中考数学试卷含解析 (8)
2022年吉林省长春市中考数学试题(含答案解析)
2022年长春市初中毕业学业水平考试数 学本试卷包括三道大题,共24道小题,共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一、选择题(本大题共8小题,每小题3分,共24分)1.右图是由5个相同的小正方体组合而成的立体图形,其主视图是A B C D2.长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数 据1800000用科学记数法表示为 A. 51810⨯ B. 61.810⨯ C. 71.810⨯D. 70.1810⨯3. 不等式23x +>的解集是A. 1x <B. 5x <C. 1x >D. 5x >4.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是A. 0a >B. a b <C. 10b -<D. 0ab >5.如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂 足为点C .设ABC α∠=,下列关系式正确的是A. sin ABBCα=B. sin BC AB α=C. sin AB ACα= D. sin ACAB α= 6.如图,四边形ABCD 是O 的内接四边形.若121BCD ∠=︒,则BOD ∠的度数为A. 138°B. 121°C. 118°D. 112°7. 如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是A. AF BF =B. 12AE AC =C. 90DBF DFB ∠+∠=︒D. BAF EBC ∠=∠8.如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其 纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得 到线段QM .若点M 也在该反比例函数的图象上,则k 的值为( )A.B. C. D. 4二、填空题(本大题共6小题,每小题3分,共18分) 9.分解因式:23m m +=_______.10.若关于x 的方程20x x c ++=有两个相等的实数根,则实数c 的值为_______. 11.《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人, 则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得 x 的值为________.12.将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O 重合,且两条直角边分别与量角器边缘所在的弧交于A 、B 两点.若5OA =厘 米,则AB 的长度为________厘米.(结果保留π)13.跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形. 若27AB =厘米,则这个正六边形的周长为_________厘米.14.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______. 三、解答题(本大题共10小题,共78分)15.(本小题满分6分)先化简,再求值:()()()221a a a a +-++,其中4a =.16.(本小题满分6分)抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列 表)的方法,求两次分数之和不大于3的概率.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?18.(本小题满分6分)如图①、图②、图③均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图①中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等: (3)在图②中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图③中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.19.(本小题满分7分)如图,在Rt ABC 中,90ABC ∠=︒,AB BC <.点D 是AC 的中点,过点D 作DE AC ⊥交BC 于点E .延长ED 至点F ,使得DF DE =,连接AE 、AF 、CF .(1)求证:四边形AECF 是菱形; (2)若14BE EC =,则tan BCF ∠的值为_______.党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是________年: (2)长春市从2016年到2020年,专利授权量年增长率的中位数是_______; (3)与2019年相比,2020年长春市专利授权量增加了_______件,专利授权量年增长率提高了_______个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量 就最小.( )②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上 升.这是因为 专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.( ) ③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立 自强贡献吉林力量.( )己知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止.两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=_______,n=_______;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.22.(本小题满分8分)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD=.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在△≌△.的直线再次折叠,发现点D与点F重合,进而猜想ADG AFG【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠. ∴45EFA BFA ∠=∠=︒. ∴2AF AB AD ==. 请你补全余下的证明过程. 【结论应用】(2)DAG ∠的度数为________度,FGAF的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a ,则FQ PQ +的最小值为_________.(用含a 的代数式表示)23.(本小题满分10分)如图,在ABCD 中,4AB =,13AD BD ==,点M 为边AB 的中点,动点P 从点A 出发,沿折线AD DB -以每秒13个单位长度的速度向终点B 运动,连结PM .作点A 关于直线PM 的对称点A ',连结A P '、A M '.设点P 的运动时间为t 秒.(1)点D 到边AB 的距离为__________; (2)用含t 的代数式表示线段DP 的长;(3)连结A D ',当线段A D '最短时,求DPA '△的面积; (4)当M 、A '、C 三点共线时,直接写出t 的值.24.(本小题满分12分)在平面直角坐标系中,抛物线2y x bx =-(b 是常数)经过点()2,0.点A 在抛物线上,且点A 的横坐标为m (0m ≠).以点A 为中心,构造正方形PQMN ,2PQ m =,且PQ x ⊥轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当4BC =时,求点B 的坐标;(3)若0m >,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点..的纵坐标之差为34时,直接写 出m 的值.2022年长春市初中毕业学业水平考试数学试题参考答案一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共6小题,每小题3分,共18分) 9.:(3)m m + 10.14或0.25 11.812.52π或2.5π13.5414.1-1三、解答题(本大题共10小题,共78分) 15.解:原式=224a a a -++4a =+当4a =时,原式44==16.解:根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种, 故所求概率为:3÷4=34, 即两次分数之和不大于3的概率为34. 17.解:设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆,根据题意有:15001200100x x=+,解得:x =400,经检验,x =400是原方程的根, 故乙班每小时挖400千克的土豆.18. 解:(1)∵222222224220,215,525AB AC BC =+==+=== ∴222AB AC BC +=, ∴ABC 是直角三角形, 故答案为:直角三角形; (2)如图,点D 即为所求作,使DBC △与ABC 全等:(3)如图所示,点E 即为所作,且使ABE CBA △∽△:(4)如图,点P ,Q 即为所求,使得PBQ ABC △∽△,且相似比为1:2.19.(1)证明:AD DC =,DE DF =,∴四边形AECF 是平行四边形,∵DE AC ⊥,∴四边形AECF 是菱形;(2)解:14BE EC =, 设BE a =,则4EC a =,四边形AECF 是菱形; 4AE EC a ∴==,AE FC ∥,∴BCF BEA ∠=∠,在Rt ABE △中,AB ===,∴tan BCF ∠=tan AB BEA BE a∠=== 20.(1)2020(2)18.1%(3)5479,30.2(4)①×,②√,③√21.(1)2.6(2)甲车距A 地的路程y 与x 之间的函数关系式6080y x =+ (3)300千米22.(1)见解析(2)22.5 1.(3)2a 23.(1)3(2)当0≤t ≤1时,DP =;当1<t ≤2时,PD = (3)35(4)23或201124.(1)22y x x =-(2)()1,3B - (3)102m <≤或3m ≥ (4)38m =-或12m =或32m =.。
深圳市中考数学模拟试卷(八)含答案解析
广东省深圳市中考数学模拟试卷(八)一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣22.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×1073.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是587.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).14.点P在线段AB的垂直平分线上,PA=7,则PB=.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.18.化简:÷(1﹣).19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=,b=,n=.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.广东省深圳市中考数学模拟试卷(八)参考答案与试题解析一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣2【考点】倒数.【分析】根据倒数的概念求解.【解答】解:2的倒数是.故选A.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.【解答】解:7 000 000=7×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°【考点】余角和补角.【专题】计算题.【分析】根据互余两角之和为90°即可求解.【解答】解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.【点评】本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.4.下列立体图形中,俯视图是正方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解;A、正方体的俯视图是正方形,故A正确;B、圆柱的俯视图是圆,故B错误;C、三棱锥的俯视图是三角形,故C错误;D、圆锥的俯视图是圆,故D错误,故选:A.【点评】本题考查了简单几何体的三视图,从上面看得到的图形是俯视图.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是58【考点】众数;算术平均数;中位数;极差.【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.【解答】解:A.极差是62﹣52=10,故此选项错误;B.62出现了2次,最多,所以众数为62,故此选项错误;C. =(52+60+62+54+58+62)÷6=58;故此选项正确;D.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;故选:C.【点评】此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.7.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出 y1与y2的表达式,再根据 y1>y2则列不等式即可解答.【解答】解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm【考点】圆锥的计算.【专题】压轴题.【分析】首先求得圆锥的底面周长,然后根据圆的周长公式即可求得母线长.【解答】解:圆锥的底面周长是:6πcm,设母线长是l,则lπ=6π,解得:l=6.故选B.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°.A、sinA=,则csinA=a.故本选项正确;B、cosB=,则cosBc=a.故本选项错误;C、tanA=,则=b.故本选项错误;D、tanB=,则atanB=b.故本选项错误.故选A.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【专题】压轴题.【分析】根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.【解答】解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.【点评】本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.【考点】列表法与树状图法.【专题】压轴题.【分析】首先列出树状图,可以直观的看出总共有几种情况,再找出都是奇数的情况,根据概率公式进行计算即可.【解答】解:如图所示:取出的两个数字都是奇数的概率是: =,故答案为:.【点评】此题主要考查了画树状图,以及概率公式,关键是正确画出树状图.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.【专题】压轴题.【分析】把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.【解答】解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.【点评】本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.14.点P在线段AB的垂直平分线上,PA=7,则PB=7.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为20.【考点】菱形的判定与性质;直角三角形斜边上的中线;勾股定理.【专题】压轴题.【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,故四边形BDFG的周长=4GF=20.故答案为:20.【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=2+2﹣4×﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.化简:÷(1﹣).【考点】分式的混合运算.【分析】先因式分解再约分求解即可.【解答】解:÷(1﹣)=×,=.【点评】本题主要考查了分式的混合运算,解题的关键是熟记因式分解的几种方法.19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.【解答】证明:在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD(全等三角形的对应边相等).【点评】此题考查了全等三角形的判定与性质,全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=5,b=20,n=144.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【专题】图表型.【分析】(1)首先利用频数、频率之间的关系求得参赛人数,然后乘以一等奖的频率即可求得a 值,乘以三等奖的频率即可求得b值,用三等奖的频率乘以360°即可求得n值;(2)列表后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)观察统计表知,二等奖的有10人,频率为0.2,故参赛的总人数为10÷0.2=50人,a=50×0.1=5人,b=50×0.4=20.n=0.4×360°=144°,故答案为:5,20,144;(2)列表得:A B C 王李A ﹣AB AC A王A李B BA ﹣BC B王B李C CA CB ﹣C王C李王王A 王B 王C ﹣王李李李A 李B 李C 李王﹣∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,∴恰好选中王梦和李刚两位同学的概率P==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【考点】二元一次方程组的应用.【专题】应用题.【分析】设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.【解答】解:设规定时间为x天,生产任务是y顶帐篷,由题意得,,解得:.答:规定时间是6天,生产任务是800顶帐篷.【点评】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,利用等量关系得出方程组,难度一般.22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】设大观楼的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=12米,可得出方程,解出即可得出答案.【解答】解:设大观楼的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=12m,即x﹣x=12,解得:x=18+6,故大观楼的高度OP=18+6≈28(米).答:大观楼的高度约为28米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.【考点】全等三角形的判定与性质;菱形的判定;旋转的性质.【专题】证明题.【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵△ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.【考点】几何变换综合题.【分析】(1)确定点G为AC的中点,从而△ADC为等腰三角形,其底边AC=8,底边上的高GD=BC=3,从而面积可求;(2)本问解法有多种,解答中提供了三种不同的解法.基本思路是利用相似三角形、勾股定理求解;(3)对于爱心小组提出的问题,如答图4所示,作辅助线,利用相似三角形、勾股定理、等腰三角形的性质,列方程求解.【解答】解:(1)【思考】∵∠ACB=90°,D是AB的中点,∴DC=DA=DB,∴∠B=∠DCB.又∵△ABC≌△FDE,∴∠FDE=∠B.∴∠FDE=∠DCB,∴DG∥BC.∴∠AGD=∠ACB=90°,∴DG⊥AC.又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,∴S△DGC=CG•DG=×4×3=6.(2)【合作交流】如下图所示:∵△ABC≌△FDE,∴∠B=∠1.∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD.∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,即点G为AH的中点.在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5.在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴,即,解得DH=,∴S△DGH=S△ADH=××DH•AD=××5=.(3)【提出问题】解决“希望”小组提出的问题.如答图4,过点D作DK⊥AC于点K,则DK∥BC,又∵点D为AB中点,∴DK=BC=3.∵DM=MN,∴∠MND=∠MDN,由(2)可知∠MDN=∠B,∴∠MND=∠B,又∵∠DKN=∠C=90°,∴△DKN∽△ACB,∴,即,得KN=.设DM=MN=x,则MK=x﹣.在Rt△DMK中,由勾股定理得:MK2+DK2=MD2,即:(x﹣)2+32=x2,解得x=,∴S△DMN=MN•DK=××3═.【点评】本题是几何综合题,考查了相似三角形、全等三角形、等腰三角形、勾股定理、图形面积计算、解方程等知识点.题干信息量大,篇幅较长,需要认真读题,弄清题意与作答要求.试题以图形旋转为背景,在旋转过程中,重叠图形的形状与面积不断发生变化,需要灵活运用多种知识予以解决,有利于培养同学们的研究与探索精神,激发学习数学的兴趣,是一道好题.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2BA∽△AOM时,利用相似三角形的性质求出C点坐标即可.【解答】解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴OE=,AE=1,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)当点C在x轴负半轴上时,则∠BAC=150°,而∠ABC=30°,此时∠C=0°,故此种情况不存在;当点C在x轴正半轴上时,∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2BA∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).【点评】此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.。
2022年吉林省中考数学试卷(解析版)
2022年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.2.(2分)要使算式(﹣1)□3的运算结果最大,则“□”内应填入的运算符号为()A.+B.﹣C.×D.÷3.(2分)y与2的差不大于0,用不等式表示为()A.y﹣2>0B.y﹣2<0C.y﹣2≥0D.y﹣2≤04.(2分)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定5.(2分)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行6.(2分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.2B.3C.4D.5二、填空题(每小题3分,共24分)7.(3分)﹣的相反数是.8.(3分)计算:a•a2=.9.(3分)篮球队要购买10个篮球,每个篮球m元,一共需要元.(用含m的代数式表示)10.(3分)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛、1个小桶可以盛酒y斛.根据题意,可列方程组为.11.(3分)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为度.(写出一个即可)12.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B在y轴正半轴上,以点B为圆心,BA长为半径作弧,交x轴正半轴于点C,则点C的坐标为.13.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF=.14.(3分)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).三、解答题(每小题5分,共20分)15.(5分)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.16.(5分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=.17.(5分)长白山国家级自然保护区、松花湖风景区和净月潭国家森林公园是吉林省著名的三个景区.甲、乙两人用抽卡片的方式决定一个自己要去的景区.他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭.卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片.请用画树状图或列表的方法,求两人都决定去长白山的概率.18.(5分)图①,图②均是4×4的正方形网格,每个小正方形的顶点称为格点.其中点A,B,C均在格点上,请在给定的网格中按要求画四边形.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.四、解答题(每小题7分,共28分)19.(7分)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.20.(7分)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.21.(7分)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22.(7分)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是%.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为万人.(只填算式,不计算结果)(3)下列推断较为合理的是(填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.五、解答题(每小题8分,共16分)23.(8分)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是℃.24.(8分)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?解:相等.理由如下:设l1与l2之间的距离为h,则S△ABC=BC•h,S△DBC=BC•h.∴S△ABC=S△DBC.【探究】(1)如图②,当点D在l1,l2之间时,设点A,D到直线l2的距离分别为h,h′,则=.证明:∵S△ABC=.(2)如图③,当点D在l1,l2之间时,连接AD并延长交l2于点M,则=.证明:过点A作AE⊥BM,垂足为E,过点D作DF⊥BM,垂足为F,则∠AEM=∠DFM =90°.∴AE∥.∴△AEM∽.∴=.由【探究】(1)可知=,∴=.(3)如图④,当点D在l2下方时,连接AD交l2于点E.若点A,E,D所对应的刻度值分别为5,1.5,0,则的值为.六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm.动点P从点A出发,以2cm/s的速度沿边AB向终点B匀速运动.以P A为一边作∠APQ=120°,另一边PQ与折线AC﹣CB相交于点Q,以PQ为边作菱形PQMN,点N在线段PB上.设点P 的运动时间为x(s),菱形PQMN与△ABC重叠部分图形的面积为y(cm2).(1)当点Q在边AC上时,PQ的长为cm.(用含x的代数式表示)(2)当点M落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.2022年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【分析】由物体的正面示意图可得物体的俯视图为两同心圆.【解答】解:俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.故选:C.【点评】本题考查物体的三视图,解题关键是掌握物体的三视图的有关概念.2.(2分)要使算式(﹣1)□3的运算结果最大,则“□”内应填入的运算符号为()A.+B.﹣C.×D.÷【分析】分别把加、减、乘、除四个符号填入括号,计算出结果即可.【解答】解:当填入加号时:﹣1+3=2;当填入减号时﹣1﹣3=﹣4;当填入乘号时:﹣1×3=﹣3;当填入除号时﹣1÷3=﹣,∵2>﹣>﹣3>﹣4,∴这个运算符号是加号.故选:A.【点评】本题考查的是有理数的运算及有理数的大小比较,根据题意得出填入加、减、乘、除四个符号的得数是解答此题的关键.3.(2分)y与2的差不大于0,用不等式表示为()A.y﹣2>0B.y﹣2<0C.y﹣2≥0D.y﹣2≤0【分析】不大于就是小于等于的意思,根据y与2的差不大于0,可列出不等式.【解答】解:根据题意得:y﹣2≤0.故选:D.【点评】本题主要考查了一元一次不等式,解答本题的关键是理解“不大于”的意思,列出不等式.4.(2分)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定【分析】由数轴上b在a的右侧可得b与a的大小关系.【解答】解:∵b>0,a<0,∴a<b,故选:B.【点评】本题考查实数与数轴,解题关键是掌握数轴的定义.5.(2分)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.【点评】本题考查平行线的判定,解题关键是掌握平行线的判定方法.6.(2分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.2B.3C.4D.5【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==3,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:C.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.二、填空题(每小题3分,共24分)7.(3分)﹣的相反数是.【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变﹣前面的符号,即可得﹣的相反数.【解答】解:﹣的相反数是.故答案为:.【点评】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.(3分)计算:a•a2=a3.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n 计算即可.【解答】解:a•a2=a1+2=a3.故答案为:a3.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.9.(3分)篮球队要购买10个篮球,每个篮球m元,一共需要10m元.(用含m的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m元,一共需要10m元,故答案为:10m.【点评】本题主要考查了通过实际问题列出代数式,理解题意是解答本题的关键.10.(3分)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛、1个小桶可以盛酒y斛.根据题意,可列方程组为.【分析】根据题意列出二元一次方程组即可.【解答】解:设1个大桶可以盛酒x斛、1个小桶可以盛酒y斛,由题意得:,故答案为:.【点评】本题考查的是二元一次方程组的应用,找等量关系是列方程组的关键和难点.11.(3分)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为60(答案不唯一).度.(写出一个即可)【分析】先求出正六边形的中心角,再根据旋转变换的性质解答即可.【解答】解:360°÷6=60°,则这个图案绕着它的中心旋转60°后能够与它本身重合,故答案为:60(答案不唯一).【点评】本题考查的是旋转对称图形、正多边形的性质,求出正六边形的中心角是解题的关键.12.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B在y轴正半轴上,以点B为圆心,BA长为半径作弧,交x轴正半轴于点C,则点C的坐标为(2,0).【分析】由图象可得OB与圆的直径重合,由BO⊥AC及垂径定理求解.【解答】解:由图象可得OB与直径重合,∵BO⊥AC,∴OA=OC,∵A(﹣2,0),∴C(2,0),故答案为:(2,0).【点评】本题考查与圆的有关计算,解题关键是掌握垂径定理及其推论.13.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF=.【分析】由AF=AC可得点F为AO中点,从而可得EF为△AOD的中位线,进而求解.【解答】解:在矩形ABCD中,AO=OC=AC,AC=BD=10,∵AF=AC,∴AF=AO,∴点F为AO中点,又∵点E为边AD的中点,∴EF为△AOD的中位线,∴EF=OD=BD=.故答案为:.【点评】本题考查矩形的性质,解题关键是掌握三角形的中位线的性质.14.(3分)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).【分析】由圆周角定理可得∠BOE的大小,从而可得∠BOC+∠DOE的大小,进而求解.【解答】解:∵∠BAE=65°,∴∠BOE=130°,∴∠BOC+∠DOE=∠BOE﹣∠COD=60°,∴+的长度=×2π×1=,故答案为:π.【点评】本题考查圆周角定理,解题关键是掌握圆心角与圆周角的关系,掌握计算弧长的方法.三、解答题(每小题5分,共20分)15.(5分)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.【分析】由AB=AC,∠BAD=∠CAD,AD=AD可证明△ABD≌△ACD,从而可得BD =CD.【解答】证明:在△ABD与△ACD中,,∴△ABD≌△ACD(SAS),∴BD=CD.【点评】本题考查全等三角形的判定及性质,解题关键是掌握全等三角形的判定方法及全等三角形的性质.16.(5分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.【分析】根据题意合并同类项即可.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.【点评】本题主要考查整式的加减,熟练掌握整式的运算是解题的关键.17.(5分)长白山国家级自然保护区、松花湖风景区和净月潭国家森林公园是吉林省著名的三个景区.甲、乙两人用抽卡片的方式决定一个自己要去的景区.他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭.卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片.请用画树状图或列表的方法,求两人都决定去长白山的概率.【分析】根据题意作图得出概率即可.【解答】解:由题意作树状图如下:由图知,两人都决定去长白山的概率为.【点评】本题主要考查概率的知识,熟练掌握列表法和树状图法求概率是解题的关键.18.(5分)图①,图②均是4×4的正方形网格,每个小正方形的顶点称为格点.其中点A,B,C均在格点上,请在给定的网格中按要求画四边形.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.【分析】(1)作点B关于直线AC的对称点D,四边形ABCD为筝形.(2)将点A向右平移1个单位,再向上平移1个单位可得点E,四边形ABCE为平行四边形.【解答】解:(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点E,连接ABCE,AE∥BC 且AE=BC,∴四边形ABCE为平行四边形,符合题意.【点评】本题考查网格无刻度尺作图,解题关键是掌握平行四边形的性质.四、解答题(每小题7分,共28分)19.(7分)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.【分析】设李婷每分钟跳绳x个,则刘芳每分钟跳绳x+20个,根据时间相等列方程求解即可.【解答】解:设李婷每分钟跳绳x个,则刘芳每分钟跳绳x+20个,根据题意列方程,得,即135x=120(x+20),解得x=160,经检验x=160是原方程的解,答:李婷每分钟跳绳160个.【点评】本题主要考查分式方程,根据时间相等列方程求解是解题的关键.20.(7分)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.【分析】(1)通过待定系数法求解.(2)将V=10代入函数解析式求解.【解答】解:(1)设ρ=,将(4,2.5)代入ρ=得2.5=,解得k=10,∴ρ=.(2)将V=10代入ρ=得ρ=1.∴该气体的密度为1kg/m3.【点评】本题考查反比例函数的应用,解题关键是掌握待定系数法求函数解析式,掌握函数与方程的关系.21.(7分)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【分析】由AB,BC的长度求出AC长度,然后根据sin∠BCD=求解.【解答】解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.【点评】本题考查解直角三角形,解题关键是掌握锐角三角函数的定义.22.(7分)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是62.71%.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为141260×64.72%万人.(只填算式,不计算结果)(3)下列推断较为合理的是①(填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.【分析】(1)将2017﹣2021年年末的城镇化率从小到大排列,从而可得中位数.(2)根据城镇化率=×100%可得2021年年末全国城镇常住人口为141260×64.72%(万人).‘(3)由折线图可得全国常住人口城镇化率在逐年增加.【解答】解:(1)∵2017﹣2021年年末,全国常住人口城镇化率分别为60.24%,61.50%,62.71%,63.89%,64.72%,∴中为数是62.71%,故答案为:62.71.(2)∵2021年年末城镇化率为64.72%,∴常住人口为141260×64.72%(万人),故答案为:141260×64.72%.(3)∵2017﹣2021年年末,全国常住人口城镇化率逐年上升,∴估计2022年年末全国常住人口城镇化率高于64.72%.故答案为:①.【点评】本题考查数据的收集与整理,解题关键是掌握中位数的概念,读懂折线图.五、解答题(每小题8分,共16分)23.(8分)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是20℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是65℃.【分析】(1)由图象x=0时y=20求解.(2)通过待定系数法求解.(3)由图象可求出甲壶的加热速度,求出甲壶中水温达到80℃时的x,将其代入(2)中解析式求解.【解答】解:(1)由图象得x=0时y=20,∴加热前水温是20℃,故答案为:20.(2)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b,将(0,20),(160,80)代入y=kx+b得,解得,∴y=x+20.(3)甲水壶的加热速度为(60﹣20)÷80=℃/s,∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s,将x=120代入y=x+20得y=65,故答案为:65.【点评】本题考查一次函数的应用,解题关键是掌握待定系数法求函数解析式,掌握一次函数与方程的关系.24.(8分)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?解:相等.理由如下:设l1与l2之间的距离为h,则S△ABC=BC•h,S△DBC=BC•h.∴S△ABC=S△DBC.【探究】(1)如图②,当点D在l1,l2之间时,设点A,D到直线l2的距离分别为h,h′,则=.证明:∵S△ABC=BC•h.(2)如图③,当点D在l1,l2之间时,连接AD并延长交l2于点M,则=.证明:过点A作AE⊥BM,垂足为E,过点D作DF⊥BM,垂足为F,则∠AEM=∠DFM =90°.∴AE∥DF.∴△AEM∽△DFM.∴=.由【探究】(1)可知=,∴=.(3)如图④,当点D在l2下方时,连接AD交l2于点E.若点A,E,D所对应的刻度值分别为5,1.5,0,则的值为.【分析】(1)由S△ABC=BC•h,S△DBC=BC•h′即可证明.(2)由AE∥DF可得△AEM∽△DFM,再由相似三角形的性质可得=,然后结合【探究】(1)结论可得=.(3)作DK∥AC交l2于点K,由【探究】(1)(2)可得=,进而求解.【解答】(1)证明:∵S△ABC=BC•h,S△DBC=BC•h′,∴=.(2)证明:过点A作AE⊥BM,垂足为E,过点D作DF⊥BM,垂足为F,则∠AEM=∠DFM=90°.∵AE∥DF,∴△AEM∽△DFM,∴=,由【探究】(1)可知=,∴=.故答案为:DF,△DFM,.(3)作DK∥AC交l2于点K,∵DK∥AC,∴△ACE∽△DKE,∵DE=1.5,AE=5﹣1.5=3.5,∴==,由【探究】(2)可得==.故答案为:.【点评】本题考查图形的探究题型,解题关键是掌握三角形的面积公式,掌握相似三角形的判定及性质.六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm.动点P从点A出发,以2cm/s的速度沿边AB向终点B匀速运动.以P A为一边作∠APQ=120°,另一边PQ与折线AC﹣CB相交于点Q,以PQ为边作菱形PQMN,点N在线段PB上.设点P的运动时间为x(s),菱形PQMN与△ABC重叠部分图形的面积为y(cm2).(1)当点Q在边AC上时,PQ的长为2x cm.(用含x的代数式表示)(2)当点M落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【分析】(1)作PE⊥AC于点E,由含30°角的直角三角形可得AE的长度,再由等腰三角形的性质可得PQ的长度.(2)作出点M落在边BC上的图象,由AP+PN+NB=AB求解.(3)分类讨论0≤x≤1,1<t≤,<x≤3并作出图象求解.【解答】解:(1)∵∠A=30°,∠APQ=120°,∴∠AQP=30°,∴PQ=AP=2x.故答案为:2x.(2)如图,∵∠APQ=120°,∴∠MNB=∠PQB=60°,∵∠B=60°,∴△MNB为等边三角形,∴AP=PQ=PN=MN=NB,即AP+PN+NB=3AP=AB,∴3×2x=6,解得x=1.(3)当0≤x≤1时,作QF⊥AB于点F,∵∠A=30°,AQ=2x,∴QF=AQ=x,∵PN=PQ=AP=2x,∴y=PN•QF=2x•x=2x2.当1<t≤时,QM,NM交BC于点H,K,∵AB=6cm,∠A=30°,∴AC=AB=3cm,∴CQ=AC﹣AQ=3﹣2x,∴QH=CQ=(3﹣2x)=6﹣4x,∴HM=QM﹣QH=2x﹣(6﹣4x)=6x﹣6,∵△HKM为等边三角形,∴S△HKM=HM2=9x2﹣18x+9,∴y=2x2﹣(9x2﹣18x+9)=﹣7x2+18x﹣9.当<x≤3时,重叠图形△PQM为等边三角形,PQ=PB=AB﹣AP=6﹣2x,∴y=PB2=(6﹣2x)2=x2﹣6x+9.综上所述,y=.【点评】本题考查图形的综合题,解题关键是掌握解直角三角形的方法,掌握菱形的性质,通过分类讨论求解.26.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.【分析】(1)通过待定系数法求解.(2)令y=0,求出抛物线与x轴交点坐标,结合图象求解.(3)①分类讨论点P在抛物线对称轴右侧及左侧两种情况,分别求出顶点为最低点和点P为最低点时m的值.②根据m的值,作出等腰直角三角形求解.【解答】解:(1)将(1,0),(0,3)代入y=x2+bx+c得,解得,∴y=x2﹣4x+3.(2)令x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴交点坐标为(1,0),(3,0),∵抛物线开口向上,∴m<1或m>3时,点P在x轴上方.(3)①∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线顶点坐标为(2,﹣1),对称轴为直线x=2,当m>2时,抛物线顶点为最低点,∴﹣1=2﹣m,解得m=3,当m≤2时,点P为最低点,将x=m代入y=x2﹣4x+3得y=m2﹣4m+3,∴m2﹣4m+3=2﹣m,解得m1=(舍),m2=.∴m=3或m=.②当m=3时,点P在x轴上,AP=2,∵抛物线顶点坐标为(2,﹣1),∴点Q坐标为(2,﹣1)或(2,1)符合题意.当m=时,如图,∠QP A=90°过点P作y轴平行线,交x轴于点F,作QE⊥PF 于点E,∵∠QPE+∠APF=∠APF+∠P AF=90°,∴∠QPE=∠P AF,又∵∠QEP=∠PF A=90°,QP=P A,∴△QEP≌△PF A(AAS),∴QE=PF,即2﹣m=m2﹣4m+3,解得m1=(舍),m2=.∴PF=2﹣,AF=PE=1﹣,∴EF=PF+PE=2﹣+1﹣=,∴点Q坐标为(2,).综上所述,点Q坐标为(2,﹣1)或(2,1)或(2,).【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过数形结合求解.。
2022年四川省达州市中考数学试题(含答案解析)
数学
本考试为闭卷考试,考试时间120分钟,本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.
温馨提示:
1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置.待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.
A. B.
C. D.
6.下列命题是真命题的是
A.相等的两个角是对顶角
B.相等的圆周角所对的弧相等
C.若 ,则
D.在一个不透明 箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱
子里任意摸出1个球,摸到白球的概率是
7.如图,在 中,点D,E分别是 , 边的中点,点
F在 的延长线上.添加一个条件,使得四边形 为
(1)求证: 平分 ;
(2)若 , ,求⊙ 的半径.
24.(11分)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角
形 和等腰直角三角形 ,按如图1的方式摆放, ,随后保持
不动,将 绕点C按逆时针方向旋转 ( ),连接 , ,
延长 交 于点F,连接 .该数学兴趣小组进行如下探究,请你帮忙解答:
二、填空题(每小题3分,共18分)
11.计算: ______.
12.如图,在 中, , ,分别以点A,B为圆心,大于 的长
为半径作弧,两弧分别相交于点M,N,作直线 ,交 于点D,连接 ,则
的度数为_____.
13.如图,菱形 的对角线 与 相交于点 , , ,则菱形
的周长是________.
14.关于x的不等式组 恰有3个整数解,则a的取值范围是_______.
2024年陕西省中考数学试题(含解析)
2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.3-的倒数是()A.3B.13 C.13- D.3-2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B. C. D.3.如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为()A.25︒B.35︒C.45︒D.55︒4.不等式()216x -≥的解集是()A.2x ≤ B.2x ≥ C.4x ≤ D.4x ≥5.如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为()A.3y x = B.3y x =- C.13y x = D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为()A .2 B.3 C.52 D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:2a ab -=_______________.10.小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12.已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13.如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
2023年吉林省长春市中考数学试卷及答案解析
2023年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)实数a、b、c、d在数轴上对应点的位置如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d2.(3分)长春龙嘉国际机场T3A航站楼设计创意为“鹤舞长春”.如图所示.航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程是按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为()A.0.38×108B.38×106C.3.8×108D.3.8×107 3.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a=a3C.(a2)3=a5D.a6÷a2=a3 4.(3分)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥5.(3分)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短6.(3分)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米B.32cos25°米C.米D.米7.(3分)如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE 8.(3分)如图,在平面直角坐标系中,点A、B在函数(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与y轴相切、⊙B与x轴相切时,连接AB,,则k的值为()A.3B.3C.4D.6二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:m2﹣1=.10.(3分)若关于x的方程x2﹣2x+c=0有两个不相等的实数根,则实数c的取值范围是.11.(3分)2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)12.(3分)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.13.(3分)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为度.14.(3分)2023年5月28日,C919商业首航完成——中国民航商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”,是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为80米时,两条水柱在抛物线的顶点H处相遇.此时相遇点H距地面20米,喷水口A、B距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A′、B′到地面的距离均保持不变,则此时两条水柱相遇点H'距地面米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a+1)2+a(1﹣a),其中.16.(6分)班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则如下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后放回,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.17.(6分)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?18.(7分)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放,点A、E,B、D依次在同一条直线上,连接AF、CD.(1)求证:四边形AFDC是平行四边形;(2)已知BC=6cm,当四边形AFDC是菱形时,AD的长为cm.19.(7分)近年来,肥胖已经成为影响人们身体健康的重要因素,国际上常用身体质量指数(BodyMassIndex,缩写BMI)来衡量人体程度以及是否康其计算公式是BMI=,例如:某人身高1.60m,体重60kg,则他的,中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖:BMI≥28为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI值并绘制了两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m,BMI值为27,他想通过健身减重使自己的BMI值达到正常,则他的体重至少需要减掉kg.(结果精确到1kg)20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.(1)在图①中,△ABC的面积为;(2)在图②中,△ABC的面积为5;(3)在图③中,△ABC是面积为的钝角三角形.21.(8分)甲、乙两人相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车直达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示:(1)当15≤x≤40时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.22.(9分)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.23.(10分)如图①,在矩形ABCD中,AB=3,AD=5,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB﹣BA﹣AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P 的运动时间为t秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形,如图②,请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.24.(12分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+2(b是常数)经过点(2,2).点A的坐标为(m,0),点B在该抛物线上,横坐标为1﹣m.其中m<0.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B在x轴上时,求点A的坐标;(3)该抛物线与x轴的左交点为P,当抛物线在点P和点B之间的部分(包括P,B两点)的最高点与最低点的纵坐标之差为2﹣m时,求m的值;(4)当点B在x轴上方时,过点B作BC⊥y轴于点C,连接AC、BO.若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC的顶点),设这两个交点分别为点E、点F,线段BO的中点为D.当以点C、E、O、D(或以点C、F、O、D)为顶点的四边形的面积是四边形AOBC面积的一半时,直接写出所有满足条件的m的值.2023年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据数轴上表示某个数的点与原点的距离的大小确定结论.【解答】解:由图可知:实数b在数轴上的对应点到原点O的距离,所以在这四个数中,绝对值最小的数是b.故选:B.【点评】本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:38000000=3.8×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别判断得出答案.【解答】解:A.a3﹣a2,无法合并,故此选项不合题意;B.a2•a=a3,故此选项符合题意;C.(a2)3=a6,故此选项不合题意;D.a6÷a2=a4,故此选项不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.5.【分析】根据点O为AA'、BB'的中点得出OA=OA',OB=OB',根据对顶角相等得到∠AOB=∠A'OB',从而证得△AOB和△A'OB'全等,于是有AB=A'B',问题得证.【解答】解:∵点O为AA'、BB'的中点,∴OA=OA',OB=OB',由对顶角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的长度,就可以知道该零件内径AB的长度,故选:A.【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.6.【分析】根据直角三角形的边角关系进行解答即可.【解答】解:如图,由题意得,AC=32m,∠A=25°,在Rt△ABC中,∵cos A=,∴AB==(m),故选:D.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.7.【分析】利用基本作图得到AF平分∠MAN,则根据角平分线的画法可对选项进行一一判断.【解答】解:角平分线的作法如下:①以点A为圆心,AD长为半径作弧,分别交AM、AN于点D、E;②分别以点D、E为圆心,DF长为半径作弧,两弧在∠MAN内相交于点F;③作射线AF,AF即为∠MAN的平分线.根据角平分线的作法可知,AD=AE,DF=EF,根据等腰三角形的三线合一可知AF⊥DE,故选:B.【点评】本题考查了用直尺和圆规作角平分线的方法,掌握画法是解题的关键.8.【分析】依据题意,可得A(1,k),B(k,1),再由AB=3,从而2(k﹣1)2=18,进而得解.【解答】解:由题意,得A(1,k),B(k,1).∵AB=3,∴有两点距离公式可得:2(k﹣1)2=18.∴(k﹣1)2=9.∴k=﹣2或4.又k>0,∴k=4.故选:C.【点评】本题考查了反比例函数的图象与性质的应用,解题时需要熟练掌握并理解.二、填空题(本大题共6小题,每小题3分,共18分)9.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.【分析】根据一元二次方程有两个不相等的实数根,Δ=b2﹣4ac>0求解即可.【解答】解:∵关于x的方程x2﹣2x+c=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4c>0,解得:c<1.故答案为:c<1.【点评】本题主要考查一元二次方程根的判别式,熟知一元二次方程的根与Δ=b2﹣4ac 的关系是解题关键.熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.11.【分析】根据题意可知:总路程﹣已跑的路程=离终点的路程,然后列出相应的代数式即可.【解答】解:由题意可得,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为(7.5﹣10x)公里,故答案为:(7.5﹣10x).【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式即可.12.【分析】根据题意求出OA:OA′=1:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC与△A′B′C′的周长比为1:3,故答案为:1:3.【点评】本题考查的是位似变换的概念和性质,掌握位似图形的对应边互相平行是解题的关键.13.【分析】由多边形的内角和及轴对称的性质和三角形内角和可得出结论.【解答】解:∵五边形的内角和为(5﹣2)×180°=540°,∴∠B=∠BAE=108°,由图形的折叠可知,∠BAM=∠EAM=∠BAE=54°,∠BAF=∠FAB'=∠BAM=27°,∠AFB'=∠AFB=180°﹣∠B﹣∠BAF=180°﹣108°﹣27°=45°.故答案为:45.【点评】本题考查了多边形的内角和,三角形的内角和定理,图形的折叠的性质,掌握这些知识点是解题的关键.14.【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令x =0求平移后的抛物线与y轴的交点即可.【解答】解:由题意可知:A(﹣40,4)、B(40,4).H(0,20),设抛物线解析式为:y=ax2+20,将A(﹣40,4)代入解析式y=ax2+20,解得:a=﹣,∴y=﹣+20,消防车同时后退10米,即抛物线y=﹣+20向左平移后的抛物线解析式为:y=﹣+20,令x=0,解得:y=19,故答案为:19.【点评】本题考查了待定系数法求抛物线解析式、函数图象的平移及坐标轴的交点,解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15.【分析】分别运用完全平方公式和乘法分配律将两个括号展开,再进行合并同类项计算即可.【解答】解:原式=a2+2a+1+a﹣a2=(a2﹣a2)+(2a+a)+1=3a+1.当a=时,3a+1=3×+1=+1.【点评】整式的混合运算是初中数学最基本的知识点,考查学生最基本的运算能力,一定要熟练掌握,确保计算结果正确无误.16.【分析】画树状图,共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,∴某同学获一等奖的概率为.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】设原计划平均每天制作x个摆件,根据“结果提前5天完成任务”列分式方程,求解即可.【解答】解:设原计划平均每天制作x个摆件,根据题意,得,解得x=200,经检验,x=200是原方程的根,且符合题意,答:原计划平均每天制作200个摆件.【点评】本题考查了分式方程的应用,理解题意并能根据题意建立方程是解题的关键.18.【分析】(1)根据全等三角形的性质得到AC=DF,∠CAB=∠FDE,根据平行线的判定定理得到AC∥DF,根据平行四边形的判定定理即可得到四边形AFDC是平行四边形;(2)连接CF交AD于O,根据直角三角形的性质得到AC=BC=6(cm),根据菱形的性质得到CF⊥AD,AD=2AO,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE,∴AC∥DF,∴四边形AFDC是平行四边形;(2)解:连接CF交AD于O,∵∠ACB=90°,∠CAB=30°,BC=6cm,∴AC=BC=6(cm),∵四边形AFDC是菱形,∴CF⊥AD,AD=2AO,∴∠AOC=90°,∴AO=AC==9(cm),∴AD=2AO=18cm,故答案为:18.【点评】本题考查了菱形的性质,平行四边形的判定,含30°角的直角三角形的性质,全等三角形的性质,熟练掌握菱形的性质是解题的关键.19.【分析】(1)利用正常人数7除以35%即可得总人数,减去其它人数和即可得答案;(2)用200×偏胖和肥胖和的百分比即可得答案;(3)利用身体质量指数公式算出小张实际体重,再用小张身高算出正常体重的最大值,最后用小张实际体重减去小张正常体重的最大值即可得答.【解答】解:(1)7÷35%=20(人),偏胖人数:20﹣2﹣7﹣3=8(人),条形图如下:(2)200×=110(人),答:公司200名员工中属于偏胖和肥胖的总人数110人;(3)小张实际体重:27×(1.70)2=78.03(kg),小张正常体重的最大值:24×(1.70)2=69.36(kg),∴他的体重至少需要减掉:78.03﹣69.36≈9(kg),故答案为:9.【点评】本题考查条形统计图,扇形图,能结合俩图找到正常体重的人数和百分比是解题关键.20.【分析】(1)先根据三角形的面积求出AB边上的高,再作图;(2)根据网格线的特点及三角形的面积公式作图;(3)根据网格线的特点及三角形的面积公式作图.【解答】解:如图:(1)如图①:△ABC即为所求;(2)如图②:△ABC即为所求;(3)如图③:△ABC即为所求.【点评】本题考查了作图的应用与设计,掌握网格线的特点及三角形的面积公式是解题的关键.21.【分析】(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,再利用待定系数法来求解即可;(2)求出甲的函数解析式和乙的解析式,甲的函数解析式和乙的解析式组成方程组解答即可.【解答】解:(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,∵直线过(15,0)和(40,300),∴,解得,∴乙距山脚的垂直高度y与x之间的函数关系式为y=12x﹣180;(2)设甲的函数解析式为:y=mx+n,将(25,160)和(60,300)代入得:,解得,∴y=4x+60;∵乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度,∴,解得,∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米.【点评】本题考查了一次函数的应用,待定系数法求一次函数的解析式的运用,图象的交点坐标的求法是解题关键.22.【分析】【感知】根据圆周角定理即可得出答案;【探究】先构造出△PBC≌△EBA(SAS),得出PB=EB,进而得出△PBE是等边三角形,即可得出结论;【应用】先构造出△PBC≌△EBA(SAS),进而判断出∠PBG=90°,进而得出△PBG 是等腰直角三角形,即可得出结论;【解答】【感知】解:∵∠AOB=90°,∴∠APB=∠AOB=45°(在同圆中,同弧所对的圆周角是圆心角的一半),故答案为:45;【探究】证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS),∴PB=EB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠APB=60°,∴△PBE为等边三角形,∴PB=PE=AE+AP=PC+AP;【应用】解:如图③,延长PA至点G,使AG=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAG=180°,∴∠BCP=∠BAG,∵BA=BC,∴△PBC≌△GBA(SAS),∴PB=GB,∠PBC=∠GBA,∵∠ABC=90°,∴∠PBG=∠GBA+∠ABP=∠PBC+∠ABP=∠ABC=90°,∴PG=BP,∵PG=PA+AG=PA+PC,∴PC=PG﹣PA=×2PA﹣PA=3PA,∴==,故答案为:【点评】此题是圆的综合题,主要考查了圆周角定理,圆内接四边形的性质,全等三角形的判定和性质,作出辅助线构造出全等三角形是解本题的关键.23.【分析】(1)证明四边形ABEQ是矩形,进而在Rt△QBE中,勾股定理即可求解.(2)证明△PBE∽△ECD,得出.(3)过点P作PH⊥BC于点H,证明△PHE≌△ECQ得出PE=QE,即可得出结论.(4)分三种情况讨论,①如图所示,当点P在BE上时,②当P点在AB上时,当F,A重合时符合题意,此时如图,③当点P在AD上,当F,D重合时,此时Q与点C重合,则PFQE是正方形,即可求解.【解答】解:如图所示,连接BQ,∵四边形ABCD是矩形,∴∠BAQ=∠ABE=90°,∵∠PEQ=90°,∴四边形ABEQ是矩形,当点P和点B重合时,∴QE=AB=3,BE=2,在Rt△QBE中,,故答案为:.(2)如图所示,∵∠PEQ=90°,∠PBE=∠ECD=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴△PBE∽△ECD,∴,∵BE=2,CD=AB=3,∴.(3)如图所示,过点P作PH⊥BC于点H,∵∠PEQ=90°,∠PHE=∠ECQ=90°,∴∠1+∠2=90°,∠2+∠3=90°,则四边形ABHP是矩形,∴PH=AB=3,又∵EC=BC﹣BE=5﹣2=3,∴PH=EC,∴△PHE≌ECQ(AAS),∴PE=QE,∴△PQE是等腰直角三角形;(4)①如图所示,当点P在BE上时,∵QE=QF=3,AQ=BE=2,在Rt△AQF中,,则,∵PE=t,∴BP=2﹣t,PF=PE=t,在Rt△PBF中,PF2=PB2+FB2,∴,解得:,当时,点F在矩形内部,∴0<t≤符合题意.②当P点在AB上时,当F,A重合时符合题意,此时如图,π则PB=t﹣BE=t﹣2,PE=AP=AB﹣PB=3﹣(t﹣2)=5﹣t,在Rt△PBE中,PE2=PB2+BE2,∴(5﹣t)2=(t﹣2)2+22,解得t=.③当点P在AD上,当F,D重合时,此时点Q与点C重合,则PFQE是正方形,此时t=2+3+2=7.综上所述,0<t≤或t=或t=7.【点评】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24.【分析】(1)将点(2,2)代入抛物线解析式,利用待定系数法即可求解;(2)当y=0时,﹣x2+2x+2=0,求得抛物线与x轴的交点坐标,根据抛物线上的点B 在x轴上时,横坐标为1﹣m,其中m<0,得出,即可求解;(3)证明点B一定在对称轴右侧,分情况讨论:①如图所示,当,即﹣时,②当,即时分别画出图形,根据最高点与最低点的纵坐标之差为2﹣m,建立方程,解方程即可求解;(4)根据B在x轴的上方,得出﹣<m<0,根据题意分三种情况讨论:①当E是AC的中点时,②当F为AO的中点时,③,根据题意分别得出方程,解方程即可求解.【解答】解:(1)将点(2,2)代入抛物线y=﹣x2+bx+2中,得2=﹣4+2b+2,解得:b=2,∴抛物线解析式为y=﹣x2+2x+2=﹣(x﹣1)2+3,∴顶点坐标为(1,3).(2)由y=﹣x2+2x+2,当y=0时,﹣x2+2x+2=0,解得:,,∵抛物线上的点B在x轴上时,横坐标为1﹣m.其中m<0.∴1﹣m>1,∴,解得:,∵点A的坐标为(m,0),∴.(3)令﹣x2+2x+2=0,得x1=1﹣,x2=1+,∴P(1﹣,0),∵m<0,∴1﹣m>1,∴点B一定在对称轴右侧,∴B(1﹣m,﹣m2+3).①如图所示,当,即﹣时,根据题意,3=2﹣m,解得m=﹣1;②当,即时,依题意,3﹣(﹣m2+3)=2﹣m,解得:m=﹣2或m=1(舍去).综上所述,m=﹣1或m=﹣2.(4)如图所示,∵B在x轴的上方,∴且m<0,∴﹣<m<0,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,=S△COD,∴S△BCD=S△AOC+S△BOC,S△BOC=S△BCD+S△COD,∵S四边形AOBC①当E是AC的中点,如图,则S四边形AOBC∴,代入y=﹣x2+2x+2,即,解得(舍去)或;②同理当F为AO的中点时,如图所示,S△ACF=S△CFO,S△BCD=S△COD,则点C、F、O、D为顶点的四边形的面积是四边形AOBC 面积的一半,∴,解得;③如图所示,=S,设S△BOC则,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,∴,即,∴,∴CF=AO,∴F(﹣m,﹣m2+3),∵B,F关于x=1对称,∴,解得:.综上所述,或或.【点评】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键。
2024年山东省烟台市中考真题数学试卷含答案解析
2024年山东省烟台市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中的无理数是( )A .23B .3.14C D2.下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B . 12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .3.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④【答案】A 【分析】本题考查几何体的三视图,熟练掌握三视图的画法是解题的关键.分别画出各选项得出的左视图,再判断即可.【详解】解:A 、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A 符合题意;B 、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B 不符合题意;C 、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C 不符合题意;D 、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D 不符合题意;故选:A .4.实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c -<C .a c >D .22a b-<-【答案】B5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是4A 纸厚度的六分之一,已知1毫米1=百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A .30.1510⨯纳米B ..41510⨯纳米C .51510-⨯纳米D .61.510-⨯纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为2S 甲和2S 乙,则2S 甲和2S 乙的大小关系是( )A .22S S >甲乙B .22S S <甲乙C .22S S =甲乙D .无法确定【答案】A 【分析】本题考查比较方差的大小,根据折线图,得到乙选手的成绩波动较小,即可得出结果.【详解】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,∴22S S >甲乙;故选A .7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.【详解】解:第一个图为尺规作角平分线的方法,OP 为AOB ∠的平分线;第二个图,由作图可知:,OC OD OA OB ==,∴AC BD =,∵AOD BOC ∠=∠,∴AOD BOC ≌△△,∴OAD OBC ∠=∠,∵AC BD =,BPD APC ∠=∠,∴BPD APC ≌,∴AP BP =,∵,OA OB OP OP ==,∴AOP BOP ≌△△,∴AOP BOP ∠=∠,∴OP 为AOB ∠的平分线;第三个图,由作图可知,ACP AOB OC CP ∠=∠=,∴CP BO ∥,COP CPO ∠=∠,∴CPO BOPÐ=Ð∴COP BOP ∠=∠,∴OP 为AOB ∠的平分线;第四个图,由作图可知:OP CD ⊥,OC OD =,∴OP 为AOB ∠的平分线;故选D .8.如图,在正方形ABCD 中,点E ,F 分别为对角线BD AC ,的三等分点,连接AE 并延长交CD 于点G ,连接EF FG ,,若AGF α∠=,则FAG ∠用含α的代数式表示为( )A .452α︒-B .902α︒-C .452α︒+D .2α∴OD OC =,ODC ∠=∴OE OF =,∵EOF DOC ∠=∠,OE OD ∴EOF DOC ∽△△,9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A.45尺B.88尺C.90尺D.98尺故选:C .10.如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∵菱形EFGH ,60E ∠=︒,依题意,MNG 为等边三角形,运动时间为t ,则cos30NG =∴1sin 60S NG NG =⨯⨯⨯︒依题意,6EM EG t t =-=-,则EK ∴()211236223EKJ S EJ EM t =⋅=⨯- ∴EKJS S S =- 菱形当1114x <≤时,同理可得,3综上所述,当03x ≤≤时,函数图象为开口向上的一段抛物线,当开口向下的一段抛物线,当68x <≤时,函数图象为一条线段,当开口向下的一段抛物线,当1114x <≤时,函数图象为开口向上的一段抛物线;故选:D .二、填空题11x 的取值范围为 .【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.12.关于x 的不等式12x m x -≤-有正数解,m 的值可以是 (写出一个即可).13.若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.14.如图,在边长为6的正六边形ABCDEF 中,以点F 为圆心,以FB 的长为半径作 BD,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .设圆锥的底面圆的半径为∴3r =;故答案为:3.15.如图,在ABCD Y 中,120C ∠=︒,8AB =,10BC =.E 为边CD 的中点,F 为边AD 上的一动点,将DEF 沿EF 翻折得D EF ' ,连接AD ',BD ',则ABD '△面积的最小值为.过C 作CN AB ⊥于N ,∵AB CD ∥,∴EM CN =,在Rt BCN 中,10BC =,CBN ∠16.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x4-3-1-15y59527-下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x -<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y --均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x -或3x >.其中正确结论的序号为 .【答案】①②④【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出a b c 、、的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤;掌握二次函数的图象和性质是解题的关键.【详解】解:把()4,0-,()1,9-,()1,5代入2y ax bx c =++得,164095a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得128a b c =-⎧⎪=-⎨⎪=⎩,∴0abc >,故①正确;∵1a =-,2b =-,8c =,由2228y x y x x =-+⎧⎨=--+⎩,解得1120x y =⎧⎨=⎩,2235x y =-⎧⎨=⎩,∴()2,0A ,()3,5B -,由图形可得,当3x <-或2x >时,2282x x x --+<-+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题17.利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷⎪--+,再求值.18.“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t 表示,单位:h )进行调查.经过整理,将数据分成四组(A 组:02t ≤<;B 组:24t ≤<;C 组:46t ≤<;D 组:68t ≤<),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,1429α︒≤≤︒;夏至日时,4376α︒≤≤︒.sin140.24︒≈,cos140.97︒≈,tan140.25︒≈sin290.48︒≈,cos290.87≈︒,tan290.55≈︒sin430.68︒≈,cos430.73︒≈,tan430.93︒≈sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米,AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填14︒,29︒,43︒,76︒中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【答案】任务一:冬至,14︒;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器【分析】本题考查解直角三角形的应用,理解题意是解答的关键.任务一:根据题意直接求解即可;任务二:过E 作EF AB ⊥于F ,利用正切定义求得【详解】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即14α=︒,故答案为:冬至,14︒;任务二:过E 作EF AB ⊥于F ,则90AFE ∠=︒,54EF =米,BF DF =,在Rt AFE 中,tan AFEFα=,∴tan14540.2513.5AF EF =⋅︒≈⨯=(米)∵11 3.336.3AB =⨯=(米),∴36.313.5DE BF AB AF ==-=-=22.8 3.37÷≈(层),20.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.如图,正比例函数y x =与反比例函数k y x =的图象交于点)A a ,将正比例函数图象向下平移()0n n >个单位后,与反比例函数图象在第一、三象限交于点B ,C ,与x 轴,y 轴交于点D ,E ,且满足:3:2BE CE =.过点B 作BF x ⊥轴,垂足为点F ,G 为x 轴上一点,直线BC 与BG 关于直线BF 成轴对称,连接CG .(1)求反比例函数的表达式;(2)求n 的值及BCG 的面积.22.在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为直线BC 上任意一点,连接AD .将线段AD 绕点D 按顺时针方向旋转90︒得线段ED ,连接BE .【尝试发现】(1)如图1,当点D 在线段BC 上时,线段BE 与CD 的数量关系为________;【类比探究】(2)当点D 在线段BC 的延长线上时,先在图2中补全图形,再探究线段BE 与CD 的数量关系并证明;【联系拓广】(3)若1AC BC ==,2CD =,请直接写出sin ECD ∠的值.由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,BE 过点E 作EM BC ⊥交BC 于点由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,∵90ACB ∠=︒,∴ACD DME ∠=∠,ADC ∠+∴CAD EDM ∠=∠由(2)得1DM AC ==,2EM CD ==,∴3CM CD DM =+=,∴2213CE CM EM =+=,∴2213sin 1313EM ECD CE ∠===.同理可得:ACD DME △≌△,∴1DM AC ==,2ME CD ==,∴211CM =-=,∴22215CE =+=,∴225sin 55EM ECD CE ∠===;23.如图,AB 是O 的直径,ABC 内接于O ,点I 为ABC 的内心,连接CI 并延长交O于点D ,E 是 BC上任意一点,连接AD ,BD ,BE ,CE .(1)若25ABC ∠=︒,求CEB ∠的度数;(2)找出图中所有与DI 相等的线段,并证明;(3)若CI =DI =ABC 的周长.【答案】(1)115︒(2)DI AD BD ==,证明见解析(3)30【分析】(1)利用圆周角定理得到90ACB ∠=︒,再根据三角形的内角和定理求65CAB ∠=︒,然后利用圆内接四边形的对角互补求解即可;(2)连接A I ,由三角形的内心性质得到内心,CAI BAI ∠=∠,ACI BCI ∠=∠,然后利用圆周角定理得到DAB DCB ACI ∠=∠=∠,AD BD =,利用三角形的外角性质证得DAI DIA ∠=∠,然后利用等角对等边可得结论;(3)过I 分别作IQ AB ⊥,IF AC ⊥,IP BC ⊥,垂足分别为Q 、F 、P ,根据内切圆的性质和和切线长定理得到AQ AF =,CF CP =,BQ BP =,利用解直角三角形求得2CF CP ==, 13AB =,进而可求解.【详解】(1)解:∵AB 是O 的直径,∴90ADB ACB ∠=∠=︒,又25ABC ∠=︒,∴902565CAB ∠=︒-︒=︒,∵四边形ABEC 是O 内接四边形,∴180CEB CAB ∠+∠=︒,∴180115CEB CAB ∠=︒-∠=︒;∵点I 为ABC 的内心,∴CAI BAI ∠=∠,ACI ∠∴ AD BD=,∴DAB DCB ACI ∠=∠=∠∵点I 为ABC 的内心,即为∴Q 、F 、P 分别为该内切圆与∴AQ AF =,CF CP =,∵22CI =,90IFC ∠=2AB AQ BQ CF=+++22AB CF=+21322=⨯+⨯30=.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.由题意得2AG BG ==,∵对称轴为直线=1x -,∴()()1,0, 3.0B A -,∴3OC OA ==,∴()0,3C ,将A 、B 、C 分别代入21y ax bx c =++,得:09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴2123y x x =--+,∴()2212314y x x x =--+=-++,顶点为()1,4-∵抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,∴抛物线2y 的1a =,顶点为()1,4-,∴2y 的表达式为:()2214y x =--,即2223y x x =--(2)解:将点F 向右平移2个单位至F ',则2F F '=,()4,0F '-,过点D 作直线2l 的对称点为D ¢,连接,,F N F D ND '''',∴ND ND '=,∵()2214y x =--,∴直线2l 为直线1x =,∵抛物线()2214y x =--,∴()1,4E -∵2l y ∥轴,∴1DHE ∠=∠,∵2PEH DHE ∠=∠,∴2112PEH ∠=∠=∠+∠,∴12∠=∠,作H 关于直线2l 的对称点H ',则点H '在直线PE 上,∵点H 的坐标为()0,2-,直线2l :1x =,∴()2,2H '-,设直线PE 的表达式为:()0y kx b k =+≠,代入()2,2H '-,()1,4E -,得:224k b k b +=-⎧⎨+=-⎩,解得:26k b =⎧⎨=-⎩,∴直线PE 的表达式为26y x =-,联立222623y x y x x =-⎧⎨=--⎩,得:22326x x x --=-,解得:3x =或1x =(舍),∴()3,0P ;②当点P 在直线2l 左侧抛物线上时,延长EP 交y 轴于点N ,作HN 的垂直平分线交HE 于点Q ,交y 轴于点M ,过点E 作EK y ⊥轴于点K ,则QM EK ∥,如图:。
2020年云南省中考数学试卷(含答案解析)
2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。
2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。
3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。
4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。
5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。
6.根据题意可知,第n个单项式是(−2)a−1a,故选A。
7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。
二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。
2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。
3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。
4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。
5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。
6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。
了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。
2022年安徽省中考数学试卷(解析版)
2022年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2022•安徽)下列为负数的是()A.|﹣2| B.C.0 D.﹣52.(4分)(2022•安徽)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×1063.(4分)(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.4.(4分)(2022•安徽)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a25.(4分)(2022•安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.(4分)(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.(4分)(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.B.4 C.D.58.(4分)(2022•安徽)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.9.(4分)(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a 的图象可能是()A.B.C.D.10.(4分)(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2022•安徽)不等式≥1的解集为.12.(5分)(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.13.(5分)(2022•安徽)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k=.14.(5分)(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF 是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2022•安徽)计算:()0﹣+(﹣2)2.16.(8分)(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.(8分)(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE ⊥AB.20.(10分)(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.(12分)(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.(12分)(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD 的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.(14分)(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD 构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).2022年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2022•安徽)下列为负数的是()A.|﹣2| B.C.0 D.﹣5【考点】非负数的性质:算术平方根;有理数;绝对值.【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.2.(4分)(2022•安徽)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3400万=34000000=3.4×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(4分)(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看,是一个矩形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)(2022•安徽)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a2【考点】同底数幂的除法;整式的加减;同底数幂的乘法.【分析】A.应用整式加减法则进行求解即可得出答案;B.应用同底数幂乘法法则进行求解即可得出答案;C.应用整式加减法则进行求解即可出答案;D.应用同底数幂除法法则进行求解即可出答案.【解答】解:A.因为a2与a6不是同类项,所以不能合并,故A选项不符合题意;B.因为a2•a6=a2+6=a8,所以B选项结果不等于a9,故B选项不符合题意;C.因为a10与a不是同类项,所以不能合并,故C选项不符合题意;D.因为a18÷a2=a9,所以D选项结果等于a9,故D选项符合题意.故选:D.【点评】本题主要考查了同底数幂乘除法,整式加减,熟练掌握同底数幂乘除法,整式加减运算法则进行求解是解决本题的关键.5.(4分)(2022•安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁【考点】函数的图象.【分析】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,甲比丁用的时间少,∴甲的平均速度>丁的平均速度,∴走的最快的是甲,故选:A.【点评】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.6.(4分)(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α【考点】矩形的性质.【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.【解答】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.【点评】本题考查矩形的性质、三角形外角的性质,解答本题的关键是明确题意,用含α的代数式表示出∠2.7.(4分)(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.B.4 C.D.5【考点】垂径定理;勾股定理.【分析】过点O作OC⊥AB于点C,连接OB,根据垂径定理可得AC=BC=5,所以PC=PB﹣BC=1,根据勾股定理即可解决问题.【解答】解:如图,过点O作OC⊥AB于点C,连接OB,则OB=7,∵PA=4,PB=6,∴AB=PA+PB=10,∵OC⊥AB,∴AC=BC=5,∴PC=PB﹣BC=1,在Rt△OBC中,根据勾股定理得:OC2=OB2﹣BC2=72﹣52=24,在Rt△OPC中,根据勾股定理得:OP===5,故选:D.【点评】本题考查了垂径定理,勾股定理,解决本题的关键是掌握垂径定理.8.(4分)(2022•安徽)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B.【点评】本题主要考查列表法与树状图法求概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(4分)(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】利用一次函数的性质进行判断.【解答】解:若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10.(4分)(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【考点】勾股定理;等边三角形的性质.【分析】如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接COM延长CO交AB于点RM,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接COM延长CO交AB于点RM,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,故选:B.【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB的面积是定值.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2022•安徽)不等式≥1的解集为x≥5 .【考点】解一元一次不等式组.【分析】先去分母、再移项即可.【解答】解:≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(5分)(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m= 2 .【考点】根的判别式.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.13.(5分)(2022•安徽)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k= 3 .【考点】平行四边形的性质;反比例函数的图象.【分析】设出C点的坐标,根据C点的坐标得出B点的坐标,然后计算出k 值即可.【解答】解:由题知,反比例函数y=的图象经过点C,设C点坐标为(a,),作CH⊥OA于H,过A点作AG⊥BC于G,∵四边形OABC是平行四边形,OC=AC,∴OH=AH,CG=BG,四边形HAGC是矩形,∴OH=CG=BG=a,即B(3a,),∵y=(k≠0)的图象经过点B,∴k=3a•=3,故答案为:3.【点评】本题主要考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质,平行四边形的性质等知识是解题的关键.14.(5分)(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF 是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=45 °;(2)若DE=1,DF=2,则MN=.【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】(1)根据AAS证△ABE≌△GEF,得出EG=AB,GF=AE,推出DG=GF 即可得出∠FDG的度数;(2)由(1)的结论得出CD的长度,GF的长度,根据相似三角形的性质分别求出DM,NC的值即可得出MN的值.【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF和BC交于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.【点评】本题主要考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,熟练掌握这些基础知识是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2022•安徽)计算:()0﹣+(﹣2)2.【考点】零指数幂;有理数的乘方;算术平方根;实数的运算.【分析】应用零指数幂,算术平方根,有理数的乘方运算法则进行求解即可得出答案.【解答】解:原式=1﹣4+4=1.【点评】本题主要考查了零指数幂,算术平方根,有理数的乘方,熟练掌握零指数幂,算术平方根,有理数的乘方运算法则进行求解是解决本题的关键.16.(8分)(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x 1.3y 1.25x+1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【考点】二元一次方程组的应用;列代数式.【分析】(1)根据题意和表格中的数据,可以用含x、y的代数式表示出2021年进出口总额;(2)根据题意和题目中的数据,可以列出相应的方程组,然后求解即可.【解答】解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,答:2021年进口额是320亿元,出口额是200亿元.【点评】本题考查二元一次方程组的应用、列代数式,解答本题的关键是明确题意,找出等量关心,列出相应的方程组.18.(8分)(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×8)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【考点】规律型:数字的变化类.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×2+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×8)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×8)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式和猜想,并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE ⊥AB.【考点】切线的性质;含30度角的直角三角形.【分析】(1)根据直角三角形的边角关系可求出OD,进而求出AD;(2)根据切线的性质可得OC⊥CD,再根据等腰三角形的性质可得∠OCA=∠OAC,由各个角之间的关系以及等量代换可得答案.【解答】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.【点评】本题考查切线的性质,直角三角形的边角关系以及等腰三角形的性质,掌握直角三角形的边角关系、等腰三角形的性质是解决问题的前提.20.(10分)(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.【考点】解直角三角形的应用﹣方向角问题.【分析】由三角形内角和定理证得△CBD和△ABD是直角三角形,解直角三角形即可求出AB.【解答】解:∵CE∥AD,∴∠A=∠ECA=37°,∴∠CBD=∠A+∠ADB=37°+53°=90°,∴∠ABD=90°,在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,∴BD=CD•cos∠37°≈90×0.80=72(米),在Rt△ABD中,∠A=37°,BD=72米,tan A=,∴AB=≈=96(米).答:A,B两点间的距离约96米.【点评】本题主要考查了解直角三角形的应用,证得△CBD和△ABD是直角三角形是解决问题的关键.六、(本题满分12分)21.(12分)(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=20 ,a= 4 ;(2)八年级测试成绩的中位数是86.5 ;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.【考点】扇形统计图;中位数;用样本估计总体;频数(率)分布直方图.【分析】(1)根据八年级D组人数及其所占百分比即可得出n的值,用n的值分别减去其它各组的频数即可得出a的值.(2)根据中位数的定义解答即可.(3)用样本估计总体即可.【解答】解:(1)由题意得:n=7÷35%=20(人),故2a=20﹣1﹣2﹣3﹣6=8,解得a=4,故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,故答案为:86.5;(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)=100+175=275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【点评】本题考查频数分布直方图、扇形统计图、中位数、用样本估计总体等知识,解题的关键是利用数形结合的思想解答.七、(本题满分12分)22.(12分)(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD 的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.【考点】四边形综合题.【分析】(1)利用AAS证明△DOE≌△BOC,得DE=BC,从而得出四边形BCDE 是平行四边形,再根据CD=CB,即可证明结论;(2)(i)根据线段垂直平分线的性质得,AE=EC,ED=EB,则∠AED=∠CED =∠BEC,再根据平角的定义,可得答案;(ii)利用AAS证明△ABF≌△ACE,可得AC=AB,由AE=AF,利用等式的性质,即可证明结论.【解答】(1)证明:∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE=30°,同理可得,在等腰△DEB中,∠EBD=30°,∴∠ACE=∠ABF=30°,在△ACE与△ABF中,,∴△ABF≌△ACE(AAS),∴AC=AB,又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.【点评】本题是四边形综合题,主要考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.八、(本题满分14分)23.(14分)(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD 构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).【考点】二次函数综合题.【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,﹣m2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,(﹣6)2a+8=2,解得:a=﹣,∴抛物线对应的函数表达式为y=﹣x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P在抛物线AED上,3∴P2的坐标为(m,﹣m2+8),∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,∵﹣<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令﹣x2+8=3,解得:x=±,∴此时P1的横坐标的取值范围为﹣+9≤P1横坐标≤,方案二:设P2P1=n,则P2P3==9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+n=﹣(n﹣)2+,∵﹣1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令﹣x2+8=,解得:x=±,∴此时P1的横坐标的取值范围为﹣+≤P1横坐标≤.【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.。
2020年全国中考数学试题精选分类(8)——三角形(含解析)
2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。
2022年福建省中考数学试卷(解析版)
2022年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.(4分)(2022•福建)﹣11的相反数是()A.﹣11B.C.D.112.(4分)(2022•福建)如图所示的圆柱,其俯视图是()A.B.C.D.3.(4分)(2022•福建)5G应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为()A.13976×103B.1397.6×104C.1.3976×107D.0.13976×1084.(4分)(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.5.(4分)(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(4分)(2022•福建)不等式组的解集是()A.x>1B.1<x<3C.1<x≤3D.x≤37.(4分)(2022•福建)化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a48.(4分)(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F109.(4分)(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm10.(4分)(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB =60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.160二、填空题:本题共6小题,每小题4分,共24分。
2024年内蒙古自治区赤峰市中考数学试题(含解析)
2024年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A.95.210⨯ B.110.5210⨯ C.95210⨯ D.105.210⨯3.将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为()A.100︒B.105︒C.115︒D.120︒4.下列计算正确的是()A.235a a a+= B.222()a b a b+=+ C.632a a a÷= D.()236a a=5.在数据收集、整理、描述的过程中,下列说法错误..的是()A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B.了解某校一个班级学生的身高情况,适合全面调查C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D.甲、乙二人10次测试的平均分都是96分,且方差2 2.5S=甲,2 2.3S=乙,则发挥稳定的是甲6.解不等式组()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是()A.B.C.D.7.如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是()A.5B.6C.8D.108.某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是()视力 4.7以下 4.7 4.8 4.9 4.9以上人数3941334047A.120B.200C.6960D.96009.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A.17或13B.13或21C.17D.1310.如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A.61︒B.63︒C.65︒D.67︒11.用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为()A.32404558x y x y +=⎧⎨+=⎩ B.35404258x y x y +=⎧⎨+=⎩ C.35584240x y x y +=⎧⎨+=⎩ D.34585240x y x y +=⎧⎨+=⎩12.如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是()A.①②③④B.①②③C.①③④D.②④13.如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A.a b +B.a b -C.abD.a b-14.如图,正方形ABCD 的顶点A ,C 在抛物线24y x =-+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是()A.1m n +=B.1m n -=C.1mn = D.1mn=二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.请写出一个比小的整数_____________16.因式分解:233am a -=______.17.综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18.编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:收割机编号A ,B B ,C C ,D D ,E A ,E 所需时间(小时)2319202218则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1()0π12sin 602+++︒+-;(2)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.20.如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21.某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:收集数据777876728475918578798278767991917674758575918077757587857677整理、描述数据成绩/分72747576777879808284858791人数/人11a433b111314分析数据样本数据的平均数、众数、中位数如下表:平均数众数中位数80c78解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.22.一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23.在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.24.如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF 是O 的切线;(2)若42BM =,1tan 2BCD ∠=,求OM 的长.25.如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A 处沿水滑道下滑至点B 处腾空飞出后落入水池.以地面所在的水平线为x 轴,过腾空点B 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B 与地面的距离为2米,水滑道最低点C 与地面的距离为78米,点C 到点B 的水平距离为3米,则水滑道ACB 所在抛物线的解析式为______;(2)如图1,腾空点B 与对面水池边缘的水平距离12OE =米,人腾空后的落点D 与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD 的解析式;②此人腾空飞出后的落点D 是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M 处竖直支撑的钢架MN ,另一条是点M 与点B 之间连接支撑的钢架BM .现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26.数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与ADDC的关系;某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =.请你继续探究:①当76AD DC =时,直接写出DFDE 的值;②当AD m DC n =时,猜想DFDE的值(用含m ,n 的式子表示),并证明;(3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出APAD的值(用含m ,n 的式子表示).参考答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【答案】A【解析】A .是轴对称图形,故A 选项正确;B .不是轴对称图形,故B 选项错误;C .不是轴对称图形,故C 选项错误;D .不是轴对称图形,故D 选项错误.故选:A .2.【答案】D【解析】解:1052000000000 5.210=⨯,故选:D .3.【答案】B【解析】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒-∠-︒=︒故选:B .4.【答案】D【解析】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5.【答案】D【解析】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差22.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D .6.【答案】C【解析】解:()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②解不等式①得,2x <,解不等式②得,3x ≥-,所以,不等式组的解集为:32x -≤<,在数轴上表示为:故选:C .7.【答案】B【解析】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴1806012602︒-︒∠=∠==︒,∴360660n ︒==︒,故选:B.8.【答案】D 【解析】解:334047160009600200++⨯=,∴视力不低于4.8的人数是9600,故选:D .9.【答案】C【解析】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10.【答案】B【解析】解:∵半径OC AB ⊥,∴ AC BC=,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵ AC AC=,∴1212D AOC ∠=∠=︒,∴63OED AOB D ∠=∠-∠=︒,故选:B .11.【答案】C【解析】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩,故选:C .12.【答案】A【解析】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒-∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒-︒=︒,由旋转的性质得AB AB '=,∴()118036722ABB AB B ''∠=∠=︒-︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确;②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒-⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△,∴AB B B AC BD'=.④说法正确;综上,①②③④都是正确的,故选:A .13.【答案】A【解析】解:数轴上点A ,M ,B 分别表示数a a bb +,,,∴AM a b a b =+-=、()BM b a b a =-+=-,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b -<,00ab a b <-<,,故运算结果一定是正数的是a b +.故选:A .14.【答案】B【解析】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒ ,BA AD =,(AAS)ANB DMA ∴ ≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+-,2()4,C n n -+.(2m n E +∴,2282m n -+-,2(0,)4M m +-,设(0,)D b ,则22(,)8B m n m n b ++---,2()4,N m n m ++-,24BN n b ∴=-+-,AM m =,AN n =,24DM m b =-+.又AM NB =,DM AN =,24n m b +--∴=,24n m b =-+.24b n m ∴=--+.2244n m n m ∴=---+.∴()()m n m n m n +-=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴-=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.【答案】1(或2)【解析】23=<<= ,满足条件的数为小于或等于2的整数均可.16.【答案】()()311a m m +-【解析】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.17.【答案】11.5【解析】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =-=-=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18.【答案】C【解析】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时,得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【答案】(1)6;(2)7.【解析】解:(1)原式331222=++⨯+42=+-,6=;(2)∵230a a --=,∴23a a -=,∴()()()2213a a a -+-+224423a a a a =-+++-,2221a a =-+,()221a a =-+,231=⨯+,7=.20.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:直线l 如图所示,;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =,∵2EF DE =,即:12DE EF =,∴EF BC =,∵EF BC ∥,∴四边形BCFE 是平行四边形.21.【答案】(1)5;2;75(2)78;80(3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==,答:A ,B 两名队员恰好同时被选中的概率为16.22.【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,由题意得60903x x =+,解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m -天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+-=-+,()215m m ≥-,解得10m ≥,∵30-<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =-⨯+=,答:15天的工期,两队最多能修复公路105千米.23.【答案】(1)()14,2N 和()30,2N -;(2)5b =;(3)()4,2--或()2,4.【解析】【小问1详解】解:由()1,3M ,()14,2N 得,12125x x y y +=+=,∴点()14,2N 是点M 的等和点;由()1,3M ,()23,1N -得,124x x +=,122y y +=,∵1212x x y y +≠+,∴()23,1N -不是点M 的等和点;由()1,3M ,()30,2N -得,12121x x y y +=+=,∴()30,2N -是点M 的等和点;故答案为:()14,2N 和()30,2N -;【小问2详解】解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;【小问3详解】解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m +-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m +-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.24.【答案】(1)见解析(2)5OM =【解析】【小问1详解】证明:连接OE ,延长EO ,交O 于点P ,连接,,PD BD 如图,∵,90,AB BC ACB =∠=︒∴ABC 是等腰直角三角形,∴45,ABC ∠=︒∵CD 是O 的直径,∴90,CBD ∠=︒∴904545,DBE CBD ABC ∠=∠-∠=︒-︒=︒∴45,EPD DBE ∠=∠=︒∴224590,DOE DPE ∠=∠=⨯︒=︒∵,EF CD ∥∴90,FEO DOE ∠=∠=︒即,OE EF ⊥∵OE 是O 的半径,∴EF 是O 的切线;【小问2详解】解:∵90DBC ∠=︒,1tan 2BCD ∠=,∴12DB BC =,∵,BC AC =∴12DB AC =,∵,DMB CMA ∠=∠A DBM ∠=∠,∴DBM ACM ∽ ,∴12BM DM DB AM CM AC ===,∵BM =,∴2AM BM ==∴AB AM BM =+=+=,在等腰直角三角形ABC 中,222AC BC AB +=,∴(2222AC AC AB +==,解得,12AC =,∴12AC BC ==,∴16,2DB BC ==在t R BDC 中,CD ==∴CO DO ==又12DM CM =,∴2,CM DM =∴2DM DM CD +==∴DM =∴OM OD DM =-==25.【答案】(1)()217388y x =++(2)①此人腾空后的最大高度是258米,解析式为()2125388y x =--+;②此人腾空飞出后的落点D 在安全范围内,理由见解析(3)这条钢架的长度为米【解析】【小问1详解】解:根据题意得到水滑道ACB 所在抛物线的顶点坐标为73,8C ⎛⎫- ⎪⎝⎭,且过点()0,2B ,设水滑道ACB 所在抛物线的解析式为()2738y a x =++,将()0,2B 代入,得:()272038a =++,即998a =,18a ∴=,∴水滑道ACB 所在抛物线的解析式为()217388y x =++;【小问2详解】解:① 人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称,则设人腾空后的路径形成的抛物线的解析式为()218y x b c =-++,∴人腾空后的路径形成的抛物线BD 的顶点坐标与抛物线ACB 的顶点坐标73,8C ⎛⎫- ⎪⎝⎭关于点()0,2B 成中心对称,()7250233,2288⨯--=⨯-=,∴人腾空后的路径形成的抛物线BD 的顶点坐标为253,8⎛⎫ ⎪⎝⎭,即253,8b c ==,∴此人腾空后的最大高度是258米,人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+;由①知人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+,令0y =,则()21253088x --+=,即()2325x -=∴8x =或2x =-(舍去,不符合题意),∴点()8,0D ,8OD ∴=,12OE =,43DE OE OD ∴=-=>,∴此人腾空飞出后的落点D 在安全范围内;【小问3详解】解:根据题意可得M 点的纵坐标为4,令()2173488y x =++=,即()2325x +=,2x ∴=(舍去,不符合题意)或8x =-,()8,4M ∴-,设BM 所在直线的解析式为y kx b '=+,将()()8,4,0,2M B -代入得:248b k b =⎧⎨=-+''⎩,解得:214b k =-'⎧⎪⎨=⎪⎩,∴BM 所在直线的解析式为124y x =-+,如图,设这条钢架为GH ,与MN 交于点G ,与地面交于H, 这条钢架与BM 平行,∴设该钢架GH 所在直线的解析式为14y x n =-+,联立()21417388y x n y x ⎧=-+⎪⎪⎨⎪=++⎪⎩,即()21173488x n x -+=++,整理得:281680x x n ++-=,该钢架GH 与水滑道有唯一公共点,()2Δ8411680n ∴=-⨯⨯-=,∴0n =即该钢架所在直线的解析式为14y x =-,∴点H 与点O 重合, ()1824GN =-⨯-=,8NO =,90GNO ∠=︒,GH ∴==∴这条钢架的长度为米.26.【答案】(1)见解析(2)①73DF DE =②2DF DE m n=,证明见解析(3)2AP n AD m =【解析】【小问1详解】证明:∵AB AC =,∴B C ∠=∠,∵DE BC ⊥,∴90BEF CED ∠=∠=︒,∴90F B ∠=︒-∠,90CDE C ∠=︒-∠,且CDE ADF ∠=∠,∴F ADF ∠=∠,∴AD AF =;【小问2详解】解:①当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =,∴总结规律得:DF DE 是AD DC 的2倍,∴当76AD DC =时,14763DF DE ==;②当AD m DC n =时,猜想2DF DE m n =,证明:作AG EF ⊥于点G ,∵DE BC ⊥,∴AG CE ∥,∴AGD CED ∽△△,∵AD m DC n =,∴GD AD m DE DC n ==,由(1)知AD AF =,又AG EF ⊥,∴DG FG =,即2DF DG =,∴22GD m DE nDF DE ==;【小问3详解】2AP n AD m=,理由如下:过点D 作DG CF ⊥,∵ACF ACB ∠=∠,DE CE ⊥,∴DG DE =,由(2)知,当AD m DC n =时,2DF DE m n=,∴2DE n DF m =,∴2DG n DF m=,∵PF AC ⊥,∴90ACF CFP ∠+∠=︒,∵FE BC ⊥,∴90B AFD ∠+∠=︒,∵AB AC =,∴ACB B =∠∠,∴B ACF ∠=∠,∴AFD CFP ∠=∠,∴AFD PFD CFP PFD ∠-∠=∠-∠,∴AFP DFG ∠=∠,∴sin sin AFP DFG ∠=∠,∴2AP DG n AF DF m==,由(1)知AD AF =,∴2AP AP n AD AF m ==.。
2024年北京市中考数学试卷及解析
2024年北京市中考数学真题试卷第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为()A.29︒B.32︒C.45︒D.58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.1b >- B.2b > C.0a b +> D.0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A.16- B.4- C.4D.165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为()A.34B.12C.13D.146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为()A.16810⨯ B.17210⨯ C.17510⨯ D.18210⨯7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是()A.三边分别相等的两个三角形全等B.两边及其夹角分别相等的两个三角形全等C.两角及其夹边分别相等的两个三角形全等D.两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等②该八边形各内角都相等③点O 到该八边形各顶点的距离都相等④点O 到该八边形各边所在直线的距离都相等。
2024年湖北省武汉市中考数学试题(含解析)
2024年武汉市初中毕业生学业考试数学试卷亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B 铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A.50.310⨯ B.60.310⨯ C.5310⨯ D.6310⨯5.下列计算正确的是()A.236a a a ⋅= B.()1432a a = C.()2236a a = D.()2211a a +=+6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A. B. C. D.7.小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是()A.64︒B.66︒C.68︒D.70︒8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A.19B.13 C.49D.599.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A.63B.223C.2D.210.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A.1-B.0.729-C.0D.1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.12.某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.13.分式方程131x x x x +=--的解是______.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S的值是___________.16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是__________(填写序号).三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b 06根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ;(4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EGGF的值.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.参考答案一、选择题(共10小题,每小题3分,共30分)1.【答案】C【解析】解:A ,B ,D 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C .2.【答案】A【解析】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3.【答案】B【解析】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.【答案】C【解析】解:5300000310=⨯,故选:C .5.【答案】B【解析】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.【答案】D【解析】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7.【答案】C【解析】解:作图可得AB AD BC DC ===∴四边形ABCD 是菱形,∴,AB BC ABD CBD ∠=∠∥∵44A ∠=︒,∴44MBC A ∠=∠=︒,∴()()11180180446822CBD MBC ∠=︒-∠=︒-︒=︒,故选:C .8.【答案】D【解析】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.【答案】A【解析】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒∴ADC CBE ∠=∠∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰三角形,∴DC BC =∵BE AD=∴()SAS ADC EBC ≌∴ACD ECB ∠=∠∵2AB AD +=∴2AB BE AE +==又∵90DCB ∠=︒∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒∴60AFC ∠=︒∵90FAC ∠=︒∴26sin 603AC CF ==︒∴1623OF OC CF ===故选:A .10.【答案】D【解析】解:∵这20个点的横坐标从0.1开始依次增加0.1,∴0.11.90.2 1.80.9 1.11222+++==⋅⋅⋅=,∴123911190y y y y y y +++++= ,∴12319201020y y y y y y y +++++=+ ,而()101,0A 即100y =,∵32331y x x x =-+-,当0x =时,1y =-,即()0,1-,∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题(共6小题,每小题3分,共18分)11.【答案】2-【解析】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.【答案】1(答案不唯一)【解析】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.【答案】3x =-【解析】解:131x x x x +=--,等号两边同时乘以()()31x x --,得()()()131x x x x -=-+,去括号,得2223x x x x -=--,移项、合并同类项,得3x =-,经检验,3x =-是该分式方程的解,所以,该分式方程的解为3x =-.故答案为:3x =-.14.【答案】51【解析】解:延长BA 交距水平地面102m 水平线的的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==∴102tan632BD DC x︒==≈∴51mDC AD =≈∴1025151mAB BD AD =-=-≈故答案为:51.15.【答案】221(1)k k +-【解析】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG = 四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN∴ ∽AE EG AG AB BN AN∴==(1)BE kAE k => (1)AB AE BE AE k ∴=+=+111AE AG AB BN AN k ∴===+1BN k∴=+由题意可知,ABN DAM△≌△1BN AM k∴==+11AG AM GM k k∴=-=+-=111AG AG k AN AM MN k a k ∴===++++21a k ∴=-2211AN AG GM MN k k k k∴=++=++-=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===-=+-222221(1)(1)(1)(1)k k k k S S +++-∴=1k > 2(1)0k ∴+≠22121(1)k S S k +-∴=16.【答案】②③④【解析】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.∴对称轴为直线122b m x a -+=-=,11022m -+-<<,∵02b x a=-<,a<0∴0b <,故①错误,∵01m <<∴()11m -->,即()1,1-,(),1m 两点之间的距离大于1又∵a<0∴1x m =-时,1y >∴若01x <<,则()()2111a x b x c -+-+>,故②正确;③由①可得11022m -+-<<,∴1022b -<<,即10b -<<,当1a =-时,抛物线解析式为2y x bx c=-++设顶点纵坐标为224444ac b c b t a ---==-∵抛物线2y x bx c =-++(a ,b ,c 是常数,0a <)经过()1,1-,∴11b c --+=∴2c b =+∴()222224411122144444c b b ct b c b b b --+===+=++=++-∵10b -<<,104->,对称轴为直线2b =-,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上,1212x x +>-,12x x >,总有12y y <,又12124x xx +=>-,∴点()11,A x y 离14x =-较远,∴对称轴111224m-+-<≤-解得:102m <≤,故④正确.故答案为:②③④.三、解答题(共8小题,共72分)17.【答案】整数解为:1,0,1-【解析】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.【答案】(1)见解析(2)添加AF BE =(答案不唯一)【解析】【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF.∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =----=(人),∴9%100%15%60n =⨯=,∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】解:181290045060+⨯=(人)答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20.【答案】(1)见解析(2)45【解析】【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒-∠=︒,18090COD OCA ODC ∠+∠=︒-∠=︒OAC COD∴∠=∠sin sin CD OAC COD OC∴∠=∠=又 OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+ 222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++21.【答案】(1)作图见解析(2)作图见解析(3)作图见解析(4)作图见解析【解析】【小问1详解】解:如图所示,点D 即为所求.【小问2详解】解:如图所示,点E 即为所求.【小问3详解】解:如图所示.【小问4详解】解:如图所示.22.【答案】(1)①115a =-,8.1b =;②8.4km (2)2027a -<<【解析】【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km∴抛物线2y ax x =+和直线12y x b =-+均经过点()9,3.6∴3.6819a =+,13.692b =-⨯+解得115a =-,8.1b =.②由①知,18.12y x =-+,2115y x x =-+∴22111515151524y x x x ⎛⎫=-+=--+ ⎪⎝⎭∴最大值15km 4y =当15 1.35 2.4km 4y =-=时,则21 2.415x x -+=解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时,则418. 2.12x +=-解得11.4x =()11.438.4km -=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =-+,得181992a b +=-⨯+,10152b =-⨯+解得7.5b =,227a =-∴2027a -<<.23.【答案】问题背景:见解析;问题探究:见解析;问题拓展:【解析】问题背景:∵四边形ABCD 是矩形,∴90AB CD EBF C =∠=∠=︒,,∵E ,F 分别是AB ,BC 的中点∴12BE BF AB BC ==,即12BE BF CD BC ==,∴BCD FBE ∽△△;问题探究:如图所示,取BD 的中点H ,连接,EH HC ,∵E 是AB 的中点,H 是BD 的中点,∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵AD BC ∥,∴EH FC∥∴四边形EHCF 是平行四边形,∴EF CH∥∴GFB HCB∠=∠又∵90BCD ∠=︒,H 是BD 的中点,∴12HC BD BH ==∴HBC HCB∠=∠∴GBF GFB ∠=∠,∴GB GF =;问题拓展:如图所示,过点F 作FM AD ⊥,则四边形MFCD 是矩形,连接AF ,∵2AD CF CD ==,∴12AM MD FC AD ===,设2AD a =,则2MF CD a ==,AM a =在Rt AMF 中,AF ==,∵AG FG =,由(2)BG FG=∴AG BG =,又∵E 是AB 的中点,∴EF 垂直平分AB∴AF BF =,90BEG ∠=︒,在,AFG BFG 中,AG BG GF GF FA FB =⎧⎪=⎨⎪=⎩∴()SSS AFG BFG ≌设GBF GFB α∠=∠=,则GAF GFA α∠=∠=∴2BGE GBF GFB α∠=∠+∠=,又∵AD BC∥∴2MAF AFB GFA GFB α∠=∠=∠+∠=∴MAF EGB∠=∠又∵90BEG AFM ∠=∠=︒∴BEG FMA ∽∴5EG EG AM GF BG AF ===.24.【答案】(1)()1,0A ,()5,0B -,50,2C ⎛⎫- ⎪⎝⎭(2)92,2P ⎛⎫--⎪⎝⎭(3)152y x =--【解析】【小问1详解】解:由215222y x x =+-,当0x =时,52y =-,则50,2C ⎛⎫- ⎪⎝⎭当0y =,2152022x x +-=解得:125,1x x =-=∵A 在B 的右边∴()1,0A ,()5,0B -,【小问2详解】解:设直线AC 的解析式为()0y kx b k =+≠将()1,0A ,50,2C ⎛⎫- ⎪⎝⎭代入得,052k b b +=⎧⎪⎨=-⎪⎩解得:5252k b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线AC 的解析式为5522y x =+∵PQ AC∥设直线PQ 的解析式为152y x b =+∵P 在第三象限的抛物线上设215,222P t t t ⎛⎫+- ⎪⎝⎭,()50t -<<∴215152222t b t t +=+-∴2115222t b t =--∴2150,222t Q t ⎛⎫-- ⎪⎝⎭设PQ 的中点为M ,则22352,22t t t M ⎛⎫+- ⎪ ⎪ ⎪⎝⎭由()5,0B -,50,2C ⎛⎫-⎪⎝⎭,设直线BC 的解析式为152y k x =-,将()5,0B -代入得,15052k =--,解得:112k =-∴直线BC 的解析式为1522y x =--,∵BC 平分线段PQ ,∴M 在直线BC 上,∴22351522222t t t +--⨯-=解得:122,0t t =-=(舍去)当2t =-时,21592222t t +-=-∴92,2P ⎛⎫-- ⎪⎝⎭;【小问3详解】解:如图所示,过点G 作TS x ∥轴,过点,E F 分别作TS 的垂线,垂足分别为,T S,∴90T S EGF ∠=∠=∠=︒∴90EGT FGS GFS ∠=︒-∠=∠∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅∵点D 与原点O 关于点50,2C ⎛⎫- ⎪⎝⎭对称,∴()0,5D -,设直线EF 的解析式为11y k x =,直线ED 的解析式为225y k x =-联立直线EF 与抛物线解析式11215222y k x y x x =⎧⎪⎨=+-⎪⎩可得,2112222k x x x =+-,即()21152022x k x +--=联立直线ED 与抛物线解析式222515222y k x y x x =-⎧⎪⎨=+-⎪⎩可得,22125222k x x x -=+-即()22152022x k x +-+=设,E F x e x f ==,G x g =,∴5ef =-,5eg =,224e g k +=-,∴f g=-()()221515122422222ET e e g g e g e g ⎛⎫=+--+-=++- ⎪⎝⎭,()()221515122422222FS f f g g f g f g ⎛⎫=+--+-=++- ⎪⎝⎭∵ET FS GS TG ⋅=⋅∴()()()()()()114422g e f g e g e g f g f g --=++-⨯++-,将f g =-代入得:5e g +=-∴2245k -=-,∴212k =-,∴直线DE 解析式为152y x =--.。
2023年河南省中考数学试卷+参考答案解析
2023年河南省普通高中招生考试试卷数学一、单选题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.下列各数中,最小的数是()A.-lB.0C.1D.32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源。
数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×1094.如图,直线AB ,CD 相交于点O ,若∠1=80°,∠2=30°,则∠AOE 的度数为()A.30°B.50°C.60°D.80°5.化简a -1a +1a的结果是()A.0B.1C.aD.a -26.如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°7.关于x 的一元二次方程x 2+mx -8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B 。
2024年贵州省中考数学真题试卷及解析
2024年贵州省中考数学真题试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D. 5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =- 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥ 9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )甲 乙A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. ________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和 (2)先化简,再求值:()21122x x -⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin320.52︒≈,cos320.84︒≈,tan320.62︒≈)23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB ⊥(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图① 图① 备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度 (2)【问题探究】如图①,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA += (3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF 的值.2024年贵州省中考数学真题试卷答案解析一、选择题.1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A7. 【答案】D8. 【答案】B9. 【答案】A10.【答案】C11. 【答案】C12. 【答案】D【解析】解∶ ①二次函数2y ax bx c =++的顶点坐标为()1,4- ∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x - ①二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下, 对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++ 解得1a =-①()214y x =-++当0x =时,()20143y =-++=①二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D . 二、填空题.13.14. 【答案】515. 【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF =在ADF △和MCF △中D FCM DF CFAFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF =5AE =5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒4sin5EAF ∠=,5AE = 4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ==即12EM EC CM BC BC =+=+=AB BC CD AD ===AB BC ∴==故答案为. 三、解答题.17. 【答案】(1)见解析 (2)12x -,1 【解析】(1)解:选择①,②,③ 2022(1)+-+-421=++7=选择①,②,④212222+-+⨯ 421=++7=选择①,③,④()0212122+-+⨯ 411=++6=选择②,③,④()012122-+-+⨯ 211=++4=(2)解:()21122x x -⋅+ ()()11(1)21x x x =-+⋅+ 12x -= 当3x =时,原式3112-==. 18. .【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k = ∴3k = ∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<< ∴0a c b <<<∴a c b <<.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误 (3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26 故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=. 20. 【答案】(1)见解析 (2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生 (2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩ 解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22. 【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cm BC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cm NB ON ==又∵32DON ∠=︒∴tan 10tan32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23. 【答案】(1)DCE ∠(答案不唯一) (2)163 (3)163【小问1详解】解:∵DC DE =∴DCE DEC ∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC =∴OAC ACO ∠=∠∵DCE DEC ∠=∠,AEO DEC ∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB ⊥【小问3详解】解:设OE x =,则2AO OF BO x ===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x ==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC = ∵tan OP OC D OD CD == ∴8106OP = 解得403OP = ∴163BP OP OB =-=. 24. 【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b =+把12x =,56y =;20x ,40y =代入,得12562040k b k b +=⎧⎨+=⎩ 解得280k b =-⎧⎨=⎩①y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y =-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+①当25x =时,w 有最大值为450①糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--①当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭①糖果日销售获得的最大利润为392元 ①()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析 (3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥∴PA PC =∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA +=设OM x =,则3ON x =,2AO PA x ==∴AM AO OM x OM =-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌∴3AG ON x ==∵90AOB ∠=︒,PA OA ⊥∴AP OB ∥∴ONF PGF ∽∴33325OF ON x PF PG x x ===+ ∴53PF OF = ∴53833OP OF +== ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴ON OM -OC CN OM =+-AO AM OM =+-AO AO =+2AO =∵33ON OM x ==∴AO x =,2CN AM x ==∵PC AO ∥∴CGN OMN ∽ ∴CG CN OM ON=,即23CG x x x = ∴23CG x =∵PC AO∥∴OMF PGF∽∴3253OF OM xPF PG x x===+∴53 PF OF=∴53233 OPOF-==综上,OPOF的值为23或83.。
四川省南充市2022年中考数学试卷含答案解析
四川省南充市2022年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)(共10题;共40分) 1.(4分)下列计算结果为5的是()A.-(+5)B.+(-5)C.-(-5)D.-|-5|2.(4分)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB'C',点B’恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC'为()A.90°B.60°C.45°D.30°3.(4分)下列计算结果正确的是()A.5a-3a=2B.6a÷2a= 3aC.a6÷a3=a2D.(2a2b3)3=8a6b94.(4分)《孙子算经》中有“鸡兔同笼"问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94-x)=35B.4x+2(35-x)=94C.2x+4(94-x)=35D.2x+4(35-x)=945.(4分)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E6.(4分)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差7.(4分)如图,在Rt△ABC中,CC=90,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=98.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°9.(4分)已知a>b>0,且a2+b2=3ab,则(1a+1b)2÷(1a2−1b2)的值是()A.√5B.−√5C.√55D.−√5510.(4分)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2-2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.-2≤m<0C.m>2D.m<-2二、填空题(本大题共6个小题,每小题4分,共24分)(共6题;共24分) 11.(4分)比较大小:2-230.(选填>,=,<)12.(4分)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是13.(4分)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.14.(4分)若√8−x为整数,x为正整数,则x的值是15.(4分)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点0在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距0点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O点4m.16.(4分)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重给),将△ADE 沿直线DE折叠,点A落在点A1处,连接AB,将,A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C给出下列四个结论;①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为√2;④当∠ADE = 30°时,△A1BE的,其中正确的结论是.(填写序号)面积为起3−√36三、解答题(本大题共9个小题,共86分)(共9题;共86分)17.(8分)先化简,再求值:(x+2)(3x-2)-2x(x+2),其中x= √3-1.18.(8分)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)(4分)△ADE≌△CDF.(2)(4分)ME=NF.19.(8分)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:(1)(4分)a=,b=(2)(2分)扇形统计图中“B”项目所对应的扇形圆心角为度.(3)(2分)在月末的展示活动中,“C"项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率、20.(10分)已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)(5分)求实数k的取值范围.(2)(5分)设方程的两个实数根分别为x1,x2,者(x1+1)(x2+1)=-1,求k的值.21.(10分)如图,直线AB与双曲线交于A(1,6),B(m,-2)两点,直线BO与双曲线在第一象限交于点C,连接AC;(1)(5分)求直线AB与双曲线的解析式.(2)(5分)求△ABC的面积22.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)(5分)求证:CD是⊙O的切线.,求tan∠CEO的值(2)(5分)若CE=OA,sin∠BAC= 4523.(10分)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)(1)(3分)求真丝衬衣进价a的值.(2)(3.5分)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)(3.5分)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?24.(10分)如图,在矩形ABCD中,点0是AB的中点,点M是射线DC上动点,点P在AB.线段AM上(不与点A重合),OP= 12(1)(3分)判断△ABP的形状,并说明理由.(2)(3.5分)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.,当∠CPQ=90°时,求DM的(3)(3.5分)点Q在边AD上,AB=5,AD=4,DQ= 85长.25.(12分)抛物线y= 13x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,-4).(1)(4分)求抛物线的解析式.(2)(4分)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)(4分)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=20N,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标。
福州市福清市中考数学模拟试卷(八)含答案解析
福建省福州市福清市中考数学模拟试卷(八)一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.85.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.706.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.28.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而.12.(4分)已知函数y=﹣x+3,当x=时,函数值为0.13.(4分)在矩形ABCD中,再增加条件(只需填一个)可使矩形ABCD 成为正方形.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.15.(4分)将直线向下平移3个单位,得到直线.16.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为分.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查名学生;(2)持反对意见的学生人数占整体的%,无所谓意见的学生人数占整体的%;(3)估计该校1200名初中生中,大约有名学生持反对态度.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.福建省福州市福清市中考数学模拟试卷(八)参考答案与试题解析一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=【解答】解:A、是反比例函数,故此选项错误;B、是一次函数,故此选项正确;C、是二次函数,故此选项错误;D、不是一次函数,故此选项错误;故选:B.2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.【解答】解:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故选:A.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°【解答】解:A、平行四边形的对边相等,故A选项正确;B、平行四边形的对边平行,故B选项正确;C、平行四边形的对角相等不一定互补,故C选项错误;D、平行四边形的内角和为360°,故D选项正确;故选:C.4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.8【解答】解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===5所以菱形的边长为5.故选:A.5.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.70【解答】解:依题意得70出现了2次,次数最多,故这组数据的众数是70.故选:D.6.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定【解答】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选:A.7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.2【解答】解:∵一次函数y=(m﹣1)x﹣4的图象经过点A(2,4),∴4=2(m﹣1)﹣4,解得m=5.故选:B.8.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C 则不能判定是平行四边形.故选:C.10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组【解答】解:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校全体教职工总人数的比例是:×100%=20%,故正确;C、教职工年龄的中位数一定落在40≤x<42这一组,正确;D、教职工年龄的众数一定在38≤x<40这一组.错误.故选:D.二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而减小.【解答】解:∵正比例函数y=﹣5x中k=﹣5<0,∴y随着x的增大而减小.故答案为:减小.12.(4分)已知函数y=﹣x+3,当x=3时,函数值为0.【解答】解:当y=0时,﹣x+3=0,解得:x=3.故答案为:3.13.(4分)在矩形ABCD中,再增加条件AB=BC(只需填一个)可使矩形ABCD 成为正方形.【解答】解:∵AB=BC,∴矩形ABCD为正方形,故答案为:AB=BC.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.15.(4分)将直线向下平移3个单位,得到直线y=x﹣3.【解答】解:原直线的k=,b=0;向下平移3个单位长度得到了新直线,那么新直线的k=,b=0﹣3=﹣3.∴新直线的解析式为y=x﹣3.故答案为:y=x﹣316.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为88分.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?【解答】解:(1)∵y=(1﹣3k)x+2k﹣1经过原点(0,0),∴0=(1﹣3k)×0+2k﹣1,解得,k=0.5,即当k=0.5时,图象过原点;(2)∵函数y=(1﹣3k)x+2k﹣1,y随x的增大而增大,∴1﹣3k>0,解得,k<,即当k<时,y随x的增大而增大.18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])【解答】解:(1)=(1+2+3+4+5)=3;(2)S2= [(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.【解答】解:(1)设一次函数的表达式为y=kx+b,则,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(﹣1,1)代入函数解析式,1≠﹣2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=﹣,此函数与x轴、y轴围成的三角形的面积为:×1×=.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴BD=2BO=4,在Rt△BAD中,AD=.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查200名学生;(2)持反对意见的学生人数占整体的10%,无所谓意见的学生人数占整体的15%;(3)估计该校1200名初中生中,大约有120名学生持反对态度.【解答】解:(1)根据题意得:=200(名),答:此次共抽查了200名学生;(2)持反对意见的学生人数是200﹣150﹣30=20(名),持反对意见的学生人数占整体的×100%=10%;无所谓意见的学生人数占整体的×100%=15%;故答案为:10%,15%;(3)根据题意得:1200×10%=120(名),答:大约有120名学生持反对态度.故答案为:120.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.【解答】解:(1)y与x之间的函数关系式为y=50﹣x;(2)W=(63﹣55)x+(42﹣36)(50﹣x),整理得:W=2x+300;(3)根据题意得:55x+36(50﹣x)≤2000整理得:19x≤200.∴x≤10.∴x的最大值为10.又∵W=2x+300,W随着x的增大而增大.∴当x=10时,W有最大值,最大值为320.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.【解答】解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,=×4×(4﹣t)=8﹣2t;当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(t﹣4)=2t﹣8;当t>4时,OM=AM﹣OA=t﹣4,S△OCM(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
2023年天津市中考数学试卷及答案解析
2023年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算的结果等于()A.B.﹣1C.D.12.(3分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间3.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称()A.B.C.D.5.(3分)据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.0.935×109B.9.35×108C.93.5×107D.935×1066.(3分)的值等于()A.1B.C.D.27.(3分)计算的结果等于()A.﹣1B.x﹣1C.D.8.(3分)若点A(x1,﹣2),B(x2,1),C(x3,2)都在反比例函数的图象上,则x1,x2,x3的大小关系是()A.x3<x2<x1B.x2<x1<x3C.x1<x3<x2D.x2<x3<x1 9.(3分)若x1,x2是方程x2﹣6x﹣7=0的两个根,则()A.x1+x2=6B.x1+x2=﹣6C.x1x2=D.x1x2=7 10.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接AD.若BD=DC,AE=4,AD=5,则AB的长为()A.9B.8C.7D.611.(3分)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD 12.(3分)如图,要围一个矩形菜园ABCD,其中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m,有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为192m;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率为.14.(3分)计算(xy2)2的结果为.15.(3分)计算的结果为.16.(3分)若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为.17.(3分)如图,在边长为3的正方形ABCD的外侧,作等腰三角形ADE,.(1)△ADE的面积为;(2)若F为BE的中点,连接AF并延长,与CD相交于点G,则AG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P,请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.20.(8分)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为,图①中m的值为;(2)求统计的这组学生年龄数据的平均数、众数和中位数.21.(10分)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.22.(10分)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m);①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,取1.7,结果取整数).23.(10分)已知学生宿舍、文具店、体育场依次在同一条直线上,文具店离宿舍0.6km,体育场离宿舍1.2km,张强从宿舍出发,先用了10min匀速跑步去体育场,在体育场锻炼了30min,之后匀速步行了10min到文具店买笔,在文具店停留10min后,用了20min 匀速散步返回宿舍,下面图中x表示时间,y表示离宿舍的距离.图象反映了这个过程中张强离宿舍的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2②填空:张强从体育场到文具店的速度为km/min;③当50≤x≤80时,请直接写出张强离宿舍的距离y关于时间x的函数解析式;(2)当张强离开体育场15min时,同宿舍的李明也从体育场出发匀速步行直接回宿舍,如果李明的速度为0.06km/min,那么他在回宿舍的途中遇到张强时离宿舍的距离是多少?(直接写出结果即可)24.(10分)在平面直角坐标系中,O为原点,菱形ABCD的顶点A(,0),B(0,1),D(2,1),矩形EFGH的顶点E(0,),,H(0,).(1)填空:如图①,点C的坐标为,点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t 的取值范围;②当时,求S的取值范围(直接写出结果即可).25.(10分)已知抛物线y=﹣x2+bx+c(b,c为常数,c>1的顶点为P,与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,抛物线上的点M的横坐标为m,且,过点M作MN⊥AC,垂足为N.(1)若b=﹣2,c=3.①求点P和点A的坐标;②当时,求点M的坐标;(2)若点A的坐标为(﹣c,0),且MP∥AC,当时,求点M的坐标.2023年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据有理数乘法法则计算即可.【解答】解:原式=+(×2)=1,故选:D.【点评】本题考查有理数的乘法运算,其运算法则是基础且重要知识点,必须熟练掌握.2.【分析】一个正数越大,其算术平方根越大,据此即可求得答案.【解答】解:∵4<6<9,∴<<,即2<<3,那么在2和3之间,故选:B.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.3.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,一共有三列,从左到右小正方形的个数分别为2、2、1.故选:C.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.4.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:B、C,D选项中的汉字都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的汉字能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:935000000=9.35×108,故选:B.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.6.【分析】根据特殊锐角的三角函数值及二次根式的加法法则计算即可.【解答】解:原式=+=,故选:B.【点评】本题考查二次根式的运算及特殊锐角的三角函数,其相关运算法则是基础且重要知识点,必须熟练掌握.7.【分析】由于是异分母的分式的加减,所以先通分,化为同分母的分式,然后进行加减即可.【解答】解:====,故选:C.【点评】本题主要考查了分式的加减,计算时首先判断分母是否相同,然后利用分式加减的法则计算即可.8.【分析】分别将点A,B,C的坐标代入反比例函数的解析式求出x2,x3,x1,然后再比较它们的大小即可得出答案.【解答】解:将A(x1,﹣2)代入,得:,即:x1=1,将B(x2,1)代入,得:,即:x2=﹣2,将C(x3,2)代入,得:,即:x3=﹣1,∴x2<x3<x1.故选:D.【点评】此题主要考查了反比例函数的图象,解答此题的关键是理解函数图象上的点满足函数的解析式,满足函数解析式的点都在函数的图象上.9.【分析】根据一元二次方程根与系数的关系进行判断即可.【解答】解:∵x1,x2是方程x2﹣6x﹣7=0的两个根,∴x1+x2=6,x1x2=﹣7,故选:A.【点评】本题考查了一元二次方程根与系数的关系,应掌握:设x1,x2是一元二次方程y=ax2+bx+c(a≠0)的两个实数根,则,.10.【分析】根据线段垂直平分线的性质可得AC=2AE=8,DA=DC,从而可得∠DAC=∠C,再结合已知易得BD=AD,从而可得∠B=∠BAD,然后利用三角形内角和定理可得∠BAC=90°,从而在Rt△ABC中,利用勾股定理进行计算,即可解答.【解答】解:由题意得:MN是AC的垂直平分线,∴AC=2AE=8,DA=DC,∴∠DAC=∠C,∵BD=CD,∴BD=AD,∴∠B=∠BAD,∵∠B+∠BAD+∠C+∠DAC=180°,∴2∠BAD+2∠DAC=180°,∴∠BAD+∠DAC=90°,∴∠BAC=90°,在Rt△ABC中,BC=BD+CD=2AD=10,∴AB===6,故选:D.【点评】本题考查了勾股定理,线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,熟练掌握勾股定理,以及线段垂直平分线的性质是解题的关键.11.【分析】由旋转的性质可得∠ABC=∠ADE,∠BAD=∠CAE,由三角形内角和定理可得∠BED=∠BAD=∠CAE.【解答】解:如图,设AD与BE的交点为O,∵把△ABC以点A为中心逆时针旋转得到△ADE,∴∠ABC=∠ADE,∠BAD=∠CAE,又∵∠AOB=∠DOE,∴∠BED=∠BAD=∠CAE,故选:A.【点评】本题考查了旋转的性质,掌握旋转的性质是解题的关键.12.【分析】设AD边长为xm,则AB边长为长为m,根据AB=6列出方程,解方程求出x的值,根据x取值范围判断①;根据矩形的面积=192.解方程求出x的值可以判断②;设矩形菜园的面积为ym2,根据矩形的面积公式列出函数解析式,再根据函数的性质求函数的最值可以判断③.【解答】解:设AD边长为xm,则AB边长为长为m,当AB=6时,=6,解得x=28,∵AD的长不能超过26m,∴x≤26,故①不正确;∵菜园ABCD面积为192m2,∴x•=192,整理得:x2﹣40x+384=0,解得x=24或x=16,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,故②正确;设矩形菜园的面积为ym2,根据题意得:y=x•=﹣(x2﹣40x)=﹣(x﹣20)2+200,∵﹣<0,20<26,∴当x=20时,y有最大值,最大值为200.故③正确.∴正确的有2个,故选:C.【点评】此题主要考查了一元二次方程和二次函数的应用,读懂题意,找到等量关系准确地列出函数解析式和方程是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个球,其中绿球有7个,∴从袋子中随机取出1个球,它是绿球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.14.【分析】根据积的乘方与幂的乘方法则计算即可.【解答】解:(xy2)2=x2•(y2)2=x2y4,故答案为:x2y4.【点评】本题考查了积的乘方与幂的乘方法则,熟记:积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变,指数相乘.15.【分析】利用平方差公式进行计算,即可解答.【解答】解:=()2﹣()2=7﹣6=1,故答案为:1.【点评】本题考查了二次根式的混合运算,平方差公式,熟练掌握平方差公式是解题的关键.16.【分析】先根据平移规律求出直线y=x向上平移3个单位的直线解析式,再把点(2,m)代入,即可求出m的值.【解答】解:将直线y=x向上平移3个单位,得到直线y=x+3,把点(2,m)代入,得m=2+3=5.故答案为:5.【点评】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.17.【分析】(1)过E作EM⊥AD于M,根据等腰三角形的性质得到AM=DM=AD=,根据勾股定理得到EM==2,根据三角形的面积公式即可得到△ADE的面积为;(2)过E作AD的垂线交AD于M,AG于N,BC于P,根据正方形的性质得到EF⊥BC,推出四边形ABPM是矩形,得到PM=AB=3,AB∥EP,根据全等三角形的性质得到EN=AB=3,根据勾股定理即可得到结论.【解答】解:(1)过E作EM⊥AD于M,∵.AD=3,∴AM=DM=AD=,∴EM==2,∴△ADE的面积为;故答案为:3;(2)过E作AD的垂线交AD于M,AG于N,BC于P,∵四边形ABCD是正方形,∴BC∥AD,∴EF⊥BC,∴四边形ABPM是矩形,∴PM=AB=3,AB∥EP,∴EP=5,∠ABF=∠NEF,∵F为BE的中点,∴BF=EF,在△ABF与△NEF中,,∴△ABF≌△NEF(ASA),∴EN=AB=3,∴MN=1,∵PM∥CD,∴AN=NG,∴CD=2MN=2,∴=,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,正确地作出辅助线是解题的关键.18.【分析】(1)利用勾股定理求解即可.【解答】解:(1)AB==.故答案为:;(2)如图,点Q即为所求;方法:取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB 与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求;理由:可以证明∠PCA=∠QCB,∠CBQ=∠CAP=60°,∵AC=CB,∴△ACP≌△BAQ(ASA),∴∠ACP=∠BCQ,CP=CQ,∴∠PCQ=∠ACB=60°,∴△PCQ是等边三角形.故答案为:取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求.【点评】本题考查作图﹣复杂作图,等边三角形的性质和判定,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会构造全等三角形解决问题.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:(1)解不等式①,得x≥﹣2;(2)解不等式②,得x≤1;(3)把不等式①和②的解集在数轴上表示如图所示:(4)原不等式组的解集为﹣2≤x≤1;故答案为:(1)x≥﹣2;(2)x≤1;(4)﹣2≤x≤1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.20.【分析】(1)把各条形图对应的学生人数加起来为a的值;根据百分比由100%依次减去各年龄对应的百分比可得m的值;(2)利用加权平均数,众数,中位数定义得出结果即可.【解答】解:(1)a=5+6+13+16=40;∵m%=100%﹣12.5%﹣40%﹣32.5%=15%,∴m=15.故答案为:40;15;(2)平均数为=;∵15岁的学生最多,∴众数为15;∵一共调查了40名学生,12岁的有5人,13岁的6人,∴中位数为14.【点评】此题主要是考查了统计的应用,能够熟练掌握条形图的运用,平均数,众数,中位数定义是解题的关键.21.【分析】(1)由垂径定理得到=,因此∠BOC=∠AOC=60°,得到∠AOB=∠AOC+∠BOC=120°,由圆周角定理即可求出∠CEB的度数;(2)由垂径定理,圆周角定理求出∠CEB的度数,得到∠C的度数,由三角形外角的性质求出∠EOG的度数,由锐角的正切定义即可求出EG的长.【解答】解:(1)∵半径OC垂直于弦AB,∴=,∴∠BOC=∠AOC=60°,∴∠AOB=∠AOC+∠BOC=120°,∵∠CEB=∠BOC,∴∠CEB=30°;(2)如图,连接OE,∵半径OC⊥AB,∵=,∴∠CEB=∠AOC=30°,∵EF=EB,∴∠EFB=∠B=75°,∴∠DFC=∠EFB=75°,∠DCF=90°﹣∠DFC=15°,∵OE=OC,∴∠C=∠OEC=15°,∴∠EOG=∠C+∠OEC=30°,∵GE切圆于E,∴∠OEG=90°,∴tan∠EOG==,∵OE=OA=3,∴EG=.【点评】本题考查垂径定理,圆周角定理,切线的性质,等腰三角形的性质,直角三角形的性质,解直角三角形,三角形外角的性质,关键是由圆周角定理,等腰三角形的性质求出∠C=15°,由三角形外的性质求出∠EOG的度数,由锐角的正切定义即可求出EG的长.22.【分析】(1)根据题意可得:DE⊥EC,然后在Rt△DEC中,利用含30度角的直角三角形的性质,进行计算即可解答;(2)①根据题意得:BA⊥EA,在Rt△DEC中,利用含30度角的直角三角形的性质求出EC的长,然后在Rt△ABC中,利用锐角三角函数的定义求出AC的长,从而利用线段的和差关系进行计算,即可解答;②过点D作DF⊥AB,垂足为F,根据题意得:DF=EA=(3+h)m,DE=FA=3m,则BF=(h﹣3)m,然后在Rt△BDF中,利用锐角三角函数的定义求出BF的长,从而列出关于h的方程,进行计算即可解答.【解答】解:(1)由题意得:DE⊥EC,在Rt△DEC中,CD=6m,∠DCE=30°,∴DE=CD=3(m),∴DE的长为3m;(2)①由题意得:BA⊥EA,在Rt△DEC中,DE=3m,∠DCE=30°,∴CE=DE=3(m),在Rt△ABC中,AB=hm,∠BCA=45°,∴AC==h(m),∴AE=EC+AC=(3+h)m,∴线段EA的长为(3+h)m;②过点D作DF⊥AB,垂足为F,由题意得:DF=EA=(3+h)m,DE=FA=3m,∵AB=hm,∴BF=AB﹣AF=(h﹣3)m,在Rt△BDF中,∠BDF=27°,∴BF=DF•tan27°≈0.5(3+h)m,∴h﹣3=0.5(3+h),解得:h=3+6≈11,∴AB=11m,∴塔AB的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.【分析】(1)①根据函数的图象计算即可;②根据速度=路程÷时间计算即可;③根据函数图象分段写出函数解析式即可;(2)设李明从体育场出发x分钟后与张强相遇,结合题意列出方程,解方程即可.【解答】解:(1)①由图象可知,张强从宿舍到体育场的速度为1.2÷10=0.12(km/min),∴当张强离开宿舍1min时,张强离宿舍的距离为0.12×1=0.12(km);当张强离开宿舍20min时,张强离宿舍的距离为1.2km;当张强离开宿60舍min时,张强离宿舍的距离为0.6km;张强离开宿舍的时间/min1102060张强离宿舍的距离/km0.12 1.2 1.20.6故答案为:0.12,1.2;0.6;②由图象知,张强从体育场到文具店的速度为=0.06(km/h),故答案为:0.06;③当50<x≤60时,y=0.6;张强从文具店到宿舍时的速度为=0.03(km/h),∴当60<x≤80时,y=2.4﹣0.03x;综上,y关于x的函数解析式为y=;(2)根据题意,当张强离开体育场15min时,张强到达文具店并停留了5min,设李明从体育场出发x分钟后与张强相遇,则0.06x=0.03(x﹣5)+0.6,解得x=15,∴1.2﹣0.06×15=0.3(km),∴离宿舍的距离是0.3km.【点评】本题考查了一次函数的应用,函数图象.解题的关键在于从图象中获取正确的信息并理解图象的含义.24.【分析】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得EF=EF'=,EH=EH'=1,然后可得∠ABO=60°,则有EM=,进而根据割补法可进行求解面积S;②由①及题意可知当≤t≤时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是增大的,当<t≤时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是减小的,然后根据题意画出图形计算面积的最大值和最小值即可.【解答】(1)解:四边形EFGH是矩形,且E(0,).F(﹣,)(0,),∴EF=GH=,EH=FG=1,∴G(﹣,);连接AC,BD,交于一点H,如图所示:∵四边形ABCD是菱形,且A(,0),B(0,1),D(2,1),AB=AD=,AC⊥BD,CM=AM=OB=1,BM﹣MD=OA=,∴AC=2,∴C(,2),故答案为(,2),(﹣,);(2)解:①∵点E(0,),点F(﹣,),点H(0,),∴矩形EFGH中,EF∥x轴,E'H'⊥x轴,EF=,EH=1,∴矩形E'F'G'H'中,E'F'∥x轴,E'H'⊥x轴,E'F'=,E'H'=1,由点A(,0),点B(0,1),得OA=,OB=1,在Rt△ABO中,tan∠ABO=,得∠ABO=60°,在Rt△BME中,由EM=EB×tan60°,EB=1﹣=,得EM=,=EB×EM=,同理,得S△BNH=,∴S△BME∵EE'=t,得S矩形EE'H'H=EE'×EH=t,﹣S△BME﹣S△BNH,又S=S矩形EE'H'H∴S=t﹣,当EE'=EM=时,则矩形E'F'G'H'和菱形ABCD重叠部分为△BE'H',∴t的取值范围是<t≤,②由①及题意可知当≤t时,矩形E'F'G'H'和姜形ABCD重叠部分的面积S 是增大的,当时,矩E'F'G'H'和菱形ABCD重叠部分的面积S是减小的,∴当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:此时面积S最大,最大值为S=1×=;当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:由(1)可知B、D之间的水平距离为2,则有点D到G'F'的距离为,由①可知:∠D=∠B=60°,∴矩形E'F'G'H'和菱形ABCD重叠部分为等边三角形,∴该等边三角形的边长为2×,∴此时面积S最小,最小值为,综上所述:当时,则.【点评】本题主要考查矩形、菱形的性质及三角函数、图形与坐标,熟练掌握矩形、菱形的性质及三角函数、图形与坐标是解题的关键.25.【分析】(1)①利用配方法即可得到顶点P的坐标,令y=0,解方程即可得到A的坐标.②过点M作ME⊥x轴于点E,于直线AC交于点F,证得EF=AE,表示出点M、点E的坐标,进而表示出FM,根据直角三角形的性质列出方程求解即可得到M的坐标.(2)求出顶点P的坐标和抛物线的对称轴,作辅助线,证明MQ=QP,根据,列方程求解即可.【解答】解:(1)①∵b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),当y=0时,﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∵点A在点B的左侧,∴A(﹣3,0).答:P点的坐标为(﹣1,4),A点的坐标为(﹣3,0).②如图,过点M作ME⊥x轴于点E,于直线AC交于点F,∵A(﹣3,0),C(0,3),∴OA=OC,∴在Rt△AOC中,∠OAC=45°,∴在Rt△AEF中,EF=AE,∵抛物线上的点M的横坐标为m,其中﹣3<m<﹣1,∴M(m,﹣m2﹣2m+3),E(m,0),∴EF=AE=m﹣(﹣3)=m+3,∴F(m,m+3),∴FM=(﹣m2﹣2M+3)﹣(m+3)=﹣m2﹣3m,∴在Rt△FMN中,∠MFN=45°,∴,∴﹣m2﹣3m=2,解得m1=﹣2,m2=﹣1(舍去),∴M(﹣2,3).答:点M的坐标为(﹣2,3).(2)∵点A(﹣c,0)在抛物线y=﹣x2+bx+c上,其中c>1,∴﹣c2﹣bc+c=0,得b=1﹣c,∴抛物线的解析式为y=﹣x2+(1﹣c)x+c,∴M(m,﹣m2+(1﹣c)m+c),其中.∴顶点P的坐标为(),对称轴为直线l:x=.如图,过点M作MQ⊥l于点Q,则,∵MP∥AC,∴∠PMQ=45°,∴MQ=QP,∴,即(c+2m)2=1,解得c1=﹣2m﹣1,c2=﹣2m+1(舍去),同②,过点M作ME⊥x轴于点E,于直线AC交于点F,则点E(m,0),点F(m,﹣m﹣1),点M(m,m2﹣1),∴,∴,即2m2+m﹣10=0,解得(舍去),∴点M的坐标为(﹣).答:点M的坐标为(﹣).【点评】本题考查了二次函数的综合应用,解题的关键是作辅助线,掌握直角三角形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省恩施州中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
)1.(3分)(•恩施州)的相反数是()A.B.﹣C.3D.﹣3考点:相反数.分析:根据只有符号不同的两个数互为相反数求解后选择即可.解答:解:﹣的相反数是.故选A.点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()A.3.93×104B.3.94×104C.0.39×105D.394×102考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:39360=3.936×104≈3.94×104.故选:B.点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.(3分)(•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°考点:平行线的判定与性质.分析:首先证明a∠b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.解答:解:∠∠1+∠5=180°,∠1+∠2=180°,∠∠2=∠5,∠a∠b,∠∠3=∠6=100°,∠∠4=100°.故选:D.点评:此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.4.(3分)(•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,再利用完全平方公式进行二次分解即可.解答:解:x2y﹣2y2x+y3 =y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.5.(3分)(•恩施州)下列运算正确的是()A.x3•x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a7考点:多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则分别进行计算,即可得出答案.解答:解:A、x3•x2=x5,故本选项错误;B、3a2+2a2=5a2,故本选项正确;C、a(a﹣1)=a2﹣a,故本选项错误;D、(a3)4=a12,故本选项错误;故选B.点评:此题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项,掌握幂的乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则是解题的关键,是一道基础题.6.(3分)(•恩施州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:选项A,B,D折叠后都可以围成正方体;而C折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.点评:本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及无盖正方体展开图的各种情形.A.若a>b,b<c,则a>c B.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b考点:分析:根据不等式的基本性质,取特殊值法进行解答.解答:解:A、可设a=4,b=3,c=4,则a=c.故本选项错误;B、当c=0或c<0时,不等式ac>bc不成立.故本选项错误;C、当c=0时,不等式ac2>bc2不成立.故本选项错误;D、由题意知,c2>0,则在不等式ac2>bc2的两边同时除以c2,不等式仍成立,即ac2>bc2,故本选项正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.(3分)(•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )A .B .C .D .考点:几何概率;平行四边形的性质. 分析:先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可. 解答: 解:∠四边形是平行四边形, ∠对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S 四边形,∠针头扎在阴影区域内的概率为,故选:B .点评: 此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.9.(3分)(•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )A .B .C .D .考点:二次函数图象与几何变换分析: 确定出平移前的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出抛物线解析式即可. 解答:解:抛物线y=x 2﹣1的顶点坐标为(0,﹣1), ∠向右平移一个单位,再向下平移2个单位,∠平移后的抛物线的顶点坐标为(1,﹣3),∠得到的抛物线的解析式为y=(x ﹣1)2﹣3.故选B .点评: 本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.10.(3分)(•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明∠DFE∠∠BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∠DC,则∠DFE∠∠BAE,∠=,∠O为对角线的交点,∠DO=BO,又∠E为OD的中点,∠DE=DB,则DE:EB=1:3,∠DF:AB=1:3,∠DC=AB,∠DF:DC=1:3,∠DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明∠DFE∠∠BAE,然后根据对应边成比例求值.11.(3分)(•恩施州)如甲、乙两图所示,恩施州统计局对恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额602824231416155下列结论不正确的是()A.恩施州固定资产投资总额为200亿元B.恩施州各单位固定资产投资额的中位数是16亿元C.来凤县固定资产投资额为15亿元D.固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°考点:条形统计图;扇形统计图.分析:利用建始县得投资额÷所占百分比可得总投资额;利用总投资额减去各个县市的投资额可得来凤县固定资产投资额,再根据中位数定义可得恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案.解答:解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;故选:D.点评:本题考查的是条形统计图和扇形统计图的综合运用,以及中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.12.(3分)(•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1D.考点:扇形面积的计算;正方形的性质;旋转的性质.分析:画出示意图,结合图形及扇形的面积公式即可计算出点A运动的路径线与x轴围成的面积.解答:解:如图所示:点A运动的路径线与x轴围成的面积=S1+S2+S3+2a=+ ++2×(×1×1)=π+1.故选C.点评:本题考查了扇形的面积计算,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式.二、填空题(本大题共有4小题,每小题3分,共12分。
不要求写出解答过程,请把答案直接填写在相应的位置上)13.(3分)(•恩施州)25的平方根是±5.考点:平方根.分析:如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.解答:解:∠(±5)2=25∠25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.14.(3分)(•恩施州)函数y=的自变量x的取值范围是x≤3且x≠﹣2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(3分)(•恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.考点:相切两圆的性质;含30度角的直角三角形;切线的性质;弧长的计算.分析:首先求出扇形半径,进而利用扇形弧长公式求出扇形弧长,进而得出扇形周长.解答:解:如图所示:设∠O与扇形相切于点A,B,则∠CAO=90°,∠AOB=30°,∠一半径为1的圆内切于一个圆心角为60°的扇形,∠AO=1,∠CO=2AO=2,∠BC=2=1=3,∠扇形的弧长为:=π,∠则扇形的周长为:3+3+π=6+π.故答案为:6+π.点评:此题主要考查了相切两圆的性质以及扇形弧长公式等知识,根据已知得出扇形半径是解题关键.16.(3分)(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.三、解答题(本大题共有8个小题,共72分。