数学建模+停车场设计问题

合集下载

数学建模 停车场的设计1

数学建模 停车场的设计1

停车场的设计一、问题概述在某镇上位于街角处有一块50m ×100m 空地,将用来设计作为停车场,要把尽可能多的车塞进停车场会导致以直角停靠的方式一辆挨一辆地排成行。

但是缺乏经验的司机对于这种停靠方式是有困难的,这可能引起昂贵的保险费要求。

为了减少停靠车辆时可能造成的损坏,场主就要启用一些熟练的汽车司机作为 “专职停靠司机”。

另一方面,如果汽车从通道进来有一个足够大的“转弯半径”的话,那么大多数司机看来都不会有很大的困难一次就停靠到该停靠的位置上去。

当然通道愈宽能容纳的车辆就愈少,这就会导致停车场场主收入的减少。

二、问题分析城市停车设施选址规划是建立在停车设施需求分布的基础上,为了反映规划区域的停车需求特征,有必要将其细分为若干个不同的功能小区,功能小区的划分原则为:(1)停车需求预侧的角度,功能小区反盖范围不宜过大或过小,过大会影响规划可达性及预测和分布的精度,过小会增加使车位无法使用,造成资源浪费现象。

(2) 由于不同司机对停车半径率不同。

而且对停车场建造类型的选择也有影响,因此功能,可依据用地性质相同或相近来组合。

(3) 停车区域四周应尽可能地设置一条单向交通循环路线,为了不至于给顾客选择往哪个方向走带来困扰,这条路上必须设立清晰可见的方向箭头或标志。

三、模型的假设停车场的长度为:A停车场的宽度为:B车位的长为:小车1a 大车2a车位的宽为:小车1b 大车2b汽车的最外点最小转弯半径为:R汽车的最外点最小转弯半径为:r道路宽度为D能停车的行数为:m 0≥m能停车的列数为:n 0≥n每行能停的车辆数为:p 0≥p每列能停的车辆数为:q 0≥q每行设计的道路数为:u 1≥u )2,1,0(∈=x xmu 每列设计的道路数为:v 1≥v )2,1,0(∈=x x n v四、模型的建立通道宽度的计算按《道路车辆外廓尺寸,轴荷,及质量限值》的要求,车辆通道宽度应为车身最外点在地面上的投影所形成的外圆周轨迹R 与最内侧部位在地面上的投影所形成的内圆周轨迹r 的差值 不大于7.2m ,即通道宽度D 为:D=R-r当垂直停车时有:pb na vD A ++≥qb ma uD B ++≥化解上面两式:bvD na A p --≤ b ma uD B q --≤ 则车位总数为:q p N += 小车:11111b ma uD B b vD na A N --+--= 大车22222b ma uD B b vD na A N --+--=假设小车每天收费1s 元,大车每天收费2s 元,则总收入为:2211s N s N S +=由于,停车的通道的宽窄问题,有些司机不能把车停入车位,所以需要雇佣有经验的司机来停靠,假设同一时间不能正常停入的车辆的百分比为w%,请一名司机每天需要3s 元,不能正常停入百分比与路宽成反比,所以有:Dk w =% 请有经验的司机的费用为: %)(213w N N s S +=司机所以此时总利润为:3222211112222211111)()()(s D k b ma uD B b vD na A b ma uD B b vD na A s b ma uD B b vD na A s b ma uD B b vD na A S --+--+--+-----+--+--+--=总 如果以90度停车,能停进的司机很少,所雇佣的有经验的司机就越多,经研究发现,当车位与道路存在一定的角度时,能停入的司机明显增加,这样可以在一定程度上减少雇佣有经验的司机的人数,所以用斜角停车比较划算。

车位分配问题 数学建模

车位分配问题  数学建模

停车场车位分配问题研究一. 摘要某写字楼的停车位数目一定,主要提供写字楼办公人员办卡包年或包月使用,为了使停车场空置率减少,以及免于有卡却没有车位产生冲突的尴尬,我们必须对停车流量进行模拟分析,建立合理的最佳的车位分配管理方法,并得到最大的收益。

首先对附表中数据进行分析,因为我们得到的是四月份的停车流量,为了方便分析研究,我们应该把数据转化为停车量。

我们从中引入了概率进行模拟。

假设停在停车场中的车辆在各个时间段离开是按照泊松分布,即可分别求的到来的和离开的车辆数目,就可以方便得得到停车量这个关键的数据。

分析结果如下表所示:定义冲突概率1212iα=-,i I 为第i 个时间段进入停车场的车辆数目。

由于第四时间段为停车高峰期,因此原则这一时间段进行分析。

样本服从正态分布,用3δ原则,即可求出当0.05α<时的最大售卡量为240张。

制定更好的车位分配方案时则将卡的种类分为年卡和月卡,通过设定年卡和月卡的价格来控制相应的销量,从而使收益最大。

运用边际函数相关知识,设立目标函数和约束条件,用Lingo 软件即可计算出当0.05α<时年卡和月卡最佳销售价格以及张数如下表所示:关键词:泊松分布,正态分布,边际函数二.问题分析与重述问题一:题目要求模拟附表中停车流量,分析停车量的统计规律。

停车流量与停车量是两个不同的概念,要分析停车量的统计规律就必须弄清楚来到停车场的车辆数目以及离开停车场的车辆数目。

而题目所给的条件中我们只知道停车流量,也就是车离开与来到的总的次数,因此我们假设车的离开服从泊松分布,运用概率来求出单位时间内车辆离开的数目,这样也就可以知道单位时间内车辆到来的数目,它们两者的差值也就是我们所要求的停车量。

α=情形下,计算最大售卡量。

问题二:定义冲突概率,求若冲突概率低于0.05根据附表中停车流量数据,以及上题对停车量的分析,我们可以知道在第四个时间段,即早上9:00—10:00停车量是最多的,也就是在这段时间产生冲突的概率是最大的,为了计算最大售卡量,我们就取这段时间进行分析。

关于停车场数学建模问题汇总

关于停车场数学建模问题汇总

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学院(请填写完整的全名):参赛队员(打印并签名) :1.2.3.日期: 2013 年 11 月 2 日评阅编号(教师评阅时填写):汽车车库库存的优化方案摘要本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。

针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。

查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。

其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。

最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。

针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。

为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。

其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。

分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。

基于数学建模停车场优化设计

基于数学建模停车场优化设计

基于数学建模的停车场优化设计摘要:停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。

文章通过数学建模方法探讨停车场的优化设计,的目的就是希望找出缓解停车困难的有效办法。

关键词:数学建模;停车场优化;应用数学一、引言假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。

因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”,而通道越宽越多,就会使得容纳的车辆数越少。

我们先来看看生活中非货运车辆大小的种类。

根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。

其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。

根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。

我们设小轿车所占的比例为 ,大型客车所占的比例为。

再来看看车位的大小。

根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。

另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长米,宽米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。

设停放大客车需要长米,宽米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。

考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。

所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。

2022年MathorCup高校数学建模挑战赛C题

2022年MathorCup高校数学建模挑战赛C题

2022 年第十二届 MathorCup 高校数学建模挑战赛题目C 题自动泊车问题自动泊车是自动驾驶技术中落地最多的场景之一,自动泊车指在停车场内实现汽车的自动泊车入位过程,在停车空间有限的大城市,是一个比较实用的功能,减少了驾驶员将车辆驶入狭小空间的难度。

图 1 为Apollo D-Kit 车辆在开放露天停车位进行泊车的测试场景,无人车泊入路边一个平行停车位。

图1Apollo泊车测试现场情景图本研究以无人乘用车为例,实现在停车场中进行自动泊车的功能。

无人车为阿克曼结构的乘用车,如图2 所示,前轮转向后轮驱动;车身可以看作一个矩形,长4.9m ,宽1.8m ;车子轴距2.8m ,轮间距为1.7m ;最大油门加速度为3.0m/s!,极限最大减速度为−6.0m/s!,加加速度不超过20.0 m/s" 为宜;方向盘最大转角470°,方向盘与前轮转角的传动比为16: 1 (方向盘转动16°,前轮转动1°),方向盘最大转速为400°/s。

图2阿克曼车辆模型示意图图 3 为某停车场平面图,无人车从初始位置出发,假设以初速度为零开始行驶,将车停在停车场中某一个车位上。

停车位上如果没有其他车辆占用,或车位没有被锁,则无人车可停入。

停车位有三种类型,分别为垂直停车位(停车方向垂直路面)、平行停车位(停车方向与路面平行)和倾斜停车位。

图中用黄色斜线标识的为停车场中部分围墙,白色斜线区域为禁行区域,车辆不能与其产生冲突或碰撞,黄色横线区域为减速带。

停车位中的箭头指示为车辆泊车完成后的车头朝向。

地面上箭头指示了车辆应该行驶的方向,泊车过程中的倒车方向不予约束。

在黄色减速带前后5m,车辆行驶速度不超过10km/h。

图3停车场平面图无人车驶到指定位置(如入口处),如何识别出停车场中的最优目标停车位,以及根据目标车位,如何快速到达并进行安全泊车是自动泊车过程的核心问题。

泊车过程在保证安全的情况下,时间应尽可能短,前进车速不超过20km/h,倒车车速不超过10km/h ,在减速带前后5m 范围车速不超过10km/h ,轨迹和速度都尽可能平滑(满足最大加速度,最大减速度的约束,并最好满足最大加加速度的约束)。

我的建模作业----停车场问题1

我的建模作业----停车场问题1

班 级:信息10-2班学 号:311011020203姓 名:李珂珂案摘要绍兴文理学院数模竞赛C 题近几年我国居民活水平有了显著提高,我校有越来越多的教师购置了汽车,为了解决停车问题,在图书馆前面造了一个地下车库。

车库面积有限,问题是如何利用车库高效地停车,即在保证安全的情况下,尽可能多地停车。

为简单起见,我们假设该车库是一个100x100米的正方形,见下图教师的车都是标准的轿车2x3米,车的最小转弯半径为4米,试设计一个最佳停车方案(只考虑平面)。

入口 出口1.问题的表述由于近几年我国居民生活水品的提高,我校越来越多的教师购买了轿车,为解决停车问题,我校打算在图书馆前建一个地下车库,因为车库为一个100*100的正方形,见下图:出口入口面积有限,问题是如何利用车库再保证安全的情况下,尽可能多的停车,一下是我们运用数学知识解决一下这个问题,已知教师的车都是标准的轿车2x3米,车的最小转弯半径为4米。

2.模型假设和符号说明一.模型假设1).假设每一辆轿车所占的停车位的面积都是相等的,车主都按规定停车。

2).假设每一位车主的驾驶技术都是相当好的。

二.符号说明3.问题分析一般情况下,如果想尽可能的把车停在停车场,最有效最大限度利用空间的最好办法是以垂直的方式把车排成行,但是,这样停放时会造成车辆无法自由出入,那样只有靠近门口停放的车出去了,里面的车才能离开停车场,很明显这是不符合现实生活中的需求的。

所以,为了让汽车自由的出入停车场,必须设置一些具有足够宽度的通道,而且每一个通道都要有足够大的转弯半径,由于停车场的总面积是一定的,所以通道越宽越多,就会使得容纳的车辆数越少。

所以我们的主要问题是要确定在能够满足车辆的自由出入的情况下,怎样进行停车位置和车辆通道的设计,从而能使得停放的车辆最多,以致达到既方便了停车又能获得最大的经济效益。

通过对每一个停车位的分析,得到每辆车占据的停车场面积函数是由车辆所占的停车位面积和通道所占通道面积两部分组成,面积函数可以化为角的一次函数,再对面积函数进行求解,就可以得到车位最佳设计角度。

车位分配问题数学建模

车位分配问题数学建模

停车场车位分配问题研究一. 摘要某写字楼的停车位数目一定,主要提供写字楼办公人员办卡包年或包月使用,为了使停车场空置率减少,以及免于有卡却没有车位产生冲突的尴尬,我们必须对停车流量进行模拟分析,建立合理的最佳的车位分配管理方法,并得到最大的收益。

首先对附表中数据进行分析,因为我们得到的是四月份的停车流量,为了方便分析研究,我们应该把数据转化为停车量。

我们从中引入了概率进行模拟。

假设停在停车场中的车辆在各个时间段离开是按照泊松分布,即可分别求的到来的和离开的车辆数目,就可以方便得得到停车量这个关键的数据。

分析结果如下表所示:定义冲突概率1212iα=-,i I 为第i 个时间段进入停车场的车辆数目。

由于第四时间段为停车高峰期,因此原则这一时间段进行分析。

样本服从正态分布,用3δ原则,即可求出当0.05α<时的最大售卡量为240张。

制定更好的车位分配方案时则将卡的种类分为年卡和月卡,通过设定年卡和月卡的价格来控制相应的销量,从而使收益最大。

运用边际函数相关知识,设立目标函数和约束条件,用Lingo 软件即可计算出当0.05α<时年卡和月卡最佳销售价格以及张数如下表所示:关键词:泊松分布,正态分布,边际函数二.问题分析与重述问题一:题目要求模拟附表中停车流量,分析停车量的统计规律。

停车流量与停车量是两个不同的概念,要分析停车量的统计规律就必须弄清楚来到停车场的车辆数目以及离开停车场的车辆数目。

而题目所给的条件中我们只知道停车流量,也就是车离开与来到的总的次数,因此我们假设车的离开服从泊松分布,运用概率来求出单位时间内车辆离开的数目,这样也就可以知道单位时间内车辆到来的数目,它们两者的差值也就是我们所要求的停车量。

α=情形下,计算最大售卡问题二:定义冲突概率,求若冲突概率低于0.05量。

根据附表中停车流量数据,以及上题对停车量的分析,我们可以知道在第四个时间段,即早上9:00—10:00停车量是最多的,也就是在这段时间产生冲突的概率是最大的,为了计算最大售卡量,我们就取这段时间进行分析。

车位分配数学建模

车位分配数学建模

停车场车位分配问题【摘要】本文基于蒙特卡罗模拟法、正态总体、随机概率、线性规划等方法对停车场车位分配问题做了探讨。

根据已有的30天停车流量数据,分析其规律,最终达到合理分配车位,使得停车收益达到最大。

针对问题1:由于题目中统计资料以及相关数据较少,建立一个准确的数据模型比较困难,因此我们使用了蒙特卡罗模拟法,建立了蒙特卡罗模型。

同时我们以17:00—18:00为例说明,使用正态分布函数进行模拟,给出了100天的停车流量的模拟解;再计算其规律时,我们继续计算各时段的均值、标准差、偏度、峰度的统计量,观察这些数据我们有以下结论:1.停车量的高峰期出现在8:00到18:00的时间段里,值得注意的是9:00到12:00出现了停车量的最高峰;2.标准差也和停车量一样出现两边低中间高的情形,并且也是在9:00到12:00出现最大的标准差,进而说明在这三个小时内停车量很大同时汽车的流通量也很大,是一天当中最为繁忙的时间段。

3.偏度和峰度基本上比较接近,说明这些天之内出现停车流量忽高忽低的情况还是比较少的,停车流量还是比较平稳的。

针对问题2:本题基于随机概率中的正态总体的区间估计中的t 分布检验对各个时间段中满足冲突概率05.0<α的最大售卡量N 进行了探讨,结果如下时间段6:00-7:007:00-8:008:00-9:009:00-10:0010:00-11:0011:00-12:0012:00-13:0013:00-14:0014:00-15:00N 19291067339278300278311334327时间段15:00-16:0016:00-17:0017:00-18:0018:00-19:0019:00-20:0020:00以后N3293373896119561268由此得到最大收卡量N 为278。

针对问题3:我们建立数学线性规划模型解决该问题,并将停车流量分为包年或者包月停车流量和临时停车流量两类,建立目标函数以及约束条件,同时利用Lingo 软件求出当1214,,M Y Y Y ⋯(分别表示包年或者包月的停车流量值,6:00-7:00、7:00-8:00……19:00-20:00的临时停车流量值)取以下值时,会使得停车场的受益最大:M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 2521848027733372932355597110由此,我们还求出了最大收益为1789元/天。

MathorCup大学生数学建模挑战赛B题全国二等奖

MathorCup大学生数学建模挑战赛B题全国二等奖

2.问题分析
2.1 问题一的分析
根据查找的相关文献,我们提炼了几个与小区汽车停车位的分布合理有关的关键指 标。对于这几个指标,我们从“点”与“面”两个方面来考虑指标与判定车位分布的关 联。通过对指标的理解,我们在“面”的角度选择了多因素的决策模型。
2.2 问题二的分析
首先我们要对附件一所提供的内容进行理解,以及归纳总结。从附件一中得到有关 指标的所对应的判断标准及判断值。再从问题一中建立的模型出发,综合考虑停车位分 布的合理性,并对判断的结果进行相应的解释。
车位分布的优化设计与评价
摘要
现代社会经济的快速发展导致了小区内私家车数量的快速增长,因此小区内停车场 如何科学合理的分布成为了社会关注的问题。本文针对此问题,先建立了停车场综合评 价模型,再将所设计方案应用于已给附件,指出该小区停车场设计不合理,最终给出合 理分配方案,并与不合理的方案进行比较分析。 针对问题一:为了得到停车场车位的最优方案,我们采用多指标综合评价中的最优 回归构权法,先将评价停车场的指标分为分为三类,分别是方便性,实用性和舒适性。 其中方便性由效用时间和出口的位置决定;实用性由安全系数、紧急逃离和车位布置方 位决定;舒适性由排风口位置和场内环境决定。在选取的七个指标中,我们从“点”与 “面”两个方面来考虑指标与判定车位分布的关联。通过对指标的理解,我们在“面” 的角度选择了多因素的决策模型。 针对问题二:由于给出的附件为一张停车场的示意图,我们在查证现实生活中车位 的标准大小后确定所给图的大小,确定出比例尺为 1:500,并且将所给停车场分成 A 和 B 两个区域,分别对这两个区域再实行分区,最终得到 8 个区域,利用比例尺求得相 关数据。再根据问题一中所探讨出来的模型,分别进行点和面的分析,用 Matlab 处理 所求数据,再画出 A 和 B 两区域的评价得分图,车位得分情况呈下降趋势,故得出所 给停车分布并不合理。 针对问题三:由于在第二问中,我们算得车位分配并不是最优化,我们接下来对车 位最优化的方案进行探究。我们对 A 和 B 两个区域分别探讨,为了得到“均好”的效 果,我们重新分配车位的原则为 :对于得分高的车位,安排需要下楼时间长的户主。基于 这一原则,我们对问题二的车位得分情况以及不同楼层的下楼时间进行了简单的排序, 把得分高的车位对应与下楼时间长的户主,得到了重新修正过的等效时间。然后求出了 分配前后 A、B 区域的得分标准差,并且画出了重新分配前后的评价得分对比图,发现 优化后的分布方案显然更为科学合理。 关键词:多指标综合评价 最优化 评价得分

停车场规划数学建模

停车场规划数学建模

医院停车场规划问题摘要本题是个优化设计问题,通过合理设计停车场的停车方式和通道大小使得停车场在有限的区域下能停放的下更多的车辆,为医院患者解决停车难的问题。

针对于问题1,由于该医院挂号是从7:30开始,但8:00之后医生才开始门诊,每个患者平均门诊时间为1小时30分钟。

所以在7:30-8:00之间来的患者要到9:30才能离开医院,而在8:00之后来的患者只需门诊1小时30分钟就可离开医院。

于是,可通过用Excel表对表1数据进行处理和分析,以每五分钟为单位,统计此时停车场停放的车辆数。

因此,根据统计结果可知在周二9:30这个时刻医院的车辆数最多为229辆。

所以,医院至少需要有229个车位才能够使得每一位患者的车到停车场就有车位停车。

对于问题2,对于问题3,根据问题1结果可知医院至少要有229个车位才能使患者车到就有车位停车,而由问题2的结果可知,新建的停车场最多只有162个停车位,远远不能满足实际需要。

所以问题可转化为从政府部门、医院以及患者的角度提出一些可行性的建议来解决这个问题。

政府部门可以从建设新的停车场,开设便利的公交路线等方法来解决这一问题;医院可以通过合理利用医院内部的土地,为医护人员的上班提供便利等方法老解决这一问题;患者可以有意识的不占用停车位,按规定停车,尽可能的乘坐公交车或出租车来医院就诊。

关键词:一、问题重述问题背景:随着现代技术的发展,人民生活条件的不断改善,小轿车的普及率越来越高. 患者自己开车到医院看病的情况也越来越普遍. 然而, 福州市的医院普遍存在停车位不足, 患者停车难的问题.某医院原有若干个停车位, 零散分布于院内建筑楼房四周以及道路两侧. 现医院经重新规划整合,拆除部分旧楼,在门诊大楼旁整出一个长方形地块(见附录一),准备建公用停车场,用于患者停放小轿车.该医院8:00开始门诊, 挂号从7:30开始, 每个患者平均门诊时间1小时30分钟(包括候诊、问诊、缴费和取药). 表1(见附录二)是某一周每天从7:30-11:30每5分钟统计的到达车辆数据。

1987B停车场问题-赵轶星——大学生数学建模竞赛

1987B停车场问题-赵轶星——大学生数学建模竞赛

1987:停车场问题在新英格兰镇有一个位于街角处、面积100×200平方英尺停车场,场主请你设计它的布局,即设场地上的线怎么画的方案。

容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车。

但是对于缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。

为了减少因停车造成意外损失的可能性,场主可能不得不雇用一些技术熟练的司机专门停车。

另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。

当然,通道越宽,场内所能容纳的车辆数目也就越少,这将使得场主减少收入。

1解决一个新英格兰镇的停车场问题摘要给定一个100×200平方英尺的场地,我们分析的目标是确定一种停车场空间的配置方案使得从停车场获得的收入最大。

我们需要考虑专职停车和自助停车两种方案。

自助停车是更好的选择,但是需要一个服务员来收停车费。

为了求得停车场最大的停车数量,我们测试了停车空间的角度从45°到90°的情况。

在如果通道的转角的数量越少,能获得越多空间的假设下,停车场配置的预算的数量可以缩减为7,。

首先,我们分析不考虑入口,出口和服务员的情况。

我们找到了一种能容下76个停车位的配置。

当入口和收费所都考虑进来时,我们的配置相对其他的配置能有更多的停车位(75)。

在我们最后的方案中,移动的许可、下雪时暂时的布置和灯柱的空间都被考虑了。

问题重述1给定一个在新英格兰镇的100×200平方英尺的在转角处的停车场,设计一种配置方案使得停车位最大并且在车场里驾驶的难度最小。

基本假设1、车是自助停车的。

雇佣一个技术熟练的司机来停车的花费对于增加的停车位而增加的收入来说多太多了。

2、停车场里的路都是单向的,这是为了减少通道的宽度和路的总面积。

在这种方法下,停车场的空间可以最大化。

3、入口和出口的位置决定于停车场处于街道转角的位置。

数学建模案例X城中心停车问题

数学建模案例X城中心停车问题

不可行性费用
对于停车时间不长的停车者(k=1.2.3) ,我们可以不安排他们 在 m=1 和 m=3 的停车场地(这两类停车场地只为全日停车者服务) 停 车。 因此, 为了消除这种安排的可能性, 可将相应的“不可行性费用” 定为一个“大数” (而对于其他情况,不可行性费用则为零) 。
7
模型 将现有停车位置指派给各类停车者的模型具有运输模型的结构。 令 Xij 表示第 j 类停车者分配到的第 I 类停车位置的个数,我们的目标
四.问题的分析与相关数据
指定属于第 j 类停车时间的一位司机在第 i 类停车场停车的费用 系数为 Cij,它包括下列各项:
5
步行费用
在两个地段间不行的费用用下列公式计算:
2(1.5)(两个地段间的距离)(流通系数)(每车平均人数) 在此公式中,2 这个因子表示必须步行两次(往返各一次),步行 一米折合的费用假设定为 1.5 元人民币,又假设被指定就在目 的地所在地段停车的人步行距离为 50 米。流通系数是指在同一停车 位置停车的平均车辆数, 它说明一天里一个特定的停车位置先后可供 多少辆车子停车,流通系数的值取决于停车时间的长短,它们由下表 给出。
上面两张表中的数字也是根据 X 市政府以前搜集的数据得出的。
保管费用
这种费用是和停车房管理员们商量后得出的。一年里的工资, 电
6
费,电话费等平摊到 365 天以后,就得出“24 小时”的保管费,其 中三分之二则摊算在上午 8:00 到晚上 6:00 这段时间内,其他类型 的停车场地的保管费用也用类似的办法算出。下表列出了这类费用:
表3
m=5 683 m=6 238 m=7 97 115 64 98 50 109 34
3
40 31 16 64

[整理]停车场设计问题

[整理]停车场设计问题

停车场设计问题的数学模型摘要近几年我国城市机动车的增长速度平均在15%左右,一个新的私家车消费高潮很快就要来到,而与此同时,城市的交通基础设施建设却相对落后,其中停车场地的缺乏和停车管理的不科学使得城市停车难的问题尤为突出,停车问题正在逐渐成为限制城市交通的“瓶颈”,给城市居民的生活带来了极大的不便。

如何解决好城市停车问题,尤其是大型城市的停车问题,对维护城市交通系统的正常运作以及促进城市经济发展有着重要的现实意义。

本文针对停车场设计问题建立数学模型并求解。

现对1600平方米(见方)的区域设计停车场,需满足如下要求:(1)、尽可能容纳更多的车;(2)、保持车辆的良好通过性(也即“好停车”)。

针对问题一:要求在1600平方米的区域设置单层停车场,主要有以下五种停车方式:平形式停车、倾斜角为30°、45°、60°的斜列式停车方式、垂直式停车方式。

每种停车方式所占用的车位面积均不同,但又考虑到停车的便利,故不同的停车方案对于通道的宽度要求也不一样。

为求最优的停车方式,我们引入“单位停车面积”这个概念(即满足停车场设计要求的情况下,每辆车所占用的最小停车面积),它是衡量车位面积及通道宽度的综合指标。

通过测算并比较上述每种停车方式的单位停车面积,我们得出垂直式停车方式容纳的车辆最多,为54辆。

针对问题二:欲建设一个主体占地1600平方米(见方)立体停车场(地上二层,地下一层),因为考虑不超过3%占地面积用于引道,使得停车数量尽可能的多。

我们采用先进的升降设备建设停车场,最下层和最上层采用直接升降的方式,每层之间用平移方式来达到存放车辆的目的。

考虑到车辆的良好通过性,在中间一层空出两个车位,以便存取车时节省时间。

此停车场中每层按6*12的矩阵方式密集排列,最终可停靠214辆小型汽车。

然后我们模拟了取车过程,只用了两步就完成取车,速度非常快,满足了良好通过性的要求。

[关键词]:优化模型层次分析法比例系数数学建模 MATLAB 线性规划1、问题重述1.1问题背景随着城市道路交通的发展,越来越多的家庭都拥有小汽车,而如何在大型商贸市场、医院等人流密集的地方停车成了令人头疼的问题。

小区车位分布的评价和优化模型数学建模题目

小区车位分布的评价和优化模型数学建模题目

小区车位分布的评价和优化模型数学建模1. 引言小区车位分布对于居民的生活质量和小区管理的效率有着重要的影响。

合理的车位分布可以减少居民停车难的问题,提高小区的交通秩序,并且能够有效利用空间资源,达到最佳的管理效果。

对小区车位分布进行评价和优化是非常有必要的。

2. 小区车位分布的评价我们需要评价小区的车位分布情况。

这需要考虑几个因素:1) 总车位数:为了评价车位的充裕程度,需要统计小区的总车位数。

2) 车位利用率:统计小区内停车位的使用情况,包括每天的不同时段和不同区域的使用情况。

3) 车位分布:根据小区地图和停车场的布局,评估车位分布的合理性,是否满足居民的停车需求。

4) 居民满意度:通过调查居民的意见和反馈,了解他们对小区车位分布的满意度和不足之处。

3. 小区车位分布的优化模型数学建模基于以上评价,我们可以建立数学模型来优化小区车位分布。

1) 车位分布模型:根据小区的地理信息和居民的停车需求,可以建立一个数学模型来优化车位分布。

考虑到人流量和车辆的停放习惯,可以使用最优化算法来调整车位的位置和数量,以提高车位的利用率和满足居民的需求。

2) 停车管理模型:结合智能停车管理系统,可以建立一个数学模型来优化停车管理策略,包括分时段的停车收费策略和车位预约系统。

这可以帮助小区提高停车管理的效率,减少拥堵和混乱的现象。

3) 车位规划模型:通过对小区停车场的规划和设计,可以建立一个数学模型来优化停车位的布局和数量,达到最佳的效果。

4. 个人观点和理解我认为小区车位分布的评价和优化模型数学建模是一个非常具有挑战性和实用性的课题。

通过数学建模和优化算法,可以帮助小区管理者制定更科学、合理的停车管理策略,提高小区的管理效率;同时也可以提高居民的停车体验,改善小区的居住环境。

5. 总结与回顾通过本文的评价和优化模型的建立,我们可以看到小区车位分布的重要性,以及数学建模在优化解决这一问题上的潜力。

希望本文可以为小区车位分布的评价和优化提供一些有价值的思路和方法。

2021年数学建模国赛c题原题

2021年数学建模国赛c题原题

2021年数学建模国赛C题原题1. 题目背景2021年数学建模国赛C题是关于城市停车管理的问题。

随着城市人口的不断增长和车辆数量的迅速增加,停车管理成为城市管理中的一个重要问题。

如何科学合理地安排停车位、引导车辆停放,以及提高停车位的利用率,成为了城市交通管理部门和规划设计人员所面临的挑战。

2. 题目要求考生需要结合实际案例和数据,通过建立数学模型和算法,解决以下问题:- 建立停车位利用率的动态评价模型,分析对城市停车位利用率影响最大的因素,并提出提高停车位利用率的措施。

- 设计一种智能停车导航系统,可以根据车辆实时位置和停车场停车位的实时利用情况,为驾驶员提供最优的停车导航方案。

3. 题目分析为了解决城市停车管理的问题,首先需要通过数据分析和建模,了解停车位利用率的动态评价模型。

需要针对停车位利用率影响最大的因素进行分析,包括停车需求的周期性、停车位的位置分布、停车位的容量和停车管理政策等因素。

需要设计一种智能停车导航系统,该系统需要能够实时监测车辆位置和停车位利用情况,并根据实时数据为驾驶员提供最优的停车导航方案。

4. 题目解决方案为了解决停车位利用率的动态评价模型,可以借助时间序列分析、回归分析等方法,分析停车需求的周期性,并根据停车位的位置分布和容量等因素,建立停车位利用率的动态评价模型。

针对停车位利用率影响最大的因素,可以通过统计分析和模拟实验,提出相应的措施,如调整停车管理政策、优化停车位布局等方式,提高停车位利用率。

至于设计智能停车导航系统,可以采用人工智能技术和大数据分析,实时监测车辆位置和停车位利用情况,并通过路径规划算法,为驾驶员提供最优的停车导航方案。

还可以借助互联网和移动通信技术,实现车辆和停车场的信息交互,为驾驶员提供实时的停车位信息和预约停车服务。

5. 总结通过数学建模和算法设计,可以有效解决城市停车管理的问题,提高停车位的利用率,优化城市交通管理,提升城市交通运行效率和居民出行体验。

1987B停车场问题-赵轶星——大学生数学建模竞赛

1987B停车场问题-赵轶星——大学生数学建模竞赛

1987:停车场问题在新英格兰镇有一个位于街角处、面积100×200平方英尺停车场,场主请你设计它的布局,即设场地上的线怎么画的方案。

容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车。

但是对于缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。

为了减少因停车造成意外损失的可能性,场主可能不得不雇用一些技术熟练的司机专门停车。

另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。

当然,通道越宽,场内所能容纳的车辆数目也就越少,这将使得场主减少收入。

1解决一个新英格兰镇的停车场问题摘要给定一个100×200平方英尺的场地,我们分析的目标是确定一种停车场空间的配置方案使得从停车场获得的收入最大。

我们需要考虑专职停车和自助停车两种方案。

自助停车是更好的选择,但是需要一个服务员来收停车费。

为了求得停车场最大的停车数量,我们测试了停车空间的角度从45°到90°的情况。

在如果通道的转角的数量越少,能获得越多空间的假设下,停车场配置的预算的数量可以缩减为7,。

首先,我们分析不考虑入口,出口和服务员的情况。

我们找到了一种能容下76个停车位的配置。

当入口和收费所都考虑进来时,我们的配置相对其他的配置能有更多的停车位(75)。

在我们最后的方案中,移动的许可、下雪时暂时的布置和灯柱的空间都被考虑了。

问题重述1给定一个在新英格兰镇的100×200平方英尺的在转角处的停车场,设计一种配置方案使得停车位最大并且在车场里驾驶的难度最小。

基本假设1、车是自助停车的。

雇佣一个技术熟练的司机来停车的花费对于增加的停车位而增加的收入来说多太多了。

2、停车场里的路都是单向的,这是为了减少通道的宽度和路的总面积。

在这种方法下,停车场的空间可以最大化。

3、入口和出口的位置决定于停车场处于街道转角的位置。

2018年数学建模c题

2018年数学建模c题

2018年数学建模c题2018年数学建模C题:停车场规划与优化一、问题描述随着城市的发展,停车场的需求越来越大,因此对于停车场的规划与优化变得尤为重要。

本次数学建模C题将围绕停车场规划与优化展开,目标是设计一个高效、公平、可持续的停车场管理系统。

二、问题分析1.确定问题类型:本题是一个优化问题,需要找到最优的停车场设计方案,以最大化停车场的利用率和满足用户需求。

2.明确目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略、停车位分配策略、出入控制策略等来实现。

3.约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

4.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

5.建模方法:可以采用运筹学中的优化算法,如线性规划、整数规划等,结合实际情况建立数学模型。

三、模型建立1.确定目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略来实现。

设停车场的总收益为目标函数,记为Z。

2.确定约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

设停车场的最大容量为C,车辆的平均停车时间为T,车辆的类型数量为N。

3.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

设停车场的收费标准为p,停车位数量为n,停车位分配方式为m,出入控制方式为k。

4.建立数学模型:最大化收益Z=p*n*T,约束条件包括C>=n,T>=0,N>=m>=1,k为布尔值(0或1)。

四、算法设计1.初始化变量:根据实际情况,设定初始的停车位数量n、收费标准p、停车位分配方式m、出入控制方式k等。

2.循环计算:采用循环的方式,逐步增加或减少停车位数量n,同时调整收费标准p、停车位分配方式m、出入控制方式k等,计算每个方案下的收益Z。

数学建模+停车场设计问题

数学建模+停车场设计问题

案例16 停车场的优化设计随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。

要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。

停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。

本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。

假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。

因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。

所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。

我们先来看看生活中非货运车辆大小的种类。

根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。

其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。

根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。

我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。

再来看看车位的大小。

根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。

另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例16 停车场的优化设计随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。

要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。

停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。

本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。

假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。

因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。

所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。

我们先来看看生活中非货运车辆大小的种类。

根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。

其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。

根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。

我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。

再来看看车位的大小。

根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。

另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。

设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。

考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。

所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。

根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =-=米,如图1所示。

对于大客车,我们设其最小转弯半径为110B =米,与此同时,大型车转弯时转向中心到内侧转向车轮轨迹间的最小距离为21 2.27.8B B =-=米。

本文的目的就是讨论应当整体设计车位的排布。

对于给定的停车场,我们的目标就是尽可能多地增加车位数,或者说,使每辆车占据的停车场面积尽可能小。

一 仅有一种车型的局部车位位置大型客车和小轿车在停车时占地面积相差很大,一般都是分区停泊的。

现在,让我们先来看看只限于停放小轿车的简单情况,并且先不考虑停车场的实际大小,只是来研究一下应当如何给出局部设计,才能使每辆车占据的停车场地面积最小。

对于每一个车位,为了便于该车位上的小轿车自由进出,必须有一条边是靠通道的,设该矩形停车位的长边与通道的夹角为(0)2πθθ≤≤,其中2πθ=便是车辆垂直从通道驶入车位,0θ=就是车辆从通道平行驶入车位,即平时所说的平行泊车。

为了留出通道空间和减少停车面积,显然,我们可以假设该通道中的所图1有车位都保持着和该车位相同的角度平行排列,如图2所示。

上图中,小轿车是自东向西行驶顺时针转弯θ角度驶入车位的。

我们来具体研究一下小轿车驶入车位的情况,见图3,其中1C 为最小转弯半径,R 为通道的最小宽度。

我们假定小轿车的最外端在半径为1C 的圆周上行驶,且此时轿车的最内端在半径为2C 的圆周上随之移动,然后以θ角度进入停车位,所以通道的最小宽度12cos R C C θ=-。

在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,我们来看一下一排车位之间的各个数据,见图4。

图2图3每辆车均以角度θ停放,用W 表示小轿车停车位宽度,L 表示小轿车停车位长度(这里L 的最上方并没有取到最上端是考虑到车身以外的小三角形区域可以留给对面停车位使用),o L 表示停车位末端的距离,易见他们分别是停车角θ的函数,且有sin W C W θ= 1sin cos 2L W L C C θθ=+ 01(cot )cos 2L W L C C θθ=+ 11cos 2W L C θ= 现在按照图4所示,计算一下每辆车占据的停车场面积()S θ.考虑最佳排列的极限情况,假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积012L L •,因为它们被平均到每个车位上去的公摊面积很小,可以不计。

从车辆所占的停车位来看,它占据的面积为W L •,另外,它所占的通道的面积为W R •。

考虑到通道对面(也就是图4的下部)也可以有类似的一排车位可以相互借用此通道,所以可以对占用的通道面积减半,于是我们得到:()212cos cos 122sin 2sin 2sin W W W W L C C C C C S WL WR C C θθθθθθ=+=++- (1) 我们的目标就是求出()S θ的最小值。

将1 5.5C =米,2 3.8C =米,5L C =米, 2.5W C =米代人(1)式,可得图4() 6.875 1.625cos 12.5sin sin S θθθθ=+-,()21.625 6.875cos sin S θθθ-'=, 所以当 1.62513cos 6.87555θ==,即76.33θ︒≈时,()S θ达到最小,且(){}min 19.18S θ=平方米。

需要说明的是,当0θ=时车位与车道平行,此时每辆车都得采用平行泊车的方式进入车位,这是现实生活中马路边的停车位常见的情况,在一般的停车场中几乎很少看到。

平行泊车对驾驶员的技术要求较高,所以我们不考虑这样的情况。

事实上,即便要计算在这种情况下每单位车辆所占据的停车场面积()S θ也不困难,只不过对于平行泊车,所要求的每个车位的长和宽不应再是上面所说的L C 和W C ,特别是停车位的长度L C 将变得更长(否则,停泊的车辆将无法进出),其所要求的行车道的最小宽度也得足够大,以便能让泊车车辆通过,车位图形需按小轿车路线重新绘制,读者可以自行计算并得到这些数据,计算结果表明,平行泊车是每辆车所占的平均面积明显地大于19.18平方米。

上述对车位的局部分析表明,当停车位与通道夹角76.33θ︒≈时,可以使每单位车辆占据停车场的面积达到最小。

二 仅有一种车型的全局车位排列上面的局部分析告诉我们,如果保持一排车位方向一致,且与单向通道的夹角为76.33θ︒≈,可使单位车辆占据的面积最小,此时宽度为R 的单向通道分别提供给其两边的停车位使用。

在通道两边都各安排一排小轿车车位时,考虑到路线的单行性质,通道两边的停车位角度θ应该相对,如图5所示。

对每一排停车位,其一边为通道,另一边则可以是另一排停车位或者是停车场的边缘。

所以停车排数C P 最多只能是通道数I P 的两倍,即:2C I P P ≤ (2)另一方面,如果按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,确实也可以达到2C I P P =。

即(2)式中的等号是可以成立的。

此时,车位数可以达到停车位位置的最大值,排列情况同样可以见图5. 图5显示,在每排车位数相当大或者说,在不考虑整个停车场四角浪费的那些面积时,我们可以使每单位车辆占用的停车场面积最小,并且对于小轿车来说,此最小值在车位角度76.33θ︒≈时达到。

我们再来计算一下停泊车辆均为大型客车时的最佳角度,将模型(1)修改为:()212cos cos 2sin 2sin 2sin W W W W L B B B B B S B B θθθθθθ=++- (3) 并且将相应数据代人(3)得到:()157.2cos 37.5sin sin S θθθθ=+-, ()27.215cos sin S θθθ-'= 取θ使()0S θ'=,即7.2cos 0.4815θ==,求得当61.31θ︒≈,此时每单位大型客车占据的停车场面积最小,每辆车占据的面积为()50.66S θ=(平方米)。

综上所述,对于只有一种车型的足够大的停车场,按照现有的车辆尺寸大小图5计算,我们将采用图5的排列方式设计停车位。

对于小轿车,设计车位角度为76.33︒,单位车辆占据的停车场面积为19.18平方米。

对于大型客车,设计的车位角度为61.31︒,单位车辆占据的停车场面积为50.66平方米。

三 两种车型的停车场设计的理想情况对于两种车型,即小轿车和大型客车同时存在的情况,如果对于足够大的停车场地,我们可以根据:(1)9:1αα-=的比例要求,计算出所需的小轿车车位排数和大型客车车位排数,以及每排的停车数目。

根据第二部分的讨论,我们可以按一排停车位,一行通车道,一排停车位这样三排为一组的方式组合出停车场的结构,设小轿车有g C 组,大型客车有g B 组,每组的一排长度为G 米。

根据第一部分,对于小轿车的停车位置宽度 2.5 2.573sin sin 76.33W C W θ︒===(米),而对于大型客车,其停车位置的宽度3 3.420sin sin 61.31W B W θ︒===(米)。

所以,对于小轿车,每一组可以停放的车辆数目为22.537G •,该停车场中总共可以停放22.537g C G••辆小轿车,而对于大型客车,同样可以得总车位数为23.420g B G。

根据22:9:12.537 3.420g g C G B G ••••=的比例要求,我们可以得到: 6.77:1g g C B =。

综上所述,对于足够大的停车场地,我们可以用一排停车位,一条通车道,一排停车位为一组的形式来平行设计车位,大体结构可参见图 5.至于小轿车组和大型客车组的比例,可以按照近似于6.77:1的形式,例如,取近似值7:1,13:2,20:3,27:4,34:5等比例建造。

四 具体停车场车位设计上面我们讨论的都是理想情况,现实中很多停车场的占地面积并不一定很大,而且从图5的设计安排来看,理想情况下的每一组车位都必须为车辆能够自由进出而设置一个入口和一个出口,这样的设计既不经济也不安全。

相关文档
最新文档