0,3(),0,3(B A -,设),(y x P 0)y =≠ 化简得:16)5(22=++y x ,2216(5)16y x ∴=-+≤,||4y ∴≤, PAB ∆的面积为1||||3||122PAB S y AB y ∆=⋅=≤,当且仅当5,4x y =-=±等号取得,则PAB ∆的面积的最大值是12.AP BDCβα3.圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PN PM ,(N M ,分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.解:以1O ,2O 的中点O 为原点,1O ,2O 所在直线为x 轴,建立如图所示平面直角坐标系,则)0,2(1-O ,,2(2O ,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y ),则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,此即P 的轨迹方程.4.已知定点)0,0(O ,点M 是圆4)1(22=++y x 上任意一点,请问是否存在不同于O 的定点A 使都为MAMO常数?若存在,试求出所有满足条件的点A 的坐标,若不存在,请说明理由.解:假设存在满足条件的点),(n m A ,设),(y x M ,0>=λMAMO. 则λ=-+-+2222)()(n y m x y x , 又),(y x M 满足4)1(22=++y x ,联立两式得0)3(32)222(222222=++-++-+n m y x m λλλλ ,由M 的任意性知⎪⎩⎪⎨⎧=++-==-+0)3(3020222222222n m y m λλλλ,解得)0,3(A ,21=λ.。
专题06 阿氏圆问题-中考数学二次函数压轴题核心考点突破
![专题06 阿氏圆问题-中考数学二次函数压轴题核心考点突破](https://img.taocdn.com/s3/m/5bf51f4b700abb68a882fbab.png)
阿氏圆问题
在前面的“胡不归”问题中,我们见识了“kPA+PB”最 值问题,其中P点轨迹是直线,而当P点轨迹变为圆时, 即通常我们所说的“阿氏圆”问题.
所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆 的概念,在平面内,到两个定点距离之比等于定值(不为1) 的点的集合叫做圆.
如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有
(2)如图 1,过点 M 作 MH⊥x 轴于点 H ∵A (1,0),B(5,0),C(0,5) ∴AB =5﹣1=4,OC=5
∴S△ABC= AB•OC= ×4×5=10
∵点 M 为 x 轴下方抛物线上的点 ∴设 M(m,m2﹣6m+5)(1<m<5) ∴MH =|m2﹣6m+5|=﹣m2+6m﹣5
【练习 1】如图,在ABC 中,∠ACB=90°,BC=12,AC=9,以点 C 为圆心,6 为半径的 圆上有一个动点 D.连接 AD、BD、CD,则 2AD+3BD 的最小值是 .
C
D
A
B
【分析】首先对问题作变式
2AD+3BD=
3
2 3
AD
BD
,故求
2 3
AD
BD
最小值即可.
考虑到 D 点轨迹是圆,A 是定点,且要求构造 2 AD ,条件已经足够明显. 3
B 使得 PA:PB=3:1,求 B 点坐标.
y
P
A
M O Nx
【分析】
像这样的问题一般就是“阿氏圆”构图,已知圆与 A 点,求另外一点 B.
思路 1:构造相似三角形.
考虑 OP2 OAOB ,将 OP 3 、 OA 9 代入可得:OB 1 ,故 B 点坐标为3,0 .
高中数学专题1 阿波罗尼斯圆及其应用 微点6 阿波罗尼斯圆综合训练
![高中数学专题1 阿波罗尼斯圆及其应用 微点6 阿波罗尼斯圆综合训练](https://img.taocdn.com/s3/m/cee2ce04f011f18583d049649b6648d7c1c708de.png)
专题1 阿波罗尼斯圆及其应用 微点6 阿波罗尼斯圆综合训练专题1 阿波罗尼斯圆及其应用微点6 阿波罗尼斯圆综合训练一、单选题(2022宁夏·石嘴山三中高二月考)1.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12=PAPB .则点P 的轨迹所包围的图形的面积等于( ) A .4πB .8πC .12πD .16π (2022广东·广州一中高二期中)2.数学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数(常数大于零且不等于一)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,动点M 满足MA =,得到动点M 的轨迹是阿氏圆C .若对任意实数k ,直线l :()1y k x b =-+与圆C 恒有公共点,则b 的取值范围是( )A .⎡⎣B .⎡⎣C .⎡⎣D .-⎡⎣ (2022·河北保定·高二期末)3.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(0λ>,且1λ≠)的点所形成的图形是圆,后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()4,0-A ,()2,0B ,点P 满足2PA PB =,则点P 的轨迹的圆心坐标为( ) A .()4,0 B .()0,4 C .()4,-0 D .()2,0 4.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已经(0,0)O ,(3,0)A ,动点(,)P x y 满足2PA PO=,则动点P 轨迹与圆()2221x y -+=的位置关系是( ) A .相交 B .相离 C .内切 D .外切5.阿波罗尼斯(公元前262年~公元前190年),古希腊人,与阿基米德、欧几里得一起被誉为古希腊三大数学家.阿波罗尼斯研究了众多平面轨迹问题,其中阿波罗尼斯圆是他的论著中的一个著名问题:已知平面上两点A ,B ,则所有满足PAPB λ=(0λ>,且1λ≠)的点P 的轨迹是一个圆.已知平面内的两个相异定点P ,Q ,动点M 满足2MP MQ =,记M 的轨迹为C ,若与C 无公共点的直线l 上存在点R ,使得MR 的最小值为6,且最大值为10,则C 的长度为( )A .2πB .4πC .8πD .16π(2022·广东茂名·高二期末)6.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O (0,0),A (3,0),动点P (x ,y )满2PA PO=,则动点P 轨迹与圆22(2)2x y -+=的位置关系是( ) A .相交 B .相离 C .内切 D .外切(2020·四川·泸州老窖天府中学高二期中)7.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点(1,0),(1,0)A B -,动点P 满足2PAPB =,当P 、A 、B 不共线时,PAB 面积的最大值是( )A .4B .2C .23 D .438.阿波罗尼斯是古希腊著名数学家,与阿基米德、欧几里得并称为亚历山大时期数学三巨匠,他研究发现:如果一个动点P 到两个定点的距离之比为常数λ(0λ>,且1λ≠),那么点P 的轨迹为圆,这就是著名的阿波罗尼斯圆.若点C 到()()1,0,1,0A B -C 到直线280x y -+=的距离的最小值为( )A .B C .D (2022四川遂宁·高二期末)9.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:平面内到两个定点,A B 的距离之比为定值(1)λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,(2,0)A -,(4,0)B ,点P 满足12PAPB =.当,,P A B 三点不共线时,PAB △面积的最大值为( )A .24B .12C .D(2022湖北黄州中学高二开学考试)10.阿波罗尼斯(古希腊数学家,约公元前262190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两个定点距离的比为常数()0,1k k k >≠的点的轨还是圆,后人把这个国称为阿波罗尼斯圆,已知定点()2,0A -、()2,0B ,动点C 满足2AC BC =,则动点C 的轨迹为一个阿波罗尼斯圆,记此圆为圆P ,已知点D 在圆P 上(点D 在第一象限),AD 交圆P 于点E ,连接EB 并延长交圆P 于点F ,连接DF ,当DFE 30∠=时,直线AD 的斜率为( )A B C D 二、多选题(2022江苏·高二专题练习)11.在平面上有相异两点A ,B ,设点P 在同一平面上且满足PA PB λ=(其中0λ>,且1λ≠),则点P 的轨迹是一个圆,这个圆称为阿波罗尼斯圆.设(),0A a -,(),0B a ,a 为正实数,下列说法正确的是( )A .当2λ=时,此阿波罗尼斯圆的半径43r a =B .当12λ=时,以AB 为直径的圆与该阿波罗尼斯圆相切C .当01λ<<时,点B 在阿波罗尼斯圆圆心的左侧D .当1λ>时,点A 在阿波罗尼斯圆外,点B 在圆内(2022·浙江·玉环玉城中学高二期中)12.古希腊著名数学家阿波罗尼斯(约公元前262年至前190年)与欧几里得、阿基米德齐名, 著有《圆锥曲线论》八卷.他发现平面内到两个定点的距离之比为定值()1λλ≠ 的点所形成的图形是圆.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆.已知在平面直角坐标系xOy 中,()()1,0,1,0A B -.点P 满足12PA PB =,设点P 所构成的曲线为E ,下列结论正确的是( )A .曲线E 的圆心坐标为5,03⎛⎫- ⎪⎝⎭B .443PB ≤≤ C .曲线E 的周长为πD .曲线E 上的点到直线10x y +-=的最小距离为)413 13.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现;平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,()4,0B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得D 到点()1,1的距离为3C .在C 上存在点M ,使得2MO MA =D .C 上的点到直线34130x y --=的最小距离为114.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,成为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点Р满足12PA PB =,设点Р所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得1AD =C .在C 上存在点M ,使M 在直线20x y +-=上D .在C 上存在点N ,使得224NO NA +=(2022河北保定·高二期中)15.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值()1λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xoy 中,()2,0A 、()4,0B ,点P 满足12PAPB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .曲线C 的方程为()22416x y ++=B .在曲线C 上存在点D ,使得1AD =C .在曲线C 上存在点M ,使M 在直线上20x y +-=D .在曲线C 上存在点N ,使得224NO NA +=(2022福建龙岩·高二期中)16.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值(1)λλ≠的点的轨迹是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,(1,0)A -,(2,0)B ,动点C 满足||1||2CA CB =,直线:10l mx y m -++=,则( )A .动点C 的轨迹方程为22(2)4x y ++=B .直线l 与动点C 的轨迹一定相交C .动点C 到直线l 1D .若直线l 与动点C 的轨迹交于P ,Q 两点,且||PQ =1m =-三、填空题(2022天津河北·高二期中)17.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,A (﹣2,0),B (4,0),点P 满足||1||2PA PB =,则点P 所构成的曲线C 的方程为 _______________. 18.阿波罗尼斯(约前262—前190年)证明过这样一个命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点()0,0O ,()3,0A ,动点P 满足12POPA =,则点P 的轨迹方程是___________. (2022四川省武胜烈面中学校高二期中)19.阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数λ(0λ>且1λ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,已知OAM △的两个顶点O A 、是定点,它们的坐标分别为00O (,)、(30)A ,;另一个顶点M 是动点,且满足∠=∠sin 2sin AOM OAM ,则当OAM △的面积最大时,OA 边上的高为___________.(2022四川巴中·高二期末)20.阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数λ(0λ>且1λ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,已知OAM △的两个顶点O 、A 是定点,它们的坐标分别为(00)O , 、(30)A , ;另一个顶点M 是动点,且满足||1||2MO MA =.则当OAM △的面积最大时,OA 边上的高为___________. 21.阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.22.平面向量a ,b 满足3a b -=,2a b =,则a 与a b -夹角最大值为______. 23.已知平面向量满足1a b c ===,a b ⊥r r ,则232c a a b c +++-的最小值为______.24.已知△ABC 的面积3,且AB =AC .若2CD DA =,则BD 的最小值为______.四、双空题(2022重庆·高二期末)25.设动点P 与两不同定点A B 、在同一平面上且满足||||PA PB λ=,当0λ>且1λ≠时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.在直角坐标系xOy 中,(3,0),(3,0),(,)A B P x y -,动点P 满足||2,||PA P PB =点的轨迹Γ的方程为_______.点Q 是直线:34100l x y -+=上任意一点,过Q 作Γ的切线,相切于,M N ,当||MN 取得最小值时,求cos MQN ∠的值______________(2022广东·深圳七中高三月考)26.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点距离之比为定值(0λλ>且1)λ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知点()0,3A ,若动点M 满足2=MA MO ,则动点M 的轨迹Γ方程是___________;若直线:10l x my +-=与轨迹Γ交于,P Q ,当PQ 取最小值时,则m =___________.27.被誉为古希腊“数学三巨匠”之一的数学家阿波罗尼斯发现:平面内一动点P 到两个不同定点,A B 的距离之比为常数()01k k k >≠且,则P 点的轨迹是一个圆心在AB 直线上的圆,简称“阿氏圆”.据此请回答如下问题:已知ABC 中,A 为一动点,,B C 为两定点,且2AB AC =,BC a =,ABC 面积记为S ,若3a =时,则max S =______;若1S =时,则a 取值范围为______.28.阿波罗尼奥斯(Apollonius )(公元前262~公元前190),古希腊人,与欧几里得和阿基米德齐名,他的著作《圆锥曲线论》凭一己之力将圆锥曲线研究殆尽,致使后人没有任何可插足之地;直到17锥曲线的研究才有了突破.阿波罗尼奥斯在他的著作里得到了这样的结论:平面内到两个定点的距离之比为定值的点的轨迹是圆,也称阿氏圆.已知动点P 到点()2,0M -与到点()1,0N 的距离之比为2:1,则动点P 的轨迹方程为________.五、解答题(2022辽宁抚顺·高二期末)29.设A ,B 是平面上两点,则满足PAk PB =(其中k 为常数,0k ≠且1k ≠)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿波罗尼斯圆,简称阿氏圆,已知)A ,B ⎫⎪⎪⎝⎭,且k =(1)求点P 所在圆M 的方程.(2)已知圆()()22:225x y Ω++-=与x 轴交于C ,D 两点(点C 在点D 的左边),斜率不为0的直线l 过点D 且与圆M 交于E ,F 两点,证明:ECD FCD ∠=∠.(2022福建省福州八中高二期中)30.古希腊数学家阿波罗尼奥斯(约公元前262-公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知平面直角系xOy 中的点E ,F ,则满足PF =的动点P 的轨迹记为圆E .(1)求圆E 的方程;(2)过点(3,3)Q 向圆E 作切线QS ,QT ,切点分别是S ,T ,求直线ST 的方程. 31.公元前3世纪,古希腊数学家阿波罗尼斯()Apollonius 在《平面轨迹》一书中,研究了众多的平面轨迹问题,其中有如下著名结果:平面内到两个定点A ,B 距离之比为(0λλ>且1)λ≠的点P 的轨迹为圆,此圆称为阿波罗尼斯圆.(1)已知两定点()2,0A -,()4,0B ,若动点P 满足12PA PB =,求点P 的轨迹方程; (2)已知()6,0A -,P 是圆()22:416C x y ++=上任意一点,在平面上是否存在点B ,使得12PAPB =恒成立?若存在,求出点B 坐标;若不存在,说明理由; (3)已知P 是圆22:4D x y +=上任意一点,在平面内求出两个定点A ,B ,使得12PAPB =恒成立.只需写出两个定点A ,B 的坐标,无需证明.32.平面上两点A 、B ,则所有满足PAk PB =且k 不等于1的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆.已知圆1C 上的动点P 满足:2(PO PA =其中O 为坐标原点,A 点的坐标为()0,3. (1)直线Ly x =︰上任取一点Q ,作圆1C 的切线,切点分别为M ,N ,求四边形1QMC N 面积的最小值;(2)在(1)的条件下,证明:直线MN 恒过一定点并写出该定点坐标.专题1 阿波罗尼斯圆及其应用 微点6 阿波罗尼斯圆综合训练专题1 阿波罗尼斯圆及其应用微点6 阿波罗尼斯圆综合训练一、单选题(2022宁夏·石嘴山三中高二月考)1.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12=PA PB .则点P 的轨迹所包围的图形的面积等于( ) A .4π B .8π C .12π D .16π (2022广东·广州一中高二期中)2.数学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数(常数大于零且不等于一)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,动点M 满足MA =,得到动点M 的轨迹是阿氏圆C .若对任意实数k ,直线l :()1y k x b =-+与圆C 恒有公共点,则b 的取值范围是( )A .⎡⎣B .⎡⎣C .⎡⎣D .-⎡⎣ (2022·河北保定·高二期末)3.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(0λ>,且1λ≠)的点所形成的图形是圆,后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()4,0-A ,()2,0B ,点P 满足2PAPB =,则点P 的轨迹的圆心坐标为( )A .()4,0B .()0,4C .()4,-0D .()2,0 4.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数动点(,)P x y 满足2PA PO =,则动点P 轨迹与圆()2221x y -+=的位置关系是( ) A .相交 B .相离 C .内切 D .外切 5.阿波罗尼斯(公元前262年~公元前190年),古希腊人,与阿基米德、欧几里得一起被誉为古希腊三大数学家.阿波罗尼斯研究了众多平面轨迹问题,其中阿波罗尼斯圆是他的论著中的一个著名问题:已知平面上两点A ,B ,则所有满足PAPB λ=(0λ>,且1λ≠)的点P 的轨迹是一个圆.已知平面内的两个相异定点P ,Q ,动点M 满足2MP MQ =,记M 的轨迹为C ,若与C 无公共点的直线l 上存在点R ,使得MR 的最小值为6,且最大值为10,则C 的长度为( )A .2πB .4πC .8πD .16π (2022·广东茂名·高二期末)6.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O (0,0),A (3,0),动点P (x ,y )满2PA PO =,则动点P 轨迹与圆22(2)2x y -+=的位置关系是( ) A .相交 B .相离 C .内切 D .外切 (2020·四川·泸州老窖天府中学高二期中)7.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点(1,0),(1,0)A B -,动点P 满足2PAPB =,当P 、A 、B 不共线时,PAB 面积的最大值是( )A .4B .2C .23 D .438.阿波罗尼斯是古希腊著名数学家,与阿基米德、欧几里得并称为亚历山大时期数学三巨匠,他研究发现:如果一个动点P 到两个定点的距离之比为常数λ(0λ>,且1λ≠),那么点P 的轨迹为圆,这就是著名的阿波罗尼斯圆.若点C 到()()1,0,1,0A B -的距离之C 到直线280x y -+=的距离的最小值为( )A .B C .D (2022四川遂宁·高二期末)9.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:平面内到两个的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,(2,0)A -,(4,0)B ,点P 满足12PA PB=.当,,P A B 三点不共线时,PAB △面积的最大值为( )A .24B .12C .D (2022湖北黄州中学高二开学考试)10.阿波罗尼斯(古希腊数学家,约公元前262190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两个定点距离的比为常数()0,1k k k >≠的点的轨还是圆,后人把这个国称为阿波罗尼斯圆,已知定点()2,0A -、()2,0B ,动点C 满足2AC BC =,则动点C 的轨迹为一个阿波罗尼斯圆,记此圆为圆P ,已知点D 在圆P 上(点D 在第一象限),AD 交圆P 于点E ,连接EB 并延长交圆P 于点F ,连接DF ,当DFE 30∠=时,直线AD 的斜率为( )A B C D 二、多选题(2022江苏·高二专题练习)11.在平面上有相异两点A ,B ,设点P 在同一平面上且满足PA PB λ=(其中0λ>,且1λ≠),则点P 的轨迹是一个圆,这个圆称为阿波罗尼斯圆.设(),0A a -,(),0B a ,a 为正实数,下列说法正确的是( ) A .当2λ=时,此阿波罗尼斯圆的半径43r a =B .当12λ=时,以AB 为直径的圆与该阿波罗尼斯圆相切 C .当01λ<<时,点B 在阿波罗尼斯圆圆心的左侧 D .当1λ>时,点A 在阿波罗尼斯圆外,点B 在圆内 (2022·浙江·玉环玉城中学高二期中)12.古希腊著名数学家阿波罗尼斯(约公元前262年至前190年)与欧几里得、阿基米德齐名, 著有《圆锥曲线论》八卷.他发现平面内到两个定点的距离之比为定值()1λλ≠ 的点所形成的图形是圆.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆.已知在平面直角坐标系xOy 中,()()1,0,1,0A B -.点P 满足12PA PB=,设点P 所构成的曲线为E ,下列结论正确的是( ) 5⎛⎫B .443PB ≤≤ C .曲线E 的周长为πD .曲线E 上的点到直线10x y +-=的最小距离为)41313.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现;平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,()4,0B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( )A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA =D .C 上的点到直线34130x y --=的最小距离为114.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,成为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点Р满足12PA PB =,设点Р所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得1AD =C .在C 上存在点M ,使M 在直线20x y +-=上D .在C 上存在点N ,使得224NO NA += (2022河北保定·高二期中)15.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值()1λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xoy 中,()2,0A 、()4,0B ,点P 满足12PA PB=,设点P 所构成的曲线为C ,下列结论正确的是( ) A .曲线C 的方程为()22416x y ++=B .在曲线C 上存在点D ,使得1AD =C .在曲线C 上存在点M ,使M 在直线上20x y +-=D .在曲线C 上存在点N ,使得224NO NA += (2022福建龙岩·高二期中)16.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值(1)λλ≠的点的轨迹是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,(1,0)A -,(2,0)B ,动点C 满足||1||2CA CB =,直线:10l mx y m -++=,则( ) A .动点C 的轨迹方程为22(2)4x y ++= B .直线l 与动点C 的轨迹一定相交C .动点C 到直线l 1D .若直线l 与动点C 的轨迹交于P ,Q 两点,且||PQ =1m =- 三、填空题(2022天津河北·高二期中)17.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,A (﹣2,0),B (4,0),点P 满足||1||2PA PB =,则点P 所构成的曲线C 的方程为 _______________. 18.阿波罗尼斯(约前262—前190年)证明过这样一个命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点()0,0O ,()3,0A ,动点P 满足12PO PA=,则点P 的轨迹方程是___________. (2022四川省武胜烈面中学校高二期中)19.阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数λ(0λ>且1λ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,已知OAM △的两个顶点O A 、是定点,它们的坐标分别为00O (,)、(30)A ,;另一个顶点M 是动点,且满足∠=∠sin 2sin AOM OAM ,则当OAM △的面积最大时,OA 边上的高为___________.(2022四川巴中·高二期末)世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数λ(0λ>且1λ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,已知OAM △的两个顶点O 、A 是定点,它们的坐标分别为(00)O , 、(30)A , ;另一个顶点M 是动点,且满足||1||2MO MA =.则当OAM △的面积最大时,OA 边上的高为___________. 21.阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.22.平面向量a ,b 满足3a b -=,2a b =,则a 与a b -夹角最大值为______.23.已知平面向量满足1a b c ===,a b ⊥r r,则232c a a b c +++-的最小值为______.24.已知△ABC 的面积3,且AB =AC .若2CD DA =,则BD 的最小值为______. 四、双空题(2022重庆·高二期末)25.设动点P 与两不同定点AB 、在同一平面上且满足||||PA PB λ=,当0λ>且1λ≠时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.在直角坐标系xOy 中,(3,0),(3,0),(,)A B P x y -,动点P 满足||2,||PA P PB =点的轨迹Γ的方程为_______.点Q 是直线:34100l x y -+=上任意一点,过Q 作Γ的切线,相切于,M N ,当||MN 取得最小值时,求cos MQN ∠的值______________ (2022广东·深圳七中高三月考)26.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点距离之比为定值(0λλ>且1)λ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知点()0,3A ,若动点M 满足2=MA MO ,则动点M 的轨迹Γ方程是___________;若直线:10l x my +-=与轨迹Γ交于,P Q ,当PQ 取最小值时,则m =___________.27.被誉为古希腊“数学三巨匠”之一的数学家阿波罗尼斯发现:平面内一动点P 到两个不同定点,A B 的距离之比为常数()01k k k >≠且,则P 点的轨迹是一个圆心在AB 直线上的圆,简称“阿氏圆”.据此请回答如下问题:为S ,若3a =时,则max S =______;若1S =时,则a 取值范围为______.28.阿波罗尼奥斯(Apollonius )(公元前262~公元前190),古希腊人,与欧几里得和阿基米德齐名,他的著作《圆锥曲线论》凭一己之力将圆锥曲线研究殆尽,致使后人没有任何可插足之地;直到17世纪,笛卡尔和费马的坐标系之后,数学家建立起了解析几何体系,圆锥曲线的研究才有了突破.阿波罗尼奥斯在他的著作里得到了这样的结论:平面内到两个定点的距离之比为定值的点的轨迹是圆,也称阿氏圆.已知动点P 到点()2,0M -与到点()1,0N 的距离之比为2:1,则动点P 的轨迹方程为________.五、解答题(2022辽宁抚顺·高二期末) 29.设A ,B 是平面上两点,则满足PA k PB=(其中k 为常数,0k ≠且1k ≠)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿波罗尼斯圆,简称阿氏圆,已知)A,B ⎫⎪⎪⎝⎭,且k =(1)求点P 所在圆M 的方程.(2)已知圆()()22:225x y Ω++-=与x 轴交于C ,D 两点(点C 在点D 的左边),斜率不为0的直线l 过点D 且与圆M E ,F 两点,证明:ECD FCD ∠=∠. (2022福建省福州八中高二期中)30.古希腊数学家阿波罗尼奥斯(约公元前262-公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知平面直角系xOy 中的点E ,F ,则满足PF =的动点P 的轨迹记为圆E .(1)求圆E 的方程;(2)过点(3,3)Q 向圆E 作切线QS ,QT ,切点分别是S ,T ,求直线ST 的方程. 31.公元前3世纪,古希腊数学家阿波罗尼斯()Apollonius 在《平面轨迹》一书中,研究了众多的平面轨迹问题,其中有如下著名结果:平面内到两个定点A ,B 距离之比为(0λλ>且1)λ≠的点P 的轨迹为圆,此圆称为阿波罗尼斯圆.(1)已知两定点()2,0A -,()4,0B ,若动点P 满足12PA PB=,求点P 的轨迹方程; (2)已知()6,0A -,P 是圆()22:416C x y ++=上任意一点,在平面上是否存在点B ,使。
阿氏圆(2018中考数学压轴热点)
![阿氏圆(2018中考数学压轴热点)](https://img.taocdn.com/s3/m/54d12566e009581b6ad9eb26.png)
--阿氏圆模型专题训练阿氏圆( 阿波罗尼斯圆) :已知平面上两定点A、B,则所有满足PA/PB=k(k 不等于1) 的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
在初中的题目中往往利用逆向思维构造斜屁型相似( 也叫母子型相似或美人鱼相似)+ 两点间线段最短解决带系数两线段之和的最值问题。
观察下面的图形,当P 在在圆上运动时,PA、PB的长在不断的发生变化,但它们的比值却始终保持不变。
解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
ABD D,使得AD/AB=AB/AC,则此时△∽△ACB如图,在△ABC的边AC上找一点母子型相似(共角共边)BA CD: 我们来看一道基本题目的性质解答带系数的两条线段和的最小值呢?那么如何应用阿氏圆为圆上一动点 . CB=4,CA=6已知∠ACB=90°,,⊙C半径为2,PA1(1) AP 求BP 的最小值为 21AP 求(2) 的最小值为BP3PBC 实战练习:D 1 AB上一动点,,,为切线,AC、BD AC=1BD=2P 为弧,半径为、已知⊙O 1 2的最小值试求PC PDC 2PB AO1 AP),,(、已知点2 A4 0B 上运动,试求的⊙2 在半径为),点,(44 P O BP 的最小值 2yBPxO A-- --1 -- --轴相切,与y 为⊙C 上一动点,且⊙C P,B(0,3 ),C(1,0 ),若点3、已知点A(-3,0)1AP(1)y ; BP 的最小值 4B(2)S 的最小值 .PAB PO CxA4、如图1,在平面直角坐标系xoy 中,半⊙O交x 轴与点A、B(2,0) 两点,AD、BC均为半⊙O 的切线,AD=2,BC=7.(1)求OD的长;(2)如图2,若点P 是半⊙O上的动点,Q为OD的中点 . 连接PO、PQ.①求证:△OPQ∽△ODP;②是否存在点P,使PD 2PC 有最小值,若存在,试求出点P 的坐标;若不存在,请说明理由 .5、(1)如图1,已知正方形ABC的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,1 1求PD PC 的最小值和PD PC 的最大值 .2 2(2)如图2,已知正方形ABCD的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么2 2;PD PDPC 的最小值为PC 的最大值为3 3B 上的一个2. 点P 是圆4,已知菱形ABCD的边长为,∠B=60°,圆B 的半径为3(3)如图11PC 的最大值为PC 的最小值为PD PD动点. 那么;22巩固练习:----2----11、如图,在Rt△ABC中,∠ACB﹦90°,CB﹦4,CA﹦6,圆C 半径为2,P 为圆上一动点,连接AP,BP,AP BP2 最小值为()A、37B、6C、2 17D、4APC B2、如图,在△ABC中,∠B﹦90°,AB﹦CB﹦2,以点 B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,2.PC 则PA 的最小值是2CPAB3E,在⊙相切于点60,锐角大小为的边长为 2 °,⊙A 与BC3、如图,菱形ABCDPD,则PB A 上任取一点P2的最小值为.PADB E C4、在平面直角坐标系中,A(2,0),B(0,2),C (4,0),D(3 ,2),P 是△AOB 外部的第一象限内一.动点,且∠BPA﹦135°,则2PD﹢PC的最小值是yx----3----12,点4,圆B 的半径为5、(1)如图1,已知正方形ABCD的边长为PC求PDP 是圆B 上的一个动点,21的最小值和PC 的最大值.PD 2上的一个动点,求,点P 是圆B 9,圆B 的半径为6,已知正方2(2)如图2PCPD 的边长为ABCD形3 2的最大值.PC PD 的最小值和3上的一个动是圆B ,2,点P,∠B﹦90°,圆B 的半径为(3)如图3,已知菱形ABCD的边长为41 PC PD点,求21PD 的最小值和PC 的最大值. 2DA D AADPPPBBC C3图1 图2 图套路总结阿氏圆基本解法:构造相似kPD PC 阿氏圆一般解题步骤:OD 、的线段的两个端点分别与圆心相连接)O (将系数不为1 ,则连接OP;第一步:连接动点至圆心OD 长度;、第二步:计算出所连接的这两条线段OP OPm ;第三步:计算这两条线段长度的OD比OM m ;,使OD 第四步:在上取点M OP 得交点即为点,与圆第五步:连接CM O P.----4----1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP,BP,AP+BP的最小值为()2.如图,半圆的半径为1,AB 为直径,AC、BD 为切线,P BD=2 AC=1 上一动点,求为,,的最小值.PC+PD5--。
完整版阿波罗尼斯圆问题
![完整版阿波罗尼斯圆问题](https://img.taocdn.com/s3/m/331fc78431126edb6f1a10c8.png)
一【问题背景】苏教版《数学必修 2》P.112第12题:1已知点M (x,y)与两个定点0(0,0), A(3,0)的距离之比为—,那么点M 的坐标应满足2什么关系?画出满足条件的点M 所构成的曲线.二、【阿波罗尼斯圆】公元前3世纪,古希腊数学家阿波罗尼斯( Apollonius )在《平面轨迹》 究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点A, B 为两定点,动点 P 满足PA PB , 则 1时,动点P 的轨迹为直线;当 1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆证:设AB 2m ( m 0),PA PB •以AB 中点为原点,直线 AB 为x 轴建立平面 直角坐标系,则 A (m,0), B (m,0) •又设 C (x , y ),则由 PA PB 得..(x m)2 y 2长为半径的圆.上述课本习题的一般化情形就是阿波罗尼斯定理.三、【范例】AB 为x 轴建立平面直角坐标系,则 A ( 1,0),、、2BC 得.(x 1)2 y 22 .(x 1)2阿波罗尼斯圆问题两边平方并化简整理得 (21)x 2 2m ( 2 1) x21) y 2m 2(12),1时,0,轨迹为线段 AB 的垂直平分线; 1时,(x21m)2y 214 2m 26 ,轨迹为以点(丁」m,0)为圆心,1(X m)2例1满足条件AB 2, AC .2BC 的三角形ABC 的面积的最大值是解:以AB 中点为原点,直线B (1,0),设C (x , y ),由 AC书中,曾研平方化简整理得寸 x 2 6x 1 (x 3)2 8 8 ,••• y 2 2,则1 一 一 —2y 2y/2 , • S ABC 的最大值是 2J2 . 2变式 在 ABC 中,边BC 的中点为D ,若AB 2,BC 2 AD ,贝U ABC 的面积的最大值是 _______ .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系, 则A ( 1,0), B (1,0), 由BD CD,BC .、2AD 知,AD 2BD , D 的轨迹为阿波罗尼斯圆,方程为 (x 3)2 y 2 8,设C(x,y) , BC 的中点为D 得D (号,舟),所以点C 的轨迹方程为 (宁 32(y)2 8,即(x 5)2y 2 32 ,1 ____________ — —•S ABC22y y v ;32 ^'2,故S ABC的最大值是".例2在平面直角坐标系 xOy 中,设点A(1,0), B(3,0), C(0, a), D(0,a 2),若存在点P ,使得PA 2PB, PC PD ,则实数a 的取值范围是 __________________ .解:设 P(x,y),则,(x 1)2 y 22 , (x 3)2 y 2 ,整理得(x 5)2 y 2 8,即动点P 在以(5,0)为圆心,2,2为半径的圆上运动. 另一方面,由PC PD 知动点P 在线段CD 的垂直平分线y a 1上运动,因而问 题就转化为直线 y a 1与圆(x 5)2 y 28有交点,所以a 1 2^2,故实数a 的取值范围是[2^2 1,242 1].例3在平面直角坐标系 xOy 中,点A 0,3,直线I : y 2x 4.设圆的半径为1 , 圆心在丨上. 若圆C 上存在点M ,使MA 2MO ,求圆心C 的横坐标a 的取值范围•2 2x 0 y 。
高中数学专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球
![高中数学专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球](https://img.taocdn.com/s3/m/f9c67acb951ea76e58fafab069dc5022aaea4623.png)
专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球 【微点综述】对于立体几何某些涉及距离比值的动点轨迹问题,可转化为在某个平面内的距离关系,从而借助阿波罗尼斯球和阿波罗尼斯圆的定义及相关知识解决问题.对于这类问题也可以利用空间坐标计算求解轨迹问题. 【典例刨析】例1.(2022贵州贵阳·模拟)1.在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB ,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .152.如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P满足BP .若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.3.已知正方体1111ABCD A B C D -的棱长为4,点P 在平面11A BCD 内,且3PA PB =,则点P 的轨迹的长度为___________.4.古希腊数学家阿波罗尼斯发现:平面上到两定点A 、B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为______;若E 是CD 的中点,且满足APB EPD ∠=∠,则三棱锥P ACD -体积的最大值是______.阿波罗尼奥斯例5.(2022·湖南怀化·高二期末)5.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 的距离之比为常数()0,1λλλ>≠的点的轨迹是—个圆心在直线AB 上的圆.该圆被称为阿氏圆,如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =,若点P 在平面ABCD 内运动,则点P 对应的轨迹的面积是___________;F 为11C D 的中点,则三棱锥1P B CF -体积的最小值为___________.6.棱长为36的正四面体ABCD 的外接球与内切球的半径之和为______,内切球球面上有一动点M ,则13MB MC +的最小值为______.【针对训练】7.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线8.如图,已知平面αβ⊥,l αβ=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D--的余弦值的最小值是( )A B C .12D .1(2022·山西太原·二模(理))9.已知点M 是棱长为3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为线段11B C 上一点,112NC B N =,DM BN ⊥,则动点M 运动路线的长度为( )A BC D (2022天津西青区杨柳青一中高二期中)10.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P所形成的阿氏圆的半径为___________;若E 是CD 的中点,且正方体的表面11ADD A (包括边界)上的动点F 满足条件APB EPD ∠=∠,则三棱锥F ACD -体积的最大值是__________.11.已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BB C C 内的动点,且2PA PB =,则点P 所形成的轨迹图形长度为_______________. (2022江西上饶·二模(理))12.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112NB NC =,DM BN ⊥,若球O 的体积为36π,则动点M 的轨迹长度为___________.13.已知在棱长为12的正四面体ABCD 的内切球球面上有一动点P ,则PA 的最小值为______,13PA PB+的最小值为______.专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球 【微点综述】对于立体几何某些涉及距离比值的动点轨迹问题,可转化为在某个平面内的距离关系,从而借助阿波罗尼斯球和阿波罗尼斯圆的定义及相关知识解决问题.对于这类问题也可以利用空间坐标计算求解轨迹问题. 【典例刨析】例1.(2022贵州贵阳·模拟)1.在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB ,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA ,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .152.如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P满足BP .若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.3.已知正方体1111ABCD A B C D -的棱长为4,点P 在平面11A BCD 内,且3PA PB =,则点P 的轨迹的长度为___________.4.古希腊数学家阿波罗尼斯发现:平面上到两定点A 、B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为______;若E 是CD 的中点,且满足APB EPD ∠=∠,则三棱锥P ACD -体积的最大值是______.阿波罗尼奥斯例5.(2022·湖南怀化·高二期末)5.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 的距离之比为常数()0,1λλλ>≠的点的轨迹是—个圆心在直线AB 上的圆.该圆被称为阿氏圆,如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =,若点P 在平面ABCD 内运动,则点P 对应的轨迹的面积是___________;F 为11C D 的中点,则三棱锥1P B CF -体积的最小值为___________.6.棱长为36的正四面体ABCD 的外接球与内切球的半径之和为______,内切球球面上有一动点M ,则13MB MC +的最小值为______.【针对训练】7.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线 8.如图,已知平面αβ⊥,l αβ=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A B C .12D .1(2022·山西太原·二模(理))9.已知点M 是棱长为3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为A BC D (2022天津西青区杨柳青一中高二期中)10.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为___________;若E 是CD 的中点,且正方体的表面11ADD A (包括边界)上的动点F 满足条件APB EPD ∠=∠,则三棱锥F ACD -体积的最大值是__________.11.已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BB C C 内的动点,且2PA PB =,则点P 所形成的轨迹图形长度为_______________. (2022江西上饶·二模(理))12.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112NB NC =,DM BN ⊥,若球O 的体积为36π,则动点M 的轨迹长度为___________.13.已知在棱长为12的正四面体ABCD 的内切球球面上有一动点P ,则PA 的最小值为______,13PA PB +的最小值为______.参考答案:1.D【分析】在平面P AB 中,作MPN MAP ∠=∠,交AB 于点N ,从而得到PNMANP ,判断出B 、N 重合,得到点P 落在以B12V V ,,即可求出12V V . 【详解】如图,在平面P AB 中,作MPN MAP ∠=∠,交AB 于点N ,则MPN NAP ∠=∠, 又因PNM ANP ∠=∠,所以PNM ANP ,所以PN AN PA MN PN MP ===,AN MN ==,所以AM AN MN =-=. 因为112AM AB ==,所以1PN MN =, 所以B 、N重合且BP PN ==所以点P 落在以B. 作BH AC ⊥于H,则2BH AB =因为1AA ⊥面ABC ,所以1AA ⊥BH , 又因为1AA AC A =,所以BH ⊥面11AA CC ,所以B 到面11AA CC的距离为BH BP , 所以球面与面11AA CC相切,而1BB = 所以球面不会与面111A B C 相交, 则31142833V BP π==, 111=2222V AB BC AA ⨯⨯⨯=⨯⨯=三棱柱,所以21V V V=-=三棱柱,所以12VV=15.故选:D.【点睛】立体几何中的动点轨迹问题一般有四种,即线段型,平面型,二次曲线型,球型,有两种处理方法:(1)很容易的看出动点符合什么样的轨迹(定义法);(2)要么通过计算(建系)求出具体的轨迹表达式.2.94##2.25【分析】建立空间直角坐标系,由两点间距离公式化简后得轨迹方程,再由空间向量表示点到平面的距离公式求解最值【详解】以AB为x轴,AD为y轴,1AA为z轴,建立如图所示的坐标系,在平面直角坐标系xAy中,(6,0),(2,0),B E设(,)P x y,由BP得2222(6)3[(2)]x y x y-+=-+,所以22+12x y=,所以若点P在平面ABCD内运动,则点P所形成的阿氏圆的半径为若点P在长方体1111ABCD A B C D-内部运动,设点(,,)P x y z,由BP得222222(6)3[(2)z]x y z x y-++=-++,所以222++12x y z=,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C所以11(3,3,0),(0,3,3),FB BC=-=-设平面1B CF的法向量为000(,,)n x y z=r,所以100100·330,(1,1,1)·330n FB x ynn B C y z⎧=-=⎪∴=⎨=-=⎪⎩,由题得(6,3,z)CP x y=--,所以点P到平面1B CF的距离为|||||CP n xhn⋅+==因为2222222(++)(111)(),66x y z x y zx y z++≥++∴-≤++≤,所以minh==M为CP的中点,所以点M到平面1BCF由题得1B CF△=所以三棱锥1M B CF -的体积的最小值为(21934.故答案为:943 【分析】若E 为1AB 与1A B 的交点,由正方体的性质可证AE ⊥面11A BCD ,在Rt △AEP 中有222AE PE AP +=可得228PE AP +=,再在面11A BCD 上构建平面直角坐标系,并写出各点坐标且令00(,)P x y ,结合已知条件列方程,即可得P 的轨迹,进而求轨迹长度.【详解】若E 为1AB 与1A B 的交点,则1AE A B ⊥, ∵BC ⊥面11AA B B ,AE ⊂面11AA B B , ∴AE BC ⊥,又1A B BC B =I , ∴AE ⊥面11A BCD ,∴连接PE ,即在Rt △AEP 中有222AE PE AP +=,又正方体1111ABCD A B C D -的棱长为4, ∴228PE AP +=在面11A BCD 上构建如下平面直角坐标系,若00(,)P x y ,11(0,0),(0,4),A B C D E ,∴22200(PE x y =-+,22200(PB x y =-+,∴222200816AP PE x y =+=-++,又3PA PB =,∴2222000000169(32)x y x y -++=-++,整理得22000340x y ++=,∴220017(48x y -+=,故轨迹为半径r =的圆,∴轨迹长度为2r π=【点睛】关键点点睛:应用正方体的性质及勾股定理得228PE AP +=,再在面11A BCD 上构建平面直角坐标系,设00(,)P x y 结合已知条件可得方程,整理即有P 的轨迹方程.4.43【解析】在AD 上取点M ,在AD 延长线上取点N ,使得2MA MD =,2NA ND =,则,M N 是题中阿氏圆上的点,则MN 是阿氏圆的直径,由此可求得半径,由APB EPD ∠=∠可得Rt PDERt PAB △△,2PA ABPD DE==,即P 在上述阿氏圆上,这样当P 是阿氏圆与1DD 交点Q 时,P 到平面ACD 距离最大,三棱锥P ACD -体积的最大,由体积公式计算可得.【详解】在AD 上取点M ,在AD 延长线上取点N ,使得2MA MD =,2NA ND =,则,M N 是题中阿氏圆上的点,由题意MN 是阿氏圆的直径, 2AD =,则23MD =,2DN =,所以28233MN =+=,∴阿氏圆半径为423MN =; 正方体中AB ,CD 都与侧面11ADD A 垂直,从而与侧面11ADD A 内的直线,PA PD 垂直,如图APB EPD ∠=∠,则Rt PDE Rt PAB △△,∴2PA ABPD DE==,即P 在上述阿氏圆上, ∵ACD △的面积是2为定值,因此只要P 到平面ACD 距离最大,则三棱锥P ACD -体积的最大,由于P 点在阿氏圆上,当P 是阿氏圆与1DD 交点Q 时,P 到平面ACD 距离最大,此时2QA QD =2=,QD =,三棱锥P ACD -体积的最大值为123V =⨯=.故答案为:43【点睛】关键点点睛:本题考查棱锥的体积,考查新定义的理解与应用.解题关键是正确理解新定义得出圆半径,由已知角相等得出P 点就在新定义“阿氏圆”上,从而易得它到底面距离最大时的位置,从而得出最大体积.5. 12π272-【分析】建立空间直角坐标系,根据BP =,可得P 对应的轨迹方程;先求1B CF △的面积,其是固定值,要使体积最小,只需求点P 到平面1B CF 的距离的最小值即可. 【详解】分别以1,,AB AD AA 为,,x y z 轴建系,设(),,0P x y ,而(6,0,0)B ,(2,0,0)E ,1(6,0,3)B ,(6,3,0)C ,(3,3,3)F .由BP =,=化简得P 对应的轨迹方程为2212x y +=.所以点P对应的轨迹的面积是212ππ⋅=. 易得1B CF △的三个边11B C B F CF ===即1B CF △是边长为为, 1(0,3,3),(3,0,3)CB CF =-=-,设平面1B CF 的一个法向量为(),,n x y z =,则有330330y z x z -+=⎧⎨-+=⎩,可取平面1B CF 的一个法向量为()1,1,1n =,根据点P的轨迹,可设,0)P θθ,()23,0,CP θθ∴=--239CP n θθ∴⋅=+-,所以点P 到平面1B CF的距离26CP n d n⋅==≥,所以1133V Sh Sd ==≥272- 故答案为:12π;272- 6. 【分析】(1)将正四面体ABCD放入正方体可求得外接球半径,利用等体积法可求得内切球的半径.(2)根据阿波罗尼斯球的性质找到阿波罗尼斯球中的两个定点,再将13MC 转换,从而得出13MB MC +取最小值时的线段,再根据余弦定理求解即可.【详解】(1) 将正四面体ABCD 放入如图正方体,则正四面体ABCD 的外接球与该正方体的外接球为同一球.=设正四面体ABCD的内切球半径为r,根据等体积法有3321114436323r-⨯⨯⨯=⨯,解得r=故外接球与内切球的半径之和为=(2)由阿波罗尼斯球得内切球球心O是线段CH上以,C E为定点,空间中满足()1PCPEλλ=≠的点P的集合,连接CO并延长交平面ABD于H,交内切球上方的点设为K,过M作ME CH⊥,交CH于E,连接,BM CM,设OE x=.由(1)空得CO OH==KC HCKE HE=.=,解得x3KCKEλ==,所以3MCME=,所以13MC ME=.所以13MB MC MB ME BE+=+≥,在BOE△中,BO CO==OE=1cos cos3BOE BOH∠=-∠=-,所以BE==所以13MB MC+的最小值为故答案为:(1)(2)【点睛】本题主要考查了正四面体外接球与内切球的半径计算,同时也考查了利用阿波罗尼斯球中的比例关系求解线段最值的问题,需要根据题意找到球中的定点,根据阿波罗尼斯球的性质转换所求的线段之和求解.属于难题. 7.B【解析】当1λ=时,BC AC =,故C 的轨迹为线段AB 的中垂面与α的交线,当2λ=时,2BC AC =,在平面α内建立坐标系,设(,)C x y ,求出C 的轨迹方程得出结论.【详解】在ABC ∆中,∵sin sin (0)CAB CBA λλ∠=∠>,由正弦定理可得:BCACλ=, 当1λ=时,BC AC =,过AB 的中点作线段AB 的垂面β, 则点C 在α与β的交线上,即点C 的轨迹是一条直线, 当2λ=时,2BC AC =,设B 在平面α内的射影为D ,连接BD ,CD ,设BD h =,2AD a =,则BC = 在平面α内,以AD 所在直线为x 轴,以AD 的中点为y 轴建立平面直角坐标系,设(,)C x y ,则CA =CD CB ==2222516393a h x a y ⎛⎫++=+ ⎪⎝⎭.∴C 的轨迹是圆. 故选B .【点睛】本题考查轨迹方程的求解与判断,分类讨论思想,属于中档题. 8.B【分析】根据题目条件得到2PB PA =,进而建立平面直角坐标系,求出P 点轨迹方程,点P 在α内的轨迹为以()5,0M -为圆心,以4为半径的上半圆,从而求出当PB 与圆相切时,二面角的平面角PBA ∠最大,求出相应的余弦值最小值.【详解】由题意易得PD 与平面α所成角为DPA ∠,PC 与平面α所成角为CPB ∠, ∵DPA CPB ∠=∠, ∴tan tan DPA CPB ∠=∠, ∴AD BCPA PB=, ∴2PB PA =, ∴P 点轨迹为阿氏圆.在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴,建立平面直角坐标系,则()(),3,03,0A B -,设(),,0P x y y >,=整理得:()22516x y ++=,所以点P 在α内的轨迹为以()5,0M -为圆心,以4为半径的上半圆, 因为平面αβ⊥,l αβ=,CB l ⊥,CB β⊂,所以CB α⊥, 因为PB α⊂, 所以CB PB ⊥,因为平面PBC 平面BC β=,CB l ⊥, 所以二面角P BC D --的平面角为PBA ∠,由图可知,当PB 与圆相切时,PBA ∠最大,余弦值最小, 此时41sin 82MP PBA MB ∠===,故cos PBA ∠==故选:B . 9.B【分析】根据给定条件探求出过点D 垂直于直线BN 的平面,可得此平面截球O 的截面小圆即为M 的运动路线,求出点O 到此截面距离即可计算作答.【详解】在正方体1111ABCD A B C D -中,在BB 1上取点P ,使B 1P =2BP ,连接CP ,DP ,如图,因N 在B 1C 上,有112NC B N =,即1113NB PB BC B B==,则1R t R t C B P B BN,1CPB BNB ∠=∠,于是得BN CP ⊥,而CD ⊥平面BCC 1B 1,BN ⊂平面BCC 1B 1,则BN CD ⊥,又CD CP C ⋂=,,CD CP ⊂平面CDP ,则有BN ⊥平面CDP ,因动点M 满足DM BN ⊥,则有点M 在平面CDP 内,依题意,平面CDP 截球O 的截面小圆即为M 的运动路线,令正方形BCC 1B 1与正方形ADD 1A 1的中心分别为E ,F ,连接EF ,则正方体内切球球心O必为线段EF 中点,显然,EF //CD ,EF ⊄平面CDP ,CD ⊂平面CDP ,于是得EF //平面CDP ,则点O 到平面CDP 距离等于点E 到平面CDP 的距离h ,取BC 中点G ,连接EG ,CE ,PE ,而平面CDP ⊥平面BCC 1B 1,平面CDP 平面BCC 1B 1=CP ,则ECP △的边CP 上的高等于h ,EG ⊥BC ,32EG GC ==,则CE =BGEP 中,31,2BP BG ==,则EP =,ECP △中,CP =由余弦定理得222cos 2EP CE CP CEP EP CE +-∠==⋅,sin CEP ∠=由11sin 22CEPSCP h CE EP CEP =⋅=⋅∠得:h =设点M 运动路线的小圆半径为r ,而球O 的半径32R =,由222r h R +=得r =2r π=所以动点M . 故选:B10.43【分析】根据题意以D 为坐标原点,DA 为x 轴建立平面直角坐标系,设P (x ,y ),利用P A =2PD ,求出点P 的轨迹方程,即可得到点P 所形成的阿氏圆的半径,利用tan ∠APB =ABAP,tan ∠DPE =DEDP,结合已知条件∠APB =∠EPD ,从而得到AP =2DP ,结合图像利用1空中的结论求解DP 3即为三棱锥P ﹣ACD 最大的高,然后利用三棱锥的体积公式求解即可. 【详解】以D 为坐标原点,DA 为x 轴建立如图所示的平面直角坐标系, 则A (2,0),D (0,0),设P (x ,y ),因为P A =2PD ,整理得22224()()33x y ++=,故点P 所形成的阿氏圆的半径为43;因为AB ⊥平面ADD 1A 1,CD ⊥平面ADD 1A 1, 所以∠P AB =90°,∠PDE =90°,所以tan ∠APB =AB AP,tan ∠DPE =DEDP , 又∠APB =∠DPE ,则AB AP =DEDP, 因为E 是CD 的中点,所以AP =2DP ,由1空的结论可知,点P 的轨迹为22224()()33x y ++=的一部分,则当P 在DD 1上时,三棱锥P ﹣ACD 的体积最大, 图2中的DP 3即为三棱锥P ﹣ACD 最大的高,所以33DP ==,则三棱锥P ﹣ACD 体积的最大值是311122332ACDSDP ⋅⋅=⨯⨯⨯=故答案为:4311【分析】由题意,建立空间直角坐标系,根据两点距离公式,结合线段等量关系,整理轨迹方程,可得答案.【详解】解:以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()1,0,0A ,()1,1,0.B P 为侧面11BB C C 内的动点,P ∴的纵坐标为1,设(),1,P x z ,则PA PB =2,PA PB ==化简整理得()22113x z -+=,当1y =时,该方程表示在平面11B BCC 内,以点B∴点P 所形成的轨迹图形为图中EF ,其长度为:124EF π==.12 【分析】在1BB 取点P ,使12B P P B =,证明BN ⊥平面DCP ,从而得点M 的轨迹为平面DCP与球O 的截面圆周,因此求出球半径和球心到截面的距离,然后利用截面圆性质可得球面圆半径后可得其周长.题中球心到截面的距离利用体积法求解.球O 半径利用球的体积公式计算可得.【详解】解:如图,在1BB 取点P ,使12BP PB =,连接CP ,DP ,BN ,因为112NC NB =,可得1BCP B BN ≅△△,则1BCP B BN ∠=∠,所以190NBC BCP NBC NBB ∠+∠=∠+∠=︒所以BN CP ⊥,又DC ⊥平面11BCC B ,BN ⊂平面11BCC B ,所以DC BN ⊥,同理DC CP ⊥,因为DC CP C =,,DC CP ⊂平面DCP ,所以BN ⊥平面DCP ,则点M 的轨迹为平面DCP 与球O 的截面圆周,设正方体的棱长为a ,则343632a ππ⎛⎫⋅= ⎪⎝⎭,解得6a =,连接OD ,OP ,OC , 如图,在对角面11BDD B 中,1111211622332ODP B DP SBB S S S ==⨯=⨯⨯=△△△C 到平面ODP 的距离即C 到平面11DBBD = 1123C ODP V -=⨯=,又CP ==162DCP S =⨯=△O 到平面DCP 的距离为h ,则O DPC C DPO V V --=,h ==,得O 到平面DCP所以截面圆的半径r ==则点M 的轨迹长度为2π=,.【点睛】关键点点睛:本题考查空间的几何体中的轨迹问题,解题关系是确定BN ⊥平面DCP ,得点M 的轨迹为平面DCP 与球O 的截面圆周,为了求截面圆半径,需求得球半径和球心到截面的距离,这个距离我们利用体积法求解.13. 【解析】求出正四面体的高,进一步得到内切球的半径,由高减去内切球的直径得PA 的最小值;利用阿波罗尼斯球的定义,借助内切球的比例关系求得3BP BE =,转化后求最小值即可.【详解】设正四面体ABCD 的高为h ,每一个面的面积为S ,其内切球的半径为r , 则由等积法可得,11433Sh Sr =,即14r h =. 设内切球球心为O ,连结BO 并延长交平面ACD 于H ,交内切球上方的点设为K ,过P 作PE BH ⊥,交BH 于E ,连结BP ,AP ,如图,则在正三角形中2123AH ==∴BH∴正四面体内切球的半径1144r h BH ==则BP 的最小值为BK=AP的最小值为根据阿波罗尼斯球知,内切球是线段BH 上以B ,E 为定点,空间中满足(1)PB PE λλ=≠的点P 的集合,设OE x =,因为34BO =⨯OH KB HB KE HE =,∴=x =,3KB KE λ∴===, ∴3PB PE =,∴13PB PE =, 13PA PB PA PE AE ∴+=+…, 在AOE △中,BO AO ==OE =,1cos cos 3OH AOE AOH AO ∠=-∠=-==-,AE ∴= ∴13PA PB +故答案为:【点睛】关键点点睛:本题解题的关键点在于,根据阿波罗尼斯球定义利用比例关系求得3BP BE =,可将13PA PB +转化为PA PE +,利用平面几何性质知PA PE +最小值为AE ,由余弦定理求解即可,属于难题.。
专题阿氏圆——精选推荐
![专题阿氏圆——精选推荐](https://img.taocdn.com/s3/m/c58cd321f011f18583d049649b6648d7c1c7081d.png)
专题阿氏圆定义平面内到两个定点,A B 的距离之比为定值()1≠K K 的点的轨迹是圆证明:令B 为坐标原点,A 的坐标为(a,0).则动点P(x,y)1.(2017·武汉六校联考)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果击中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:221x y +=和点1(,0)2A -,点(1,1)B ,M 为圆O 上动点,则2||||MA MB +的最小值为()A .6B .7C .10D .112.(2020·肥城市第一高级中学高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB =满足.设点P 的轨迹为C ,下列结论正确的是()A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE =C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA =3.(2020·浙江省温岭中学高三一模)已知()2,0A -,()2,0B ,动点M 满足2MA MB =,则点M 的轨迹方程是___________;又若0MA MB ⋅=,此时MAB △的面积为___________.4.(2019·湖北省孝感高中高二月考)公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆.已知直角坐标系中(2,0),(2,0)A B -,则满足||2||PA PB =的点P 的轨迹的圆心为____________,面积为____________.5.(2020·湖南省高三期末(文))阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上一点P 到两定点,A B 的距离之满足||(01)||PA t t t PB =>≠且为常数,则P 点的轨迹为圆.已知圆O :221x y +=和1(,0)2A -,若定点(,0)B b (12b ≠-)和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则=λ_________,=b ___________.5.(2019·浙江省高二期末)公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点(00)O ,,(30)A ,的距离之比为12的动点M 轨迹方程是:22230x y x ++-=”,则该“阿氏圆”的圆心坐标是______,半径是_____.6.(2020·江西省高二期末(文))阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A B 、间的距离为2,动点P 满足3PA PB=,当,,P A B 不共线时,三角形PAB 面积的最大值是_______________.8.(2019·安徽省高二月考(理))若平面内动点P 到两定点,A B 的距离之比||||PA PB λ=(其中λ为常数,0,1λλ>≠),则动点P 的轨迹为圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现的,故称作阿波罗尼斯圆.若已知(1,0),(1,0),2A B λ-=,则此阿波罗尼斯圆的方程为_____.9.(2020·福建省高三月考(理))波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且0k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有ABC ∆,4,sin 2sin AC C A ==,则当ABC ∆的面积最大时,AC 边上的高为_______________.10.(2020·湖北襄阳四中高二期末)一动点到两定点距离的比值为非零常数λ,当1λ≠时,动点的轨迹为圆,后世称之为阿波罗尼斯圆已知两定点A 、B 的坐标分别为:()4,0A 、()10B ,,动点M 满足2AM BM =.(1)求动点M 的阿波罗尼斯圆的方程;(2)过()2,3P 作该圆的切线l ,求l 的方程.11.(2019·湖北省高二期中)阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点0,0,()()3,0O A ,动点P 满足12PO PA =.(1)求点P 的轨迹方程;(2)求22PO PA +的最大值.12.(2018·黑龙江省高一期末)平面内动点P 到两定点A ,B 距离之比为常数(0,1)λλλ>≠,则动点P 的轨迹叫做阿波罗尼斯圆.现已知定点()0,0A 、()6,0B -,圆心为C ,(1)求满足上述定义的圆C 的方程,并指出圆心C 的坐标和半径;(2)若12λ=,且经过点()4,2Q 的直线l 交圆C 于M ,N 两点,当CMN ∆的面积最大时,求直线l 的方程.7专题阿氏圆参考答案1.C2.BC3.223320120x y x +-+=;165.4.10,03⎛⎫ ⎪⎝⎭649π5.2λ=2b =-6.(1,0)-27.348.2210103x y x +-+=9.8310.(1)224x y +=;(2)2x =或12590x y -+=.11.(1)22(1)4x y ++=;(2)45.12.(2)60x y +-=.。
完整版阿氏圆
![完整版阿氏圆](https://img.taocdn.com/s3/m/150906800b4c2e3f572763c8.png)
中考数学压轴之阿氏圆模型专题训练阿氏圆(阿波罗尼斯圆):已知平面上两定点一 B ,则所有满足PC k ( k 不等于1)的点P 的轨迹是一个圆,这个轨迹PB最先由古希腊数学家阿波罗尼斯发现, 故称阿氏圆。
在初中的题目中往往利用逆向思维构造" 斜A"型相似(也叫"母子型相似")+两点间线段最短解决带系数两线段之和的最值问题。
在几何画板上观察下面的图形,当 P 在在圆A 上运动时,PC PB 的长在不断的发生变化,但 PC 的比值却始终保持不变。
PB解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
如图,在△ APB 的边AB 上找一点C,使得AP AC ,贝吐匕时厶APS A ABPAB AP母子型相似(共角共边)A -C⑤计算AC 的长度即为最小值.②计算0P 的值,则k 0P 丄 OB OB 2的线段BP 的两端点, 半径 "圆心到定点的距离 OC ③计算OC 的长度,由一一k 得:OCOP④ 连接AC ,当A 、P 、C 三点共线时, 1OP (相似比X 半径)AP 1 -BP AP PC AC 2 那么如何应用"阿氏圆"的性质解答带系数的两条线段和的最小值呢 ?我们来看一道基本题目:①分别连接圆心0与系数不为1 即 OP 0B;实战练习:- 已知O O半径为1, AC BD为切线,AC=1, BD=2试求上2 PC PD的最小值25、(1)如图1,已知正方形ABC的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD -PC 的2、已知点3、已知点(1)-AP4 A(-3,0) , B( 0,3 ), C (1,0 ),若点P为。
C上一动点,且。
C与y轴相切, BP的最小值;(2)S VPAB的最小值.4、如图1,在平面直角坐标系xoy中,半O O交x轴与点A B(2,0)两点,AD BC均为半O O 的切线,AD=2 BC=7.(1)求OD的长;(2)如图2,若点P是半O O上的动点,Q为OD的中点.连接PO PQ.①求证:△OP GA ODP;②是否存在点P,使PD 2PC有最小值,若存在,试求出点P的坐标;若不存在,请说明理由•A(4, 0),B(4最小值和PD - PC的最大值.2 2⑵如图2,已知正方形ABCD勺边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD - PC的最小值为;PD -PC的最大值为3 ----------- 3 --------------(3)如图3,已知菱形ABCD勺边长为4,/ B=60°,圆B的半径为2.点P是圆B上的一个1 1动点.那么PD 1 PC的最小值为;PD 1 PC的最大值为2 26、(2016年*济南28题)如图1,抛物线y = ax2+ (a+ 3)x+ 3 (0)与x轴交于点A (4, 0),与y轴交于点B,在x轴上有一动点E ( m, 0) (0v m v 4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM丄AB于点M.(1)求a的值和直线AB的函数表达式;(2)设厶PMN的周长为AEN的周长为C2,若§ =-,求m的値;C25(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为皿0 ° av 90°),连2接E'A、E'B,求E'A+ ;E B的最小值.x7、(2017年*遵义27题)如图,抛物线y=ax2+bx-a - b (a v 0, a、b为常数)与x轴交于A、C两点,与y轴交于B 点,直线AB的函数关系式为y= 8x + 16.9 3(1)求该抛物线的函数关系式与C点坐标;(2)已知点M( m, 0)是线段OA上的一个动点,过点M作x轴的垂线I分别与直线AB和抛物线交于D、E两点,当m为何值时,△ BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当厶BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M,将OM绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);NPi :探究:线段OB上是否存在定点P( P不与OB重合),无论ON如何旋转,竺始终保持不变,若存在,NB试求出P点坐标;若不存在,请说明理由;ii :试求出此旋转过程中,(NA+?NB的最小值.4。
微专题16 阿波罗尼斯圆问题梳理及其运用
![微专题16 阿波罗尼斯圆问题梳理及其运用](https://img.taocdn.com/s3/m/20feb8597fd5360cba1adb82.png)
在平面直角坐标系 xOy 中,已知圆 C 经过 A(0,2),O(0,0),D(t, 0)(t>0)三点,M 是线段 AD 上的动点,l1,l2 是过点 B(1,0)且互相垂直 的两条直线,其中 l1 交 y 轴于点 E,l2 交圆 C 于 P,Q 两点. (1)若 t=PQ=6,求直线 l2 的方程; (2)若 t 是使 AM≤2BM 恒成立的最小正整数,求三角形 EPQ 的面 积的最小值.
2
2
2
2
串讲 2 已知点 P 是圆 O:x2+y2=25 上任意一点,平面上有两个定点 13 1 M(10,0),N( 2 ,3),则 PN+2PM 的最小值为
5
.
解析: 设 x 轴上一定点 Q(m, 0), 记 PM∶PQ=λ, P(x, y), 由 PM∶PQ =λ 得(x-10)2+y2=λ2[(x-m)2+y2],化简得(λ2-1)x2+(λ2-1)y2+(20 -2mλ2)x+(λ2m2-100)=0,因为 x2+y2=25,所以
2 解析:依题意,PA2=PO2-12,PB2=PO2 - 2 ,因为 PB=2PA,所 1 2 2 2 2 以 PB2=4PA2,所以 PO2 - 4 = 4( PO - 1 ) , 可得 PO = 4 PO ,设 P(x, 1 1
4 2 2 64 y),可得(x-4 )+y =4(x +y )化简得(x+3) +y = 9 .所以满足条件的
2 2 2 2
4 8 点 P 在以(-3,0)为圆心,3为半径的圆上,又因为点 P 在直线 x+ 3y 4 |-3-b| 8 -b=0 上,且恰有两个点,所以直线和圆应该相交,所以 <3, 1+ 3 20 解得- 3 <b<4.
变式 2 已知点 A(-2,0),B(4,0),圆 C:(x+4) +(y+b) =16,点 P PA 是圆 C 上任意一点,若PB为定值,则 b 的值为 0 .
广东省惠州市惠东中学高三数学一轮复习阿波罗尼斯圆专题汇编无答案
![广东省惠州市惠东中学高三数学一轮复习阿波罗尼斯圆专题汇编无答案](https://img.taocdn.com/s3/m/eb07160a81c758f5f71f67b7.png)
广东省惠州市惠东中学高三数学一轮复习阿波罗尼斯圆专题汇编无答案背景展现 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深入而系统的研讨,主要研讨效果集中在他的代表作«圆锥曲线»一书,阿波罗尼斯圆是他的研讨效果之一〔人教A 版124页B 组第3题〕点M 与两个定点O(0,0),A(3,0)点距离的比为12,求点M 的轨迹方程。
〔人教A 版144页B 组第2题〕点M 与两个定点M 1,M 2距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形〔思索m=1和m ≠1两种情形〕。
公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在«平面轨迹»一书中,曾研讨了众多的平面轨迹效果,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.〔定值为1时是直线,定值不是1时为圆〕 定义:普通的平面内到两顶点A ,B 距离之比为常数λ〔λ≠1〕的点的轨迹为圆,此圆称为阿波罗尼斯圆类型一:求轨迹方程1.点M 与两个定点()0,0O ,()0,3A 的距离的比为21,求点M 的轨迹方程 2.()02>=a a AB ,()0≥=λλMB MA,试剖析M 点的轨迹3.〔2021年高考四川卷第6题〕两定点A 〔-2,0〕,B 〔1,0〕,假设动点P 满足条件|PA |=2|PB |,那么点P 的轨迹所包围的图形面积等于〔 〕A .π B. 4π C.8π D.9π类型二:求三角形面积的最值4.〔2021江苏卷〕满足条件AB = 2,AC = 2BC 的∆ABC 的面积的最大值是5.〔2021浙江温州高三模拟〕在等腰△ABC 中,AB=AC ,D 为AC 的中点,BD=3,那么△ABC 面积的最大值为6.在△ABC 中,AC=2,AB=mBC(m>1),恰恰当B=π3时△ABC 面积的最大,m=类型三:定点定值效果7. 圆O :x 2+y 2=9,点B(-5,0),在直线OB 上存在定点A(不同于点B ),满足关于圆O 上恣意一点P ,都有为PA PB 一常数,试求一切满足条件的点A 的坐标,并求PA PB 8.〔2021湖北文科卷17题〕圆O :x 2+y 2=1,点A(-2.0),假定定点B(b,0)(b ≠−2)和常数λ满足:对圆O 上恣意一点M ,都有|MB |=λ|MA |,则b = ,λ=类型四:阿波罗尼斯圆的性质9. 圆C:(x −1)2+(y −1)2=1,定点O (0,0),B (2,0),其中P 为圆C 上的动点,那么√2PO+PB 的最小值为10.函数f (α)=2√(cosα+12)2+sin 2α−√cos 2α+(sinα−12)2,假定集合{α∈R |f (α)>m }≠∅,则实数m 的取值范围为类型五:阿波罗尼斯圆的运用阿波罗尼斯圆与向量〔阿氏圆+等和线〕11.BC =6,AC =2AB ,点D 满足AD ⃗⃗⃗⃗⃗ =2x x+y AB ⃗⃗⃗⃗⃗ +y 2(x+y)AC ⃗⃗⃗⃗⃗ ,设f (x,y )=|AD ⃗⃗⃗⃗⃗ |,假定f (x,y )≥f(x 0,y 0)恒成立,那么f(x 0,y 0)的最大值为12.〔2021.1湖州、衢州、丽水三地市教学质量检测试卷17题〕.设点P 是ABC ∆所在平面内动点,满足CP CA CB λμ=+,3+42λμ=〔,R λμ∈〕,==PA PB PC .假定3AB =,那么ABC ∆的面积最大值是 .阿波罗尼斯圆与三角形13.〔2021.5月宁波模拟16题〕向量a ,b 满足|b |=3,|a |=2|b −a |,假定|a +λb |≥3恒成立,那么实数λ的取值范围为14.〔2021.4月杭州市第二次高考科目教学质量检测17题〕在△ABC 中,∀λ∈R ,|BA ⃗⃗⃗⃗⃗ −λBC ⃗⃗⃗⃗⃗ |≥|BC ⃗⃗⃗⃗⃗ |恒成立,求c b +b c的最大值 15.在ABC ∆中,AD 、BE 区分为中线,假定b a 35=,那么BEAD 的取值范围 .阿波罗尼斯圆与几何体16.〔2021二模〔理〕〕在等腰梯形ABCD 中,E 、F 区分为底边CD AB ,的中点,把四边形AEFD 沿直线EF 折起后所在平面记为α,α∈P ,设PC PB ,与α所成的角区分为1θ,2θ〔1θ,2θ均不为0〕,21θθ=,那么点P 的轨迹为 . A.直线 B.圆 C.椭圆 D.抛物线17.在四面体ABCD 中,BC AD ⊥,6=AD ,2=BC ,且2==CDAC BD AB ,那么BCD A V -的最大值为 .18.〔2021.5月浙江高三五校联考17题〕棱长为36的正四面体ABCD 的内切球上有一个动点M ,那么MB+13MC 的最小值练习:1. 向量3=b ,a b a -=2,假定3≥+b a λ恒成立,那么实数λ的取值范围为 .2. 〔2021湖北文科卷14题〕如图,圆C 与x 轴相切与点()0,1T ,与y 轴正半轴交于两点B A ,〔B 在A 的上方〕,2=AB(1)圆C 的规范方程为 .过点A 任作一条直线与圆1:22=+y x O 相较于N M ,两点,以下三个结论:其中正确结论的序号是 。
阿波罗尼斯圆定理及拓展及解题
![阿波罗尼斯圆定理及拓展及解题](https://img.taocdn.com/s3/m/40ee2fbf915f804d2b16c1c1.png)
图 29 运用方法七同心阿氏圆法绘制阿氏圆 4
题目 5 题解见图 30。
10
60 R50
73
R84 4a
7a
R50 120
R95.68082847
图 30 题目 5 题解
题目 6,点到点的距离与点到圆切 线的长度之比为定比。见图 31。
4a 7a
应用方法九点切距定比法绘制阿 氏圆,见图 32。
运用方法七同心阿氏圆法绘制阿 氏圆,见图 33、图 34。
40
R15
R20
60
图 10 题目 2 点到两圆切线定比
4
绘制阿氏圆的方法五, 定比切线点一对圆法,公切 线定比分点定比切线点三点 圆法。几何原理,到两定圆 切线长度为定比的点在阿氏 圆上,三点定圆。见图 12。
绘制阿氏圆的方法六, 定比切线点两对圆法,定比 切线点三点圆法。几何原理, 到两定圆切线长度为定比的 点在阿氏圆上,三点定圆。 见图 13。
, x2 2ax a2 y2 L2
k 2 x2 2ak 2x a2k 2 k 2 y2 k 2L2
k 2 1 x2 y2 2ak 2x a2k 2 0
此公式为圆方程式,证明了动点到两定点距离定比的轨迹是一个圆。
令 y 0 ,求 C 点 D 点的 x 坐标:
k 2 1 x2 2ak 2x a2k 2 0
图 28 扩展 3 扩展——同心阿氏圆
从前面的点点阿氏圆圆 心公式、圆圆阿氏圆圆心公 式和点圆阿氏圆圆心公式, 可以得知同比例的三个阿氏 圆圆心为同一个点,圆心的 x 坐标相同:
xQ
ak 2 k2 1
a
a k2 1
40
70
R50
R118.18181818
压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练
![压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练](https://img.taocdn.com/s3/m/91e01bb5bdeb19e8b8f67c1cfad6195f312be838.png)
压轴题07阿波罗尼斯圆问题在近几年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,下面我们通过一例高考题,讲解如何运用阿波罗尼斯圆进一步加强对与此圆与关试题的认识。
背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.如图,点B A ,为两定点,动点P 满足PB P A λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设PB P A m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B .又设),(y x C ,则由PB P A λ=得:2222)()(y m x ym x +-=++λ,两边平方并化简整理得:)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=+-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,以122-λλm 长为半径的圆.○热○点○题○型隐形的阿波罗尼斯圆典型例题例1、如图,圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点,A B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③NB MANAMB+=其中正确结论的序号是.(写出所有正确结论的序号)解析:(Ⅰ)易知半径r=()(2212x y-+-=;(Ⅱ)方法一:因为圆心)2,1(C,)2,0(E∴又因为2AB=,且E为AB中点,所以()()1,1A B因为,M N在圆22:1O x y+=上,可设)sin,(cosααM,)sin,(cosββN所以:22)]12([sin)0(cos--+-=ββNA所以:12)sin2)(12(2)sin2)(12(2-=-+--=ββNBNA,同理:12-=MBMA,所以:NA MANB MB=1-2=,①正确;2)12(121-=---=MBMANANB,②正确22)12(121=-+-=+MBMANANB,③正确所以:①、②、③正确方法一可以改进为:设(),P x y为圆C上任意一点,则有:12)12(2224)12(2224)12()12(2222-=+-+---=--++-+=yy y x y x PBP A ,①正确;同理2)12()12(-=--+=MBMA NA NB,②正确;22)12()12(=-++=+MBMA NANB ,③正确.这里的第(Ⅰ)问并不很难,只要考生有一定平面几何基础既能轻易解出.但第(Ⅱ)问有难度.这是因为当圆O 的弦MN 绕定点A 旋转时,各有关线段的长度都在变化,从而相应线段的比值也就难于确定,方法一运算量较大。
专题12 二次函数-阿氏圆求最小值(原卷版)
![专题12 二次函数-阿氏圆求最小值(原卷版)](https://img.taocdn.com/s3/m/ce74e840cd7931b765ce0508763231126edb770e.png)
第十二讲二次函数--阿氏圆求最值必备知识点点P 在直线上运动的类型称之为“胡不归”问题;点 P 在圆周上运动的类型称之为“阿氏圆”问题,“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点 A、B,则所有满足 PA=k·PB(k≠1)的点 P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
如图 1 所示,⊙O 的半径为 r,点 A、B 都在⊙O 外,P 为⊙O 上一动点,已知 r=k·OB,连接 PA、PB,则当“PA+k·PB”的值最小时,P 点的位置如何确定?如图2,在线段 OB 上截取 OC 使 OC=k·r,则可说明△BPO 与△PCO 相似,即 k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与 A 与 C 为定点,P 为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。
如图3所示:知识导航【破解策略详细步骤解析】例题演练1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.2.如图,抛物线y=﹣x2+bx+c经过点A(﹣4,﹣4),B(0,4),直线AC的解析式为y=﹣x ﹣6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=﹣x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求AM+CM 的最小值.3.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ的最小值.4.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q 是⊙H上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.5.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.6.在平面直角坐标系中,抛物线y=x2﹣2mx+m2+m的顶点为C,(1)求点C的坐标(用含m的代数式表示);(2)如图,当m=0时,直线y=x+2与抛物线交于A、B两点,点A,点B分别在抛物线的对称轴左右两侧;①抛物线的对称轴与直线AB交于点M,点G(1,3),在直线AB上,作B点关于直线MC的对称点B′,以M为圆心,MC为半径作圆,动点Q在圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律;②直接写出B′Q+QB的最小值.7.如图,已知点A(﹣4,0),点B(﹣2,﹣1),直线y=2x+b过点B,交y轴于点C,抛物线y=ax2+x+c经过点A,C.(1)求抛物线的解析式;(2)D为直线AC上方的抛物线上一点,且tan∠ACD=,求点D的坐标;(3)平面内任意一点P,与点O距离始终为2,连接P A,PC.直接写出P A+PC的最小值.8.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;(3)在(2)的结论下,连接CM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、C、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(4)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′A、N′B,求N′A+N′B的最小值.9.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C上的一个动点,求BQ+FQ的最小值.10.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿波罗尼斯圆性质及其应用
背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一
(人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比为,求点M 的轨迹方程。
(人教A 版144页B 组第2题)已知点M 与两个定点
距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形(考虑m=1和m )。
公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆)
定义:一般的平面内到两顶点A ,B 距离之比为常数(
)的点的轨迹为圆,此圆称为阿波罗尼斯圆
类型一:求轨迹方程
1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为21,求点M 的轨迹方程
2.已知()02>=a a AB ,()0≥=λλMB MA
,试分析M 点的轨迹
3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件
,则点P 的轨迹所包围的图形面积等于( ) A . B. C. D.9
类型二:求三角形面积的最值
4.(2008江苏卷)满足条件AB = 2,AC =
BC 的∆ABC 的面积的最大值是 5.(2011浙江温州高三模拟)在等腰
ABC 中,AB=AC ,D 为AC 的中点,BD=3,则
ABC 面积的最大值为 6.在ABC 中,AC=2,AB=mBC(m>1),恰好当B=时
ABC 面积的最大,m=
类型三:定点定值问题
7. 已知圆O :,点B(-5,0),在直线OB 上存在定点A(不同于点B ),满足
对于圆O 上任意一点P ,都有
为一常数,试求所有满足条件的点A 的坐标,并求
8.(2014湖北文科卷17题)已知圆O :
,点A(-2.0),若定点B(b,0)(b )和常数:对圆O 上任意一点M ,都有= , 类型四:阿波罗尼斯圆的性质
9. 已知圆C:
其中P 为圆C 上的动点,则PO+PB 的最小值为 10.已知函数=2
,若集合
类型五:阿波罗尼斯圆的应用 阿波罗尼斯圆与向量(阿氏圆+等和线)
11.已知
+,设,若恒成立,则的最大值为
12.(2018.1湖州、衢州、丽水三地市教学质量检测试卷17题).设点P 是ABC ∆所在平面内动点,满足CP CA CB λμ=+,3+42λμ=(,R λμ∈),
==PA PB PC .若3AB =,则ABC ∆的面积最大值是 .
阿波罗尼斯圆与三角形
13.(2018.5月宁波模拟16题)已知向量a ,b 满足
,若
恒成立,则实数的取值范围为
14.(2018.4月杭州市第二次高考科目教学质量检测17题)在
ABC 中,恒成立,求的最大值 15.在ABC ∆中,AD 、BE 分别为中线,若b a 35=,则
BE
AD 的取值范围 .
阿波罗尼斯圆与几何体
16.(2014二模(理))在等腰梯形ABCD 中,E 、F 分别为底边CD AB ,的中点,把四边形AEFD 沿直线EF 折起后所在平面记为α,α∈P ,设PC PB ,与α所成的角分别为1θ,2θ(1θ,2θ均不为0),21θθ=,则点P 的轨迹为 .
A.直线
B.圆
C.椭圆
D.抛物线
17.在四面体ABCD 中,已知BC AD ⊥,6=AD ,2=BC ,且
2==CD
AC BD AB ,则BCD A V -的最大值为 . 18.(2018.5月浙江高三五校联考17题)棱长为36的正四面体ABCD 的内切球上有一个动点M ,则MB+
的最小值 练习:
1. 已知向量3=b a b a =23≥b a 恒成立,则实数λ的取值范围为 .
2. (2015湖北理科卷14题)如图,圆C 与x 轴相切与点()0,1T ,与y 轴正半轴交于两点B A ,(B 在A 的上方),2=AB
(1)圆C 的标准方程为 .
过点A 任作一条直线与圆1:22=+y x O 相较于N M ,两
点,下列三个结论:
①MB MA NB NA =;②2=-MB MA NA NB ;③22=+MB
MA NA NB 其中正确结论的序号是 。
(写出所有正确结
论的序号)
3. BC S '∆为等腰直角三角形, 90='∠CB S ,26='S B ,A 为S B '中点,将BC S '∆沿AC 翻折到SBC ∆位置,且B AC S --为直二面角,P 为空间中一个动点.
(1)若SBC P 面∈,且2=PC
PB ,求PBC ∆面积的最大值; (2)P 在三棱锥ABC S -表面上,E 为BC 中点,M 、N 为线段SE 两个三等分点,H 、G 为空间中的两个动点,
2==GN GM HN HM ,且334=HG ,求PH PG ⋅的最小值。
S。