幻方最优填法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何填幻方
幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。
数学上已经证明,对于n>2,n阶幻方都存在。目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。
1、奇数阶幻方
n为奇数(n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)
奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样:
把1(或最小的数)放在第一行正中;按以下规律排列剩下的n×n-1个数:
(1)每一个数放在前一个数的右上一格;
(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;
(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;
(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;
(5)如果这个数所要放的格已经有数填入,处理方法同(4)。
这种写法总是先向“右上”的方向,象是在爬楼梯。
2、双偶阶幻方
n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)
先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即n*n+1,称为互补。
先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:
这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。
也可以保留对角线上的数字不动,而将其它的数换为与它互补的数。
对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4*4把它划分成k²个方阵。因为n是4的倍数,一定能用4*4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。
1 63 6
2 4 5 59 58 8
56 10 11 53 52 14 15 49
48 18 19 45 44 22 23 41
25 39 38 28 29 35 34 32
33 31 30 36 37 27 26 40
24 42 43 21 20 46 47 17
16 50 51 13 12 54 55 9
57 7 6 60 61 3 2 64