离散数学总结
离散数学总结
离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。
对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。
例如R1={<1,2>,},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
离散知识点公式总结
离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学知识点总结
离散数学知识点总结离散数学是一门研究离散对象及其关系、运算规则的数学学科。
它在计算机科学、信息学等领域中扮演着重要的角色,是这些领域的基础知识之一。
本文将对离散数学的一些重要知识点进行总结。
一、集合论集合论是离散数学的基础,它研究的是元素的集合以及集合之间的关系。
在集合论中,我们需要了解集合的运算、集合的关系、集合的分割等概念。
集合的运算包括交集、并集、差集和补集等,而集合的关系则包括子集、包含关系等。
此外,集合的分割也是一个重要的概念,它将一个集合划分为不相交的子集。
二、图论图论是离散数学中的重要分支,它研究的是图的性质和图之间的关系。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图论的核心概念包括图的表示方法、图的遍历算法、最短路径算法等。
在实际应用中,我们可以利用图论来解决线路规划、网络优化等问题。
三、逻辑与真值表逻辑是离散数学的重要组成部分,它研究的是命题之间的关系,以及命题的真值。
逻辑的核心概念包括命题、谓词、命题逻辑和一阶谓词逻辑等。
命题逻辑研究的是命题之间的关系,通过真值表可以展示命题的真值。
一阶谓词逻辑则考虑了命题中的变量、量词等。
四、组合数学组合数学是研究离散对象组合方式的数学学科。
它包括排列、组合、二项式系数等概念。
排列是指从一组对象中取出一些对象按照一定的顺序排列,而组合则是指从一组对象中取出一些对象作为一个集合。
二项式系数是组合数学中常用的工具,它表示在一组对象中选择出一个子集的方式数目。
五、数论数论是离散数学中研究自然数的性质和关系的学科。
它研究整数、素数、同余关系等。
数论的核心概念包括质数与合数、素数分解、同余关系和模运算等。
数论在加密算法、密码学中有广泛的应用,对于保证数据安全性至关重要。
总结起来,离散数学是一门研究离散对象及其关系、运算规则的数学学科,其中包括集合论、图论、逻辑与真值表、组合数学和数论等重要知识点。
它在计算机科学、信息学等领域中具有重要的应用价值。
考试必备离散数学概念总结
1.1、单个命题变项和命题常项是合式公式, 称作原子命题公式2.1、若等价式A↔B是重言式,则称A与B等值,记作A⇔B,并称A⇔B是等值式2.2、(1) 文字——命题变项及其否定的总称2.3、设C1=l∨C1', C2=lc∨C2', C1'和C2'不含l和lc, 称C1∨'C2'为C1和C2(以l和lc为消解文字)的消解式或消解结果, 记作Res(C1,C2)2.4、设S是一个合取范式, C1,C2,⋯,Cn是一个简单析取式序列. 如果对每一个i(1≤i≤n), Ci是S的一个简单析取式或者是Res(Cj,Ck)(1≤j<k<i), 则称此序列是由S导出Cn的消解序列. 当Cn=λ时, 称此序列是S的一个否证.3.1、设A1, A2, …, Ak, B为命题公式. 若对于每组赋值,A1∧A2∧…∧Ak为假,或当A1∧A2∧…∧Ak为真时,B也为真,则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正确的, 并称B是有效结论.4.1、个体词——所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域(论域)——个体变项的取值范围4.2、谓词——表示个体词性质或相互之间关系的词谓词常项:如, F(a):a是人谓词变项:如, F(x):x具有性质F一元谓词(n=1)——表示性质多元谓词(n≥2)——表示事物之间的关系0元谓词——不含个体变项的谓词, 即命题常项或命题变项4.3、设L是一个非逻辑符集合, 由L生成的一阶语言L 的字母表包括下述符号:非逻辑符号(个体常项符号、函数符号、谓词符号)和逻辑符号(个体变项符号、量词符号、联结词符号、括号与逗号)4.4、设R(x1, x2, …, xn)是L的任意n元谓词,t1, t2, …, tn 是L的任意n个项,则称R(t1,t2, …, tn)是L的原子公式.4.5、在公式∀xA 和∃xA 中,称x为指导变元,A为相应量词的辖域. 在∀x和∃x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现.4.6、若公式A中不含自由出现的个体变项,则称A为封闭的公式,简称闭式.6.1、A⊆B⇔∀x ( x∈A →x∈B )6.2、A = B⇔A⊆B∧B⊆A6.3、A⊂B⇔A⊆B∧A≠BA⊈B⇔∃x ( x∈A ∧x∉B )6.4、幂集:P(A)={ x | x ⊆A } (一定包含空集)6.5、并A⋃B = {x | x∈A∨x∈B}交A⋂B = {x | x∈A∧x∈B}相对补A-B = {x | x∈A∧x∉B}对称差A⊕B = (A-B)⋃(B-A)绝对补~A = E-A6.6、广义并⋃A = { x | ∃z ( z∈A∧x∈z )}广义交⋂A= { x | ∀z ( z∈A →x∈z )}7.1、设A,B为集合,A与B的笛卡儿积记作A⨯B,且A⨯B = {<x,y>| x∈A∧y∈B}.7.2、设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做A上的二元关系.(计数:|A|=n, |A×A|=n^2, 所以A上有2^(n^2)个不同的二元关系。
离散数学知识点总结
注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学知识点总结
离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。
2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。
解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。
解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
离散数学知识点总结及应用
离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。
离散数学项目总结(优秀5篇)
离散数学项目总结(优秀5篇)离散数学项目总结(优秀5篇)离散数学项目总结要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的离散数学项目总结样本能让你事半功倍,下面分享【离散数学项目总结(优秀5篇)】相关方法经验,供你参考借鉴。
离散数学项目总结篇1离散数学项目总结背景介绍离散数学是计算机科学的基础学科,在算法、数据结构和操作系统等领域中有着广泛的应用。
本次离散数学项目旨在通过实践操作,提高学生对离散数学知识的理解和应用能力。
项目目标本次项目的主要目标是掌握离散数学的基本概念和原理,包括集合论、图论、逻辑学等。
同时,通过项目实践,提高学生对离散数学的运用能力,为后续的计算机科学学习打下基础。
项目内容1.集合论集合论是离散数学的基础,本次项目要求学生掌握集合的概念、性质和运算,并能够运用集合论解决实际问题。
2.图论图论是研究图形的数学理论,本次项目要求学生掌握图的基本概念、图的表示方法和图的性质,并能够运用图论解决实际问题。
3.逻辑学逻辑学是计算机科学的基础,本次项目要求学生掌握逻辑学的基本概念和推理方法,并能够运用逻辑学解决实际问题。
项目实施过程1.集合论首先,学生对集合的概念、性质和运算进行学习和理解,并在此基础上进行实际问题的解决。
例如,要求学生运用集合论解决一个班级的学生管理问题,通过对学生的集合表示和运算,实现对学生管理的自动化和智能化。
2.图论然后,学生对图的基本概念、图的表示方法和图的性质进行学习和理解,并在此基础上进行实际问题的解决。
例如,要求学生运用图论解决一个城市交通问题,通过对城市交通网络的图的表示和运算,实现城市交通的优化和智能化。
3.逻辑学最后,学生对逻辑学的基本概念和推理方法进行学习和理解,并在此基础上进行实际问题的解决。
例如,要求学生运用逻辑学解决一个软件开发过程中的问题,通过对软件开发过程中的逻辑推理,实现软件开发的自动化和智能化。
项目总结通过本次项目,学生加深了对离散数学的理解和运用能力,掌握了集合论、图论、逻辑学等基本概念和原理,提高了对离散数学的运用能力。
离散数学章节总结
离散数学章节总结离散数学章节总结第⼀章[命题逻辑]1.逻辑运算1.否定:Negation? NOT2.交:Conjunction AND3.并:Disjunction OR4.蕴含:Implication IMPLIES5. Biconditional ? IFFXOR2.逆/否/逆否1.逆:converse2.否:inverse3.逆否:conytrapositive3.问题的⼀致性[逻辑等价]→q 等价于?p q 等价于? q→?p2. p q 等价于?p→qp q 等价于?( p→?q)3.(p→q)(p→r) 等价于p→(q r)(p→r)(q→r) 等价于(p q)→r(p→r)(q→r)等价于(p q) →r4.证明等价: 真值表逻辑符号证明找反例(假设左为假右必为假假设右为假左必为假)[ 谓词逻辑]1.量词存在任意量词顺序不能随机改变不全为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x )没有⼀个为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x ) [ 推理][ 证明]1.证明⽅法:直接证明间接证明反证列举证明(列举所有情况) 构造证明(构造出满⾜结论的元素)2.证明步骤:正向证明反向证明第⼆章[ 集合及运算]1.特殊集合: R Q Z ⽆穷/有限集2.集合表述⽅法: 列举法描述法图表法3.集合运算: 交/并/补/差/取⼦集P(S)/元素数|S|/乘积P ×Q /BA B A B A B A ?=??=? n i iA 1= X A A ∈ ni iA 1= XA A∈容斥原理A i i =1n=Ai1≤i ≤n ∑-A iAj1≤inA ii =1n4.证明集合相等:1.证明互为⼦集 2.从属表 3.逻辑证明[ 函数]1.函数的定义2.术语:定义域,值域,象,原象,范围, (a)/f(A)第五章[序、归纳]1.序:在某种关系下存在最⼩元素则为well-ordered2.第⼀数学归纳法:basic step P(C)成⽴and inductive step P(k)→P(k+1)3.第⼆数学归纳法:basic step:P(c)成⽴ and inductive step: 任意k⼩于等于nP(k) 成⽴→P(n+1) [递归]1.递归:以相同形式⽤⼩的项来定义的⼤的项不能⼀直递归下去(存在初始项)必须存在可以直接解决问题的⼀项①basic step:原有元素② recursive step:原有元素如何产⽣新元素2.字符串的定义:空字符,回⽂3.结构归纳:⽤于证明递归结构对所有元素都成⽴:①basic step:原有元素成⽴②recursive step:⽤递归式导出的新元素成⽴[递归算法]1.定义:把问题转化为相同形式但值更⼩的算法2.递归算法有初始步骤(是可终⽌的)并且递归时⾄少改变⼀个参数值使之向初始步骤靠拢3.递归时间复杂度⾼,可以⽤⾮递归(loop或 stack)来代替[程序的正确性]1.测试与证明:证明更有说服⼒2.证明:①程序会终⽌②(部分正确)程序只要可以终⽌得出的结论都是正确的正确的程序:对任意可能的输⼊都有正确的输出部分正确,完全正确triple:P{S}QP: precondition S: assertion Q:postconditionP{S}Q:当PQ正确时为部分正确当证明了S的可终⽌性为完全正确4.程序的基本语句:赋值,命题,条件,循环5.弱化结论:P{S}R R→Q:P{S}Q强化条件Q→R R{S}P:Q{S}P复合:P{S1}R R{S2}Q: P{S1;S2}Q第六章[加法乘法原理]1.加法乘法原理:⽅法不重复,互不影响,做1or2 m+n 做1and2 mn2.容斥原理:⽅法有重叠:|A B |=|A ||B ||A B |3.包含条件的问题。
离散数学笔记总结
离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
离散数学知识点总结
离散数学知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
下面就来对离散数学中的一些重要知识点进行总结。
一、集合论集合是离散数学的基础概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法有列举法和描述法。
集合之间的关系包括子集、真子集、相等。
集合的运算有并集、交集、补集等。
集合的并集是由属于两个或多个集合中的所有元素组成的集合。
交集则是由同时属于两个或多个集合的元素组成的集合。
补集是在给定的全集 U 中,不属于某个集合 A 的元素组成的集合。
集合的运算遵循一些基本的定律,如交换律、结合律、分配律等。
这些定律在解决集合相关的问题时非常有用。
二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。
关系可以用集合的形式表示,也可以用关系矩阵和关系图来表示。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
不同性质的关系在实际应用中有着不同的意义。
等价关系是一种特殊的关系,它同时具有自反性、对称性和传递性。
等价关系可以将集合中的元素进行分类,形成等价类。
偏序关系也是一种常见的关系,它具有自反性、反对称性和传递性。
偏序关系可以用来描述元素之间的顺序关系,例如在集合的包含关系中。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的类型包括单射函数、满射函数和双射函数。
函数的复合是将两个函数依次作用,得到一个新的函数。
函数的逆是在函数是双射的情况下存在的,并且逆函数的复合等于原函数。
四、图论图是由顶点和边组成的结构。
图可以分为无向图和有向图。
图的基本概念包括顶点的度、路径、回路、连通性等。
图的存储方式有邻接矩阵和邻接表。
邻接矩阵适合表示稠密图,而邻接表适合表示稀疏图。
图的遍历算法有深度优先搜索和广度优先搜索。
这两种算法在图的处理中经常被用到,例如寻找图中的路径、判断图的连通性等。
离散数学必备知识点总结汇总
离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
2024年学习《离散数学》心得体会范文(三篇)
2024年学习《离散数学》心得体会范文____年学习《离散数学》心得体会离散数学是一门非常重要的数学学科,它主要研究离散结构和离散型对象的性质与关系。
在本学期的学习中,我深入学习了离散数学的基本概念、定理和证明方法,对于数理逻辑、集合论、图论和组合数学等方面有了更深入的理解和应用能力。
通过学习《离散数学》,我不仅提高了数学思维和逻辑推理能力,还加深了对数学学科的兴趣与热爱。
下面,我将对本学期学习《离散数学》的心得体会进行总结。
在学习《离散数学》的过程中,最基本的是理解和掌握数理逻辑的知识。
数理逻辑在我们日常生活中无处不在,它是一种研究形式语言的方法和规律的学科。
通过学习数理逻辑,我学会了把复杂的命题和推理过程进行抽象和形式化,达到准确的逻辑推理和推断的目的。
对于复杂的命题,我学会了如何使用命题逻辑和谓词逻辑进行分析,如何构造命题逻辑和谓词逻辑的公式,以及如何使用逻辑运算和证明方法来验证命题的真假与有效性。
通过数理逻辑的学习,我对于思维的准确性和严谨性要求有了更高的认识,学会了用逻辑的眼光来看待问题和解决问题。
在数理逻辑的基础上,我进一步学习了集合论的知识。
集合论是研究事物分类和分类操作的学科,它是离散数学的基础和核心之一。
通过学习集合论,我学会了如何使用集合的运算和运算法则来描述和操作事物的分类关系,如何构造和验证集合的证明和推理,以及如何使用集合的拓扑和图示来表示和分析集合和集合之间的关系。
集合论的学习让我对于事物分类和分类操作的抽象和形式化有了更深入的理解,也提高了我应用集合论解决实际问题的能力。
在掌握数理逻辑和集合论的基础上,我进一步学习了图论的知识。
图论是研究图和图中元素之间的关系和性质的学科,它在解决实际问题中有着广泛的应用。
通过学习图论,我学会了如何使用图的概念和图的表示方法来描述和分析实际问题,如何使用图的算法和图的性质来解决实际问题,以及如何使用图的应用和推广来扩展和应用图论的知识。
《离散数学》方世昌的期末复习知识点总结
《离散数学》方世昌的期末复习知识点总结1.集合论-集合的定义和运算:交、并、差、补、反转。
子集与真子集的概念。
-集合的基数:有限集、无限集、可数集、不可数集的定义与特性。
-集合的运算律:交换律、结合律、分配律、幂等律、吸收律。
-集合的等价关系:等价关系的定义和性质,等价关系的划分和等价类。
2.逻辑与命题关系-命题与命题符号:命题的定义、真值表和含有逻辑连接词的复合命题。
-命题逻辑:命题的蕴涵、等价、否定、充分条件和必要条件。
-谓词逻辑:命题的全称量词、存在量词及其关系。
-命题逻辑推理:假言推理、析取推理、拒取推理、类比推理等。
3.图论-图的基本概念与术语:顶点、边、邻接、路径、回路、连通、子图、生成树等。
-图的分类:无向图、有向图、简单图、多重图、完全图。
-图的矩阵表示:邻接矩阵、关联矩阵、度矩阵等。
-图的遍历算法:深度优先、广度优先。
-图的最短路径算法:迪杰斯特拉算法、弗洛伊德算法。
4.代数系统与半群-代数结构:代数系统的定义、代数公理、代数性质。
-半群:半群的定义与性质,封闭性、结合律和单位元。
-半群的子半群与同态:子半群的概念,同态映射的定义与性质。
-有限半群与无限半群:有限半群的定义和性质,无限半群的特点与例子。
5.数论与代数-整数与整数集合的性质:整数的除法原理、整除、公约数、最大公约数和最小公倍数。
-同余关系与同余类:同余关系的定义、同余类的性质、同余关系的基本定理。
-质数与素数:质数的定义、素数的性质、素数的判定方法。
-线性同余方程:线性同余方程的解法、同余方程的应用。
以上仅是《离散数学》中的部分重要知识点总结,该教材还包括很多其他内容,如排列组合、概率论、布尔代数等等。
期末复习时,建议从教材中选取一些重点章节进行深入学习和复习,同时要进行大量的习题训练,加深对知识点的理解和掌握。
祝你在期末考试中取得好成绩!。
离散数学知识点总结
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
离散数学知识点总结
离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。
离散数学知识点总结
离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。
- 集合的运算:德摩根定律、分配律、结合律、交换律。
- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。
2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。
- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。
- 证明方法:直接证明、间接证明、反证法、数学归纳法。
3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。
- 递归函数的例子:阶乘、斐波那契数列。
- 函数的性质:单射、满射、双射、复合函数。
4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。
- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。
- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。
5. 组合数学- 排列与组合:排列数、组合数、二项式定理。
- 组合恒等式:Pascal三角形、组合恒等式。
- 组合问题:计数原理、Inclusion-Exclusion原理。
6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。
- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。
- 布尔函数的表示:真值表、卡诺图、逻辑表达式。
7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。
- 关系的类型:等价关系、偏序关系、全序关系。
- 关系的闭包:自反闭包、对称闭包、传递闭包。
8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。
- 特殊类型的树:二叉树、平衡树、B树、B+树。
- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。
9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。
- 空间复杂度:算法空间需求的分析。
- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。
离散数学的基础知识点总结
离散数学的基础知识点总结第一章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第二章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函数;1.若|X|=m,|Y|=n,则从X到Y有mn2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=>av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学公式大全总结
离散数学公式大全总结离散数学是数学中的一个分支,涵盖了许多概念和公式。
以下是一些离散数学中常见的公式和概念的总结:1. 集合理论:集合并:$A \cup B = {x | x \in A \text{或} x \in B}$集合交:$A \cap B = {x | x \in A \text{且} x \in B}$集合补:$A' = {x | x \notin A}$集合差:$A - B = {x | x \in A \text{且} x \notin B}$幂集:如果$A$有$n$个元素,$P(A)$有$2^n$个子集。
容斥原理:$|A \cup B| = |A| + |B| - |A \cap B|$2. 排列和组合:排列数:$P(n, k) = \frac{n!}{(n - k)!}$组合数:$C(n, k) = \frac{n!}{k!(n - k)!}$二项定理:$(a + b)^n = \sum_{k=0}^{n}C(n, k)a^{n-k}b^k$3. 图论:手握定理:$2 \cdot \text{边数} = \sum \text{度数}$欧拉图:一个连通图是欧拉图,当且仅当每个顶点的度数都是偶数。
哈密顿图:包含图中每个顶点的圈。
图着色:给定图中的顶点,用尽量少的颜色对它们进行着色,使得相邻的顶点颜色不相同。
图的最短路径:Dijkstra算法和Floyd-Warshall算法用于找到图中的最短路径。
4. 布尔代数:布尔变量:$0$表示假,$1$表示真。
逻辑与:$A \land B$逻辑或:$A \lor B$逻辑非:$\lnot A$逻辑与门:$AND$逻辑或门:$OR$逻辑非门:$NOT$布尔恒等定律:$A \land 1 = A$,$A \lor 0 = A$德·摩根定律:$\lnot (A \land B) = \lnot A \lor \lnot B$,$\lnot (A \lor B) = \lnot A \land \lnot B$5. 树和图:树的顶点数与边数关系:$V = E + 1$二叉树的性质:最多有$2^k$个叶子节点,高度为$h$的二叉树最多有$2^{h+1} - 1$个节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学学习总结
一、课程内容介绍:
1.集合论部分:
集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如: 方程x2-1=0的实数解集合;
26个英文字母的集合;
坐标平面上所有点的集合;
集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,
如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:
A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}
A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}
2.关系
二元关系也可简称为关系。
对于二元关系R,如果<x,y>∈R,可记作xRy;如果<x,y>R,则记作x y。
例如R1={<1,2>,<a,b>},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改造R,
得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统
代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
例如在形式语言中常将有穷字符表记为∑,由∑上的有限个字符(包括0个字符)可以构成一个字符串,称为∑上的字。
∑上的全体字符串构成集合∑*。
设α,β是∑*上的两个字,将β连接在α后面得到∑*上的字
αβ。
如果将这种连接看作∑*上的一种运算,那么这种运算不可交换,但是可结合。
集合∑*关于连接运算就构成了一个代数系统,它恰好是抽象代数系统--半群的一个实例。
抽象代数在计算机中有着广泛的应用,例如自动机理论、编码理论、形式语义学、代数规范、密码学等等都要用到抽象代数的知识。
代数结构的主要研究对象就是各种典型的抽象代数系统。
构成一个抽象代数系统有三方面的要素:集合、集合上的运算以及说明运算性质或运算之间关系的公理。
请看下面的例子。
整数集合Z和普通加法+构成了代数系统〈Z,+〉,n阶实矩阵的集合Mn(R)与矩阵加法+构成代数系统〈Mn(R),+〉。
幂集P(B)与集合的对称差运算也构成了代数系统<P(B),>。
类似这样的代数系统可以列举出许多许多,他们都是具体的代数系统。
考察他们的共性,不难发现他们都含有一个集合,一个二元运算,并且这些运算都具有交换性和结合性等性质。
为了概括这类代数系统的共性,我们可以定义一个抽象的代数系统<A,>,其中 A是一个集合,是A上的可交换、可结合的运算,这类代数系统实际上就是交换半群。
为了研究抽象的代数系统,我们需要先定义一元和二元代数运算以及二元运算的性质,并通过选择不同的运算性质来规定各种抽象代数系统的定义。
在此基础上再深入研究这些抽象代数系统的内在特性和应用。
4.图论部分
图论是作为我们计算机专业的一门很有用处的知识,也是新兴的一个数学分支,在计算机迅速发展的同时,图论也迅速发展。
因此,图论给我们以一种神奇的感觉,在学习图论中,老师总是把图论分析得很透彻,学起来很有趣,同时也很简单。
图论在数据结构方面的应用极其广泛,对我们学计算机专业的人来说,是一门必须要学好的知识。
一个图可以用一个图形表示,定义中的结点对可以是有序的,也可以是无序的,若边所对误码的结点对(a,b)是有序的,刚称L是有向边,a称为L的起点,b称为L的终点,若边L所对应的结点对(a,b)是无序的,则称L是无向边。
5.数理逻辑部分
数理逻辑作为离散数学的最后一部分,充满着对逻辑思维的挑战,同时锻炼了我们思考问题的严密性,当然最重要的是学会如何用数学方法去分析逻辑问题。
数理逻辑又称符号逻辑,它是用数学方法支研究抽象思维的规律的应用学科,1.命题:把能判断真假的陈述句称为命题,作为命题的陈述句表达的判断结果称为命题的真值。
命题公式、对偶与范式、命题演算的推理等等。
二、学习总结与体会
在本学期一开始学习这门课程时,老师就明确的告诉我们这门课程很重要,是我们大学中专业课程的核心课程,同时由于难度系数较高,故本门课程较为难学。
总的来说,一个学期下来,自认为比较好地掌握了离散数学的基础知识,并在平时的各方面得到了很好的应用。
对于离散数学,在刚开始学习的不知道他的重要性,以为他与高等数学一样,或者学习的时候的时候,一定要有高等数学的知道,其实不然,当我开始学习之后才知道,只有掌握了高等数学以及线性代数等相关知道才能更好的学习离散数学。
而且,作为计算机科学专业的学生,离散数学当中所涉及到相关知道,对于我们是至关重要的。
比如,关系、群、路径、图的矩阵表示、树等内容,都是在计算机程序设计以及相关
信息当中要用到的内容。
所以学习了离散数学课之后,我的收获是很多的。
对于一些数学相关的知识有了不同的理解,学会了用不同的方法去解决程序设计方法以及将计算机和数学有机联系起来,不过在学习的过程中也遇到了一些难题,最为突出的,就是书本上的和老师讲解的都还是比较的简单,自己在课堂上也能听懂,但是到具体的应用就很困难了。
特别是不看书,就很多的东西都还给了老师,所以,我会严格的要求自己,学过的东西,都要下来练习,尽量的多做一些习题,尽量的把学过的数学基础知识练熟悉,这样才能够提高自己专业知识,提高自己解决问题的能力。
有一点让我遗憾的是没有学完这门课程,但在这门课程快要结束的时候,我总结了学习中遇到的一些问题,最为突出的是,书本上的知识与老师讲的都比较容易懂,可是在真正运到实际生活中时,就不能将老师所讲的知识点与书上所罗列的。
因此,针对这一情况,在以后的学习中我会严格要求自己,多参加实践,只有这样,,才能够提高运用知识,解决问题的能力。
三、教学建议
1.在课程开设方面,对于离散数学等相关基础、重要的课程,应当在大一或大二开设,不应放在大三下期,这样对于我们学习时也有一定的帮助。
我希望这一本书上能多一些练习题,以便我们学过了,下课了也有很多的练习题做,来巩固课堂上的新内容。
同时,我也希望在有些程序部分,能给出详细的注释语句。
2.相互学习,教师应当努力使现代教学手段与传统教学手段有机结合,相互取长补短。
在教学实施中既能发挥教学手段的优势,又能善于运用传统方式,使教学效果达到最佳。
建议能给一些学生练习的时间,这样我们才能对学过的新内容有一个巩固的时间,其实这样更有助于以后的教学,前面的基础知识打牢了,后面的学习更愉快。
3.提升技能:教师应重新认识离散数学与计算机联系。
同时,要始终把学生放在讲课对象的中心位置,特别是在课余时间,建议由老师组
织学生进行分组,大家共同学习,由于现今的大学学习较为分散,很多时候同学们都不同在课堂上完成任务,只能下来之后继续完成,所以组建学习小组后,通过完成任务等方式,让学生学习到更多的知识点。
学会更多的内容。
4.任务引领:充分调动学习学习积极性让学习在完成任务的过程当中,充分学习到多媒体课件的制作以及多媒体信息的处理等等。