第三章简单电力系统的潮流计算演示文稿

合集下载

第三章简单电力系统的潮流计算

第三章简单电力系统的潮流计算


~ S LDc

j
B2 2
U
2 N
S~b

S~LDb

j
B1 2
U
2 N

j
B2 2
U
2 N
由此将问题转化为:已知
U A ,
j
B1 2
U
2 N
,
S~b ,
S~c
的潮流计算。
~
A SA
~ S1
S~1
S~1
b
~ S2
S~2
S~2
c
U A
Z1
Z2
a.反推功率:

j
B1 2
UHale Waihona Puke 2 NS~bS~c
~ S1

S~1
S~2
I1
I1 Z
B j
S~Y 1
2
S~2 ②
I2
B j
2
~ S2
U 2
S~Y 2
求导纳中的功 率损耗S~Y1,S~Y 2;
末端:S~Y 2

U 2
(
j
B 2
U 2 )


j
B 2

U
2 2
首端:S~Y 1

U 1

(
j
B 2
U1 )
jB
~ S LD

30
j15MVA
2
~ SY 2
已知 r1 0.27 / km, x1 0.423 / km
b1 2.69 106 s / km, l 150km, 双回线路
解:R 1 0.27150 20.25 X 1 0.423150 31.725

第三章简单电力系统的潮流计算共53页PPT资料

第三章简单电力系统的潮流计算共53页PPT资料

U 1U 2(R jX )I
又:S~2
U2


I
P2jQ2
I

P2
jQ2

代 入
U2
得:U 1U 2(RjX)P2jQ2 P2RQ2XjP2XQ2R
U2
U2
U2
1. 若已知末端电压 U 2U 2ej0U 2 0及末端功率
P 2、Q 2 ,求首端电压 U 1
线路较短时两端电压相角差一般不大,可近 似认为:
U 2U 2 U 2 U 1U 1 U 1
即可忽略电压降落的横分量。
对于高压输电网,X>>R,
UPRQXQX UU
UPXQRPX
UU
交流线路功率传输与线路端电压的关系
§3-1 基本概念
三. 电压损耗、电压偏移(衡量电压质量的指标) 1. 电压损耗
3 U j I 3 U cI o jss i n P jQ
若负荷为容性,结果会怎样?
S~PjQ
二. 电压降落
U 1
Z I U 2
ZRjX----一相阻抗
① S~1
S~2 ②
U ----相电压 S~LD S~ ----单相功率
电压降落:网络元件首末两端电压的相量差。
U 1 S~1 ① S~1 S~2
I1
I1 Z
B j
S~Y1
2
S~2 ②
I 2
B j
2
~ S2
U 2
S~Y 2
求导纳中的功 率损耗 S~Y 1,S~Y 2;
末端:S~Y2
U2(j B 2U2)


j
B 2

U22
~
首端:SY1

电力系统分析第3章 简单电力系统的潮流(power flow)计算

电力系统分析第3章  简单电力系统的潮流(power flow)计算

S3 Sd , SL 3
" S3 2 ' " ( ) ( R3 jX 3 ), S3 S3 SL 3 VN " S2 2 ' " ( ) ( R2 jX 2 ), S2 S2 SL 2 VN " S1 2 ' " ( ) ( R1 jX 1 ), S1 S1 SL1 VN
S LDd
S LDb
S LDc
1 2 QBi BiVN 2
Sb S LDb jQB1 jQB 2 Sc S LDc jQB 2 jQB 3 S d S LDd jQB 3
电力系统分析
3.2开式网络的潮流分布
任何一个负荷只能从一个方向得到电能的电力网称
电力系统分析
电力系统在运行时,电流或功率在电源的作用下,
通过系统各元件流入负荷,分布于电力网各处,称为 潮流分布。
潮流计算内容主要包括:
•电流和功率分布计算; •功率损耗计算; •电压损耗和节点电压计算。
电力系统分析
潮流计算的主要目的是:
(1)为电力系统规划提供接线方式、电气设备选择和导 线截面选择的依据; (2)提供电力系统运行方式、制定检修计划和确定电压 调整措施的依据;
电力系统分析
简单闭式网络功率分布的计算步骤: 首先忽略网络阻抗和导纳中的功率损耗,计算 功率分布,称为初步功率分布。目的是确定潮流 方向,找出功率分点; 然后在功率分点将闭式网络拆开,变换成两个开 式网络,根据初步功率分布计算出网络各段阻抗 和导纳中的功率损耗,最后将功率损耗叠加到初 步功率分布上,得到最终功率分布。
实际计算时,变压器的 励磁损耗可直接根据空 载试验数据确定
I0 % ~ S0 P0 j SN 100

电力系统分析第3章(简单电力系统的潮流计算)

电力系统分析第3章(简单电力系统的潮流计算)

~ '' ~ S2 Sc
''2 ''2 ''2 ''2 P '' 2 Q '' 2 P Q P Q ~ S2 2 2 2 R2 jX 2 2 2 2 R2 j 2 2 2 X 2 Uc Uc Uc
~ ' ~ '' ~ S 2 S 2 S 2 ~ '' ~ ' ~ S1 S 2 Sb
j
P2 X Q2 R U2
电压降落横分量
U2 =U 2 U 2 jU 2
电压降落的纵分量
U1
(U 2 U 2 ) (U 2 )
2
2
=arctg
U
2
U 2 U 2
首末端电压的相位差
3.1 基本概念
U1
U2
B
jU 2


I
A
U 2
C
P R Q1 X P X Q1 R U 2 U1 1 j 1 U1 U1 jU1 U1 U1
Q1 ~ ~' S A S1 j 2
UA
P '' X 1 Q1'' R1 U1 1 Ub
U b U1 2 U1 2
已知不同端的电压和功率
3.2 开式网络电压和功率分布计算
已知末端功率和首端电压
UA
R1+jX1 jB1/2 jB1/2

b
~ S LDb
首端功率和末端电压
有功功率和无功功率可能重合,也可能不重合 若不重合,有功功率分点用 无功功率分点用 表示 表示

简单电力网络潮流分析与计算讲义课件(ppt 68页)

简单电力网络潮流分析与计算讲义课件(ppt 68页)
Sy1j1 2B1 U 2jQy1
电力系统分析
3.1 电力线路和变压器的功率损耗和电压降落
3) 电力线路的功率平衡计算
线路首 端功率
阻抗支路 首端功率
末端负 荷功率
设已知线路末端运行电压 和负荷功率,求线路首端 功率。
(1)末端导纳支路功率损耗
Sy2j1 2B2 U 2jQy2
查表得τ=3100h/年
P/kW
WZ0cS1.U 9om 02222P0sam 10x2R20aU 2xN211R20331103010031072005000 0
2000
4000
8760 t/h
459.22k65W h 9
电力系统分析
3.1 电力线路和变压器的功率损耗和电压降落
K为经验系数,一般取0.1-0.4,年负荷率低时取较小值,反之 取较大值
③由上式求电力线路全年电能损耗为 W Z87 6 P m0G ax
电力系统分析
3.1 电力线路和变压器的功率损耗和电压降落
2. 变压器中的电能损耗
铜损部分(电阻损耗):与输电线路变动损耗的计算相同 铁损部分(电导损耗):变压器空载损耗P0与变压器运行小时数 的乘积(按全年投入的实际小时数计算) 变压器运行小时数等于一年8760h减去因检修而退出运行的小 时数。则变压器中1年内的电能损耗为
Tma2xPbTmPabbxP PccTmacx
Tma3xTmacx
电力系统分析
最大负荷利用小时数Tmax与最大负荷损耗时间的关系
Tmax(h)
(h) cos0.8 cos0.85 cos0.9 cos0.95 cos1
用最大负荷损耗时间法计算电能损耗,由于τ值的确定是近似 的,一般用于电网的规划设计阶段,对于已经运行的电网的电 能损耗计算,常采用等值功率法。本书不作介绍。 电力系统分析

简单电力系统的潮流分析(课堂PPT)

简单电力系统的潮流分析(课堂PPT)

33
A
UA
S~1
C
~
S2
B
~ S3
UA
Z1
Z2
Z3
30km LGJ 95 40km
(0.33 j0.429)Ω/km
~ SC
S~B
C
30km
B
~ SC 10 j10MVA
~ SB 20 j15MVA
~
~
S~AB
SB (lBC l AB
lCA ) SClAC lBC lCA
(20 j15) 60 (10 j10) 30 40 30 30
S~2 U2
变压器的功率损耗也 可用试验参数表示
GT jBT
阻抗支路的功率损耗
S~ZT
P12 Q12 U12
(RT
jXT )
2
PT
P0
Pk
S SN
2
QT
I0% 100
S
N
Uk % 100
S
N
S SN
P22 Q22
U
2 2
(RT
jXT
导纳支路的功率损耗
) S~0
GT
jBT
U 2
P0
jQ0
电力网任意点的实际电压与线路额定电压的数
值差 U1 U N
U2 UN
m1 %
U1 U N UN
100
m2 %
U2 UN UN
100
14
例2:有一条220kV的架空线,长度为 210km,线路参数为 r1=0.105Ω/km,x1=0.409Ω/km,b1=2.78× 10-6 S/km。线路末端负荷为100MW, cosφ=0.92,末端电压为209kV,试计算 线路首端的电压和功率以及线路的效率。

08.第三章电力系统潮流分析与计算(第六讲简单电力系统潮流计算)

08.第三章电力系统潮流分析与计算(第六讲简单电力系统潮流计算)

−η
& 的方向! 1、S C
2、 U、Z等是同一电压等级的数值
21
环网的基本功率分布
& 的弊与利: S C
Q Q
不送入负荷, 产生功率损耗(经济性) 可调整潮流分布—强制分布(可控性)
功率分点一样选!
22
四、闭式网的分解与潮流分布 (工程师的思路?)
Q
在功率分点 (一般为无功分点)将闭式网解开, 分成两个开式网,分别计算。 按开式网计算时,有用的功率是分点处的两个 功率,其余功率要在考虑功率损耗后重新计算。
& =S & −S & S 12 A1 1
19
环网的基本功率分布
& = U N ( U A1 − U A2 ) = U N d U 环网有无循环功率?S C ∗ ∗ ZΣ ZΣ
∗ ∗ ∗
& = S A1 & S A2 =
& Z S ∑ m m
m =1 n
n


& U 2 △U2
电压偏移
U1 − U N = × 100% UN
& =U & −U & 电压降落 dU 1 2
Q2X U2 PX δU 2 ≈ 2 U2 ∆U 2 ≈
高压输电系统中 X >> R (作业?)
Q2X U2 P X/U 2 δ1 ≈ tg −1 2 U 2 + ∆U 2 U1 ≈ U 2 +
& = U ∠0 0 U 令: 1 1
P1 R + Q1 X P1 X − Q1 R & dU 1 = +j U1 U1 & U 2 δU1 −1 & = (U − ∆U ) − jδU δ 2 = − tg U 2 1 1 1 U1 − ∆U1 & dU 1

第3章简单潮流计算20130323_ok

第3章简单潮流计算20130323_ok
2. 已知S1、 1 S2、 2 U U

S1

′ S1
Y 2
Z △SZ
′ S2
△Sy2
Y 2
S2

⑴ 电力线路功率计算:
以U1 为参考。即: U 1 = U 10 0 = U 1


*
U1
△Sy1
U2
首端功率S1=P1+jQ1 ;(+为感性负载)
S1 = S1 S y1 = P jQ1 1


y1
y2
Y 2
Y 2
△Sy1
△Sy2
U2
注意: 2 =U 2 I ) (S

*
jU
2013年7月7日6时37分
7
§3-1 电力线路、变压器中的功率损耗和电压降落
PR Q2 X U = 2 U2 U = P2X Q2R U2
S2

通常我们可以采用电路中学过 的方法求解这种问题,即计算电流 和电压。但电力工程中一般采用功
U1
U2
率推导法;
主要考虑了两个因素:
2013年7月7日6时37分 3
§3-1 电力线路、变压器中的功率损耗和电压降落
在电力系统中负荷一般都是以功率表示,很少用电流表示; 为了避免复数运算,简化计算;
S1


dU
*
S1
Y 2
′ S1

Z I △SZ
′ S2
△Sy2
Y 2
S2

△Sy1
U2
U 2 =U 1 U jU
P1R Q1X U = U1 其中: U = P1X Q1R U1

简单电力系统的潮流(power flow)计算

简单电力系统的潮流(power flow)计算

S LDd
S LDb
S LDc
1 2 QBi BiVN 2
Sb S LDb jQB1 jQB 2 Sc S LDc jQB 2 jQB 3 S d S LDd jQB 3
电力系统分析
R1+ jX1 A j B1/2
b
R2 +jX2 j B2/2 j B2/2
" S3 ' " ( )2 ( R3 jX 3 ), S3 S3 S L 3 VN " S2 ' " ( )2 ( R2 jX 2 ), S2 S2 S L 2 VN " S1 ' " ( )2 ( R1 jX 1 ), S1 S1 S L1 VN
" S2 Sc S'3 , SL 2
首端电压、末端功率及末端电压四个参数。
(1)已知网络同一端的功率和电压 (2)已知网络不同端的功率和电压
电力系统分析
1、同级电压的开式电力网
A
1
b
2
c
3
d
S LDb
S LDc
S LDd
降压变 的处理
电力系统分析
各点的运算负荷 R1+ jX1 a j B1/2 QB1 j B1/2 b R2 +jX2 j B2/2 j B2/2 c R3+ jX3 j B3/2 j B3/2 d
电力系统分析
方法二:将线路L2的参数归算到L1电压级
k R2 R2
2
c
R3+ jX3 j B3/2 j B3/2
QB1 j B1/2
S LDd
S LDb A
R1+ jX1 S1 j B1/2 Sb

《电力系统潮流计算》课件

《电力系统潮流计算》课件

01
电力系统潮流计算 的计算机实现
计算机实现的方法与步骤
建立数学模型
首先需要建立电力系统 的数学模型,包括节点 导纳矩阵、系统负荷和
发电量等。
初始化
为电力系统中的各个节 点和支路设置初值。
迭代计算
采用迭代算法,如牛顿拉夫逊法或快速解耦法 ,求解电力系统的潮流
分布。
收敛判定
判断计算结果是否收敛 ,若收敛则输出结果, 否则返回步骤3重新计算
使用实际数据,展示正常运行状态下潮流计算的过 程和结果。
不同运行状态下的潮流计算案例
介绍检修状态下电力系统 的主要变化和特征。
案例二:检修状态下的潮 流计算
分析计算结果对系统运行 状态的影响。
01
03 02
不同运行状态下的潮流计算案例
使用实际数据,展示检修状态下潮流 计算的过程和结果。
分析计算结果对系统运行状态的影响 。
介绍南方电网的地理分布、主 要发电厂和输电线路。
实际电力系统的潮流计算案例
分析该电网的电压等级、负荷分布和 电源结构。
展示实际数据下的潮流计算结果,包 括节点电压、支路功率和功率损耗等 。
不同运行状态下的潮流计算案例
01
案例一:正常运行状态下的潮流计算
02
介绍正常运行状态下电力系统的一般特征。
03
模型建立
针对分布式电源的特点,需要建 立相应的数学模型,以便进行准 确的潮流计算。
优化调度
结合分布式电源的特点和运行需 求,对电力系统进行优化调度, 以实现系统运行的经济性和稳定 性。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
《电力系统潮流计算 》PPT课件

《电力系统分析理论》课件第3章 简单电力网的潮流

《电力系统分析理论》课件第3章 简单电力网的潮流

~ SG
S~1'2'
~ SY 120
0.478 0.304
(2)从母线1开始依次计算母线2、3、4和5的电压
* ''
U 2
U1
S 12
*
Z12
1.100
(0.488
j0.52) (0.00958
j0.212) /1.100
U1
0.9955 j0.0895 0.9995 5.1380
S~34 (0.22 0.09322 ) (0.089 j0.135) 0.00433 j0.00656
S~3''4 S~3'4 S~3'4 0.204 j0.0998
S~34 S~3''4 S~Y 340 0.204 j0.093
~ SY 530
~ SY 350
1.02
线路额定 电压
近似计算中,常以电压降落的纵分量来代替电压损耗
(3)电压偏移:始端电压或末端电压与线路额定电压的比值。 电压偏移也常用百分数表示,即
V1N
%
V1 VN VN
100
V2 N
%
V2 VN VN
100
第三章 简单电力网的潮流计算
2. 电力线路的功率损耗
下图为电力线路的П型等值电路,其中Z=R+jX,Y=G+jB 为电力线路每相阻抗和导纳。一般情况下,线路一端的功率和 电压是已知的,要求计算另一端的功率和电压。
(3)根据对各种运行方式的潮流分布计算,帮助调度人员 正确合理选择系统运行方式;
(4)根据功率分布,选择电力系统的电气设备
第三章 简单电力网的潮流计算
(4)根据功率分布,选择电力系统的电气设备和导线截 面积,可以为电力系统的规划,扩建和继电保护整定计 算提供必要的数据和依据。 (5)为调压计算、经济运行计算、短路计算和稳定计算 提供必要的数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 开式网络潮流电流
开式网络是由单一电源点通过辐射状网络向多个负荷点供电的 网络。我国配电系统正常运行时都采用辐射状运行,适合使用开式 网络的潮流计算方法。开式网络潮流计算也是闭式网络潮流计算的 基础。
只含一级电压的开式网络潮流计算:
(1)已知末端功率和末端电压 (2)已知末端功率和首端电压 含两(多)级电压开式网潮流计算
复杂辐射式网络(配电网)的潮流计算
1. 运算负荷的处理(为了简化网络,简化时电压用额定值)
1
Z12
2
Z23
3
Z34
4
j B12 j B12 22
j B23 j B23
j B34 j B34
解:
U1 U2 (R jX )I
U2(RjX)PU 2jQ ( 共 轭 )
U 2PRU 2Q XjPXU 2Q R
U2UjU
2. 线路的电压降落
U1 S ' R I
jX S '' I
U1 U2 U jU
其中:U PR QX
U2
U PX QR
U2
I
U12 U AB U1 U2 U jU
第三章简单电力系 统的潮流计算演示
文稿
3.1 单一元件的功率损耗和电压降落
最基本的网络元件:输电线路、变压器
一、输电线路的功率损耗和电压降落
U1 S1
S ' R jX
S ''
S2 U2
I1
I
I
I2
线 路
jQB1
B
j
2
B
jQB2
j
2
的 等 值 电

电压降落 :线路首末端两点电压的向量差 功率损耗 :流过线路所消耗的功率
S '1 RT I
jXT S2 U2 I
–jBT
GT
变压器的等值电路
变压器的阻抗支路计算与线路阻抗支路完全相同。 变压器的对地并联支路是感性的,运行时消耗无功功率。并联支
路损耗主要是变压器的励磁功率,由等值电路中励磁支路的导纳确 定。
S0(GTjBT)U2 P0jQ0P0j1 I00% 0SN
P0 :空载损耗 I0(%) :空载电流百分数 SN :额定容量
输电效率 P2 10% 0 P1
1、输电线路的功率损耗
1) 串联阻抗支路的功率损耗 SLPLjQ L I2(R jX)
P2 Q2 U22
(R
jX)
P2 Q2 U12
(R
jX)
需要注意:
1. 线路两端功率和电压是不同的,在使用以上公式时功率和电 压必须是同一端的;
2. 元件传输无功功率,会产生有功功率的损耗,因此应避免大 量无功功率的流动 。
UQX UPX
U
U
O
U1
U1
U1
U 2 U1
U2
U2
U2
在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生, 电压降落的横分量则因传送有功功率产生。
元件两端存在电压幅值差是传送无功功率的条件,存在电压相角 差则是传送有功功率的条件。
感性无功功率总是从电压幅值较高的一端流向电压幅值较低的一 端,有功功率则从电压相位超前的一端流向电压相位滞后的一端。
BL
1 wL
S '1 RT
jXT S2
近 似 S0P 0+jQ 0P 0+j1 I0 0 % 0SN
2) 并联电容支路的功率损耗
由于线路的对地并联支路是容性的,即在运行时发出无功功率,
因此,作为无功功率损耗 ΔQL应取正号,而ΔQB应取负号。
QB1
1 2
BU12
QB2
注意:
② 高压输电线路,
XR
UQX UPX
U
U
注意:
③ 当输电线路不长,首末两端的相角差不大时,近似地有:
U1 U2 U
U1 B
O
A
DC
U2
U2
电力网实际电压幅值的高低对用户用电设备的工作是有密切 影响的,而电压相位则对用户没有什么影响。
为了衡量电压质量,必须知道节点的电压偏移
电压偏移(%)= U U N 100 UN
① ΔU1即是用U1节点的功率和电压, ΔU2是用U2节点的功率 和电压,且
U1 U2 U1 U2
O
U1
U1
U1
U 2 U1
U2
U2
U2
U 2 U 2
P R Q X U2
P X Q R U2
注意:
② 高压输电线路,
XR
U1 U1
P R Q X U1
P X Q R U1
注意:
③ 当输电线路不长,首末两端的相角差不大时,近似地有:
U1 U2 U
U1 B
O
A
DC
U2
U2
④ 三相和单相计算:
以上公式均适用,单相计算时取相电压、单相功率;三
相计算时取线电压和三相功率。标幺值时普遍适用。本点在 电力系统分析计算中的普遍意义。
2. 变压器的功率损耗和电压降落
U1 S1 I1 S0
1 2
BU22
负数
正数
线路首端的输入功率为 线路末端的输出功率为
S1SjQB1 S2SjQB2
U1 S1
S ' R jX S ''
I1
I
I
jQB1
jB
jB
2
2
S2 U2
I2 jQB2
2. 线路的电压降落
U1 S ' R
jX S '' U2
I
I
SLD
例:已知 U2 U20 , SLD P jQ 求 U1 , U12 ?
U2
SLD
jU U1 B
A jIX D U2 IR
U
2. 线路的电压降落
U1 B
O
j2
jXI
U2
D
A
U1 U2 U jU
RI
I
(a)
电压的有效值和相位角:
U1 U2 U2 U2
U2
PRQX U2
j
PX QR U2
U1
U 1 (U2U2)2(U2)2
arctg U2
U2 U2
注意参考方向的选择
回忆:
线 路
C
jB
Q
其阻抗为:
Z
1 jwC
jXC
其导纳为:
Y
1 Z
jwC
jBC
S1
S ' R jX
I1
I
jQB1
B
j
2
容性线路在运行时发出无功,加负 号认为是负的负荷
QB1
1 2
BU12
回忆:


L

U1 S1 I1 S0
–jBT
其阻抗为:Z=jXL=jwL
-jBL Q
其导纳为:Y
1 Z
jw1LjBL
U 2
U1
B
以U2做参考轴时:
O
j2
jXI
U2
D
A
RI
I
(a)
U 2
U1 U2 U jU
U 1U2U2U2
U U22X RIIccoossjj22RXIIssiinnjj22
以U1做参考轴时:
O
j1
U1 U2 U jU
RI U1
C U1
B
jXI
U1
U2 A I
(b)
U 1U2U 1U 1
U1 XIsinj1RIcosj1
U1
XIcosj1RIsinj1
P UI cosj
用功率代替电流:
Q UI sin j
O
U1
U1
U1
U 2 U1
U2
U2
U2
U 2 U 2
P R Q X U2
P X Q R U2
注意:
U1 U1
P R Q X U1
P X Q R U1
相关文档
最新文档