2016年全国硕士研究生招生考试农学门类联考数学真题及详解【圣才出品】

合集下载

2016年全国硕士研究生入学统一考试数学二试题答案及解析

2016年全国硕士研究生入学统一考试数学二试题答案及解析

2016年全国硕士研究生入学统一考试数学二试题答案及解析一、选择题(1)设1231),1a x a a =,则( ).A. 123,,a a aB. 231,,a a aC. 213,,a a aD. 321,,a a a 【答案】B 【解析】21151362231101()22ln(1113x a x x x x a x x x a x +→=-=-=+==当时,所以,从低到高的顺序为a 2,a 3,a 1,选B.(2)已知函数2(1),1()ln ,1x x f x x x -<⎧=⎨≥⎩,则()f x 的一个原函数是( ).A. 2(1),1()(ln 1),1x x F x x x x ⎧-<=⎨-≥⎩B. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨+-≥⎩C. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨++≥⎩D. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨-+≥⎩【答案】D【解析】对函数()f x 做不定积分可得原函数,1ln ln ln xdx x x x dx x x x C x=-⋅=-+⎰⎰,因此选择D.(3)反常函数①121x e dx x -∞⎰,②1201x e dx x+∞⎰的敛散性为( ). A. ①收敛,②收敛 B. ①收敛,②发散 C. ①发散,②收敛 D. ①发散,②发散 【答案】B【解析】①111102011[lim lim ](01)1xxx x x x e dx e d e e x x--∞-∞→∞→=-=--=--=⎰⎰收敛。

②111110200011[lim lim ]xx x xxx x e dx e d e e e x x+∞+∞+∞→∞→=-=-=--=+∞⎰⎰发散。

所以,选B.(4)设函数()f x 在(,)-∞+∞内连续,其导函数的图形如图所示,则( ).A. 函数()f x 有2个极值点,曲线()y f x =有2个拐点B. 函数()f x 有2个极值点,曲线()y f x =有3个拐点C. 函数()f x 有3个极值点,曲线()y f x =有1个拐点D. 函数()f x 有3个极值点,曲线()y f x =有2个拐点 【答案】B【解析】根据图像可知导数为零的点有3个,但是最右边的点左右两侧导数均为正值,因此不是极值点,故有2个极值点,而拐点是一阶导数的极值点或者是不可导点,在这个图像上,一阶导数的极值点有2个,不可导点有1个,因此有3个拐点.(5)设函数()(1,2)i f x i =具有二级连续导数,且0''()0(1,2)i f x i <=,若两条求曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点曲线1()y f x =的曲率大于曲线2()y f x =,则在0x 的某个邻域内,有( ). A. 12()()()f x f x g x ≤≤ B. 21()()()f x f x g x ≤≤ C. 12()()()f x g x f x ≤≤ D. 21()()()f x g x f x ≤≤ 【答案】A【解析】因y=f 1(x)与y=f 2(x)在(x 0,y 0)有公切线,则f 1(x 0)=f 2(x 0), f 1’ (x 0)=f 2’(x 0) 又y=f 1(x)与y=f 2(x) 在(x 0,y 0)处的曲率关系为k 1>k 2.10201233121222101010201020|''()||''()|,[1()][1()]"()0,"()0,"()"()0.f x f x k k f x f x f x f x f x f x ==++<<<<因又则从而在x 0的某个领域内f 1(x)与f 2(x)均为凸函数,故f 1(x)≤g(x), f 2(x)≤g(x),排除C,D. 令F(x)=f 1(x)-f 2(x),则F(x 0)=0,F ’(x 0)=0, F ”(x 0)<0. 由极值的第二充分条件得x=x 0为极大值点。

2016年全国硕士研究生招生考试数学(一)真题(含解析)

2016年全国硕士研究生招生考试数学(一)真题(含解析)

Cov(x,y)
PXY
VD(X) - VD(Y)
二、填空题
2
---------- X
一9
=----1
94
2'
(9)【答案】
【解】
Zln(l + Zsin t)dt
lim 0
■r f 0
i
1

COS
X
2
t ln( 1 + /sin / )dt
lim 0
工f 0
14
—X
2
(10)[答案】_/ +(》一1)4
x ln( 1 + j? sin x )_ 1
lim
j--*0
2工3
【解】rot A
a
a
=j + (y — 1)R.
xyz
N
(11) 【答案】 一djr +2d』・
【解】将x =Q ,y =1代入得n 1.
(工l)z — y2 =x2f (x —nq)两边关于jc求偏导得
n + («z +1)n: = 2jc f Jjc 一 z
:
*:
*
9
)9
)
99
)) 99
))
8
(8
(
:
*
9
)
99
))
8
(
2016年数学(一)真题解析
一、选择题
(1)【答案】(O.
「+°°
【解】
0
dx ( 1 + j? )6
1
cLz
*
o j?"(l +工)"
1
djr
1+ 壬“(

2016年考研数学一试题及解答

2016年考研数学一试题及解答

B
有唯一解,
X
=
1 0
3a
a a a
+ − +
2 4 2
.
−1 0
21.(本题满分 11 分)
0 −1 1
已知矩阵 A = 2 −3 0 .
000
( I ) 求 A99;
( II ) 设 3 阶矩阵 B = (α1, α2, α3) 满足 B2 = BA, 记 B100 = (β1, β2, β3), 将 β1, β2, β3 分别表示为 α1, α2, α3 的线性组合.
002
0 00
−2 + 299 1 − 299
A99 = (P ΛP −1)99 = P Λ99P −1 = −2 + 2100 1 − 2100
2 − 298 2 − 299 .
0
0
0
( II ) 解 B2 = BA ⇒ B100 = BA99, 即
β1 = (−2 + 299) α1 + (−2 + 2100) α2,
˚Σ (
)
=
∂ (x2 + 1) − ∂ (2y) + ∂ (3z) dV
˚Ω ∂x
∂y
∂z
= (2x + 1) dV ,
注意到 dV

= (1 − x)2 dx, 于是 I
ˆ =
1
(2x + 1)(1 − x)2 dx =
1 .
0
2
19.(本题满分 10 分)
已知函数
f (x)
可导,

f (0)
=
( ξn−1介于xn, xn−1之间 ) ( ξn−2介于xn−1, xn−2之间 )

2016考研数学一真题及答案解析(完整版)

2016考研数学一真题及答案解析(完整版)

2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

2016年考研农学门类联考《数学》真题及详解【圣才出品】

2016年考研农学门类联考《数学》真题及详解【圣才出品】

2016年考研农学门类联考《数学》真题及详解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1.设函数,则x=0为()f x 的()。

A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点【答案】D 【解析】,而所以x=0为()f x 的无穷间断点。

2.设函数()f x 在0x =处可导,且,则()。

A.-2B.2C.-6D.6【答案】C 【解析】由于函数()f x 在0x =处可导,则所以3.设,则()。

A.B.C.D.【答案】B 【解析】令,则所以4.设函数,则的值依次为()。

A.2,-4B.2,4C.-2,-4D.-2,4【答案】A【解析】由已知条件,计算得5.多项式中与的系数依次为()。

A.-1,-1B.1,-1C.-1,1D.1,1【答案】B【解析】根据行列式定义,行列式是不同行不同列元素乘积的代数和其一般项是本题的项出现意味着每行元素中都有x项出现,因此只能是,又,则项系数为1;对于项,一定不含,也一定没有,那只有是;又,则系数为-1。

6.设A为4×5阶矩阵,若为线性方程组的基础解析,则()。

A.4B.3C.2D.1【答案】D【解析】A是4×5矩阵,则是5×4矩阵,是5个方程4个未知数的齐次方程组,其基础解系为3个解向量,故,所以,即。

X Y的概率分布为7.设二维随机变量(,)则()。

A.0.1B.0.18C.0.8D.0.9【答案】C【解析】根据题意可得8.设为来自总体的简单随机样本。

如果服从t分布,则C=()。

B.1C.2 2D.1 2【答案】A【解析】t 分布的典型模式为,其中,且X 和Y 相互独立,则,。

而,所以。

根据()2n χ的典型模式,其中均服从标准正态分布且相互独立,所以。

总之,即,因此,。

二、填空题(9~14小题,每小题4分,共24分。

)9.【答案】【解析】由于由洛必达法则得所以。

10.曲线的凹区间是______.【答案】(0,1)【解析】函数的定义域为,而解不等式0y ⅱ<,得(0,1)x Î,所以曲线的凹区间是(0,1)。

2016考研数学(一、二、三)真题及答案解析

2016考研数学(一、二、三)真题及答案解析

精心整理2016考研数学(一)真题及答案解析考研复习最重要的就是真题,所以跨考教育数学教研室为考生提供2016考研数学一的真题、答案及部分解析,希望考生能够在最后冲刺阶段通过真题查漏补缺,快速有效的备考。

一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列下列命题中不正确的是( )(D )发散点,发散点 【答案】(A ) 【解析】因为级数1nn n a x∞=∑在2x =处条件收敛,所以2R =,有幂级数的性质,1(1)nnn na x ∞=-∑的收敛半径也为2R =,即13x -<,收敛区间为13x -<<,则收敛域为13x -<≤,进而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,收敛点,故选A 。

(4)下列级数发散的是( ) (A )18nn n∞=∑(B)11)n n ∞=+(C )2(1)1ln n n n ∞=-+∑(D )!n n ∞∑ 312)n n=⇒∑(1)ln n n ∞-+∑(B ),a α∉Ω∈Ω (C ),a α∈Ω∉Ω (D ),a α∈Ω∈Ω 【答案】(D )【解析】Ax b =有无穷多解⇔()()3,0r A r A A =<⇒=,即(2)(1)0a a --=,从而12a a ==或当1a =时,2211111111121010114100032A ααααα⎛⎫⎛⎫⎪ ⎪=→-⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭ 从而232=0=1=2αααα-+⇒或时Ax b =有无穷多解当2a =时,2211111111122011114400032A ααααα⎛⎫⎛⎫⎪ ⎪=→-⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭从而232=0=1=2αααα-+⇒或时Ax b =有无穷多解 (B )()()()P AB P A P B ≥(C )()()()2P A P B P AB +≤(D )()()()2P A P B P AB +≥【答案】(C )【解析】排除法。

2016年考研数学二真题与详解详析

2016年考研数学二真题与详解详析

1
(−
x2
+
2x
+ 1)dx
5 20
0
3
14 . 设 二 次 型
f
( x1 , x2 , x3 )
=
x12

x
2 2
+
2ax1 x3
+
4x2 x3
的负惯性
指数是
1,则 a 的取值范围
Page 4 of 10


【详解】由配方法可知
f ( x1 , x2 , x3 ) = x12 − x22 + 2ax1 x3 + 4 x2 x3 = ( x1 + ax3 )2 − ( x2 − 2 x3 )2 + (4 − a 2 ) x32
(1 + y'2 )3
K
dx
本题中
dt
= 2t, dy dt
= 2t + 4 ,所以 dy dx
=
2t + 4
2 d2y
2t = 1+ t , dx 2
=

2 t2
2t
1 = − t3

对应于 t = 1的点处 y'= 3, y"= −1,所以 K =
y" = 1 ,曲率半径 R = 1 = 10 10 .
∂u ∂u
∂2u
∂2u
∂2u ∂2u
内部存在驻点 ( x0 , y0 ) ,也就是 ∂x = ∂y = 0 ,在这个点处 A = ∂x 2 ,C = ∂y 2 , B = ∂x∂y = ∂y∂x ,由
条件,显然 AC − B 2 < 0 ,显然 u( x, y) 不是极值点,当然也不是最值点,所以 u( x, y) 的最大值点和最

2016 年全国硕士研究生入学统一考试(数学)真题及答案解析

2016 年全国硕士研究生入学统一考试(数学)真题及答案解析

11
(B)
dx .
1 1 x2
(D)
1 0
1 x2
1
e x dx
.
()
(5) 函数 f x,g x 都有二阶连续导数且满足 f 0 0, g 0 0, f 0 g0 0 ,则
函数 z f x g y 在 0, 0 处取得极小值的一个充分条件是
()
(A) f 0 0, g0 0 .
(B) x 2 是 y f (x) 的极小值点.
(C) 2, f (2) 是 y f (x) 的拐点.
(D) x 2 不是 y f (x) 的极值点,且 2, f (2) 也不是 y f (x) 的拐点.
(4) 下列积分中发散的是
(A) ex2 dx . 0
(C) 1 ln xdx . 0x
向量组线性无关,则 r(B* ) ________.
(14)
设 X1, X 2,, X n 为 来 自 总 体 X
~ N(, 2) 的简单随机样本,记 X
1n n i1 X i

S 2
1 n 1
n i 1
(Xi
X )2
,则 E(S 4)
.
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定的位置上.解答应写出文字说明、 证明过程或演算步骤. (15) (本题满分 10 分)
数学(一)试题 第 2 页 (共 4 页)
1
已知 lxim01
x2 f x esin x ex
ln cos x
e12 ,求 lim x0
fx x3
.
(16) (本题满分 10 分)
(I)证明柯西中值定理:设函数 f ( x), g ( x) 在闭区间[a, b] 上连续,在开区间 (a, b) 内可 导,且 g ( x) 0 ,则至少存在一点 (a,b) ,使得

2016考研数学一真题及解析参考答案

2016考研数学一真题及解析参考答案

2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(((()q x =(,则()(的第一类间断点(B )(处连续但不可导(D ) (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似 (6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则() (A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(少(22(((11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan ax x x x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,nx x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在((D ⎧=⎨⎩(0,ky +=()I ()II (21),x ye-+且f 积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}nx 满足1()(1,2...)n n xf x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim nn x →∞存在,且0lim 2nn x→∞<<.(22a ⎫⎪⎪⎪-⎭当a ((I ()将12,,ββ(域D (I (U X (III )求Z U X =+的分布函数()F z . (23)设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。

2016考研数学一真题及答案解析(完整版)

2016考研数学一真题及答案解析(完整版)

2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题..纸.指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

2016年考研数学三真题及解析

2016年考研数学三真题及解析
此外,在(C)中,对于 P ( A A ) P P AP P A P ,若 P AP =B ,则 P A ( P )
1 T 1 1 T 1 T T T 1
BT ,
而 P A P 未必等于 B ,故(C)符合题意。综上可知, (C)为正确选项。
1
T
T
( 6 ) 设 二 次 型 f ( x1 , x2 , x3 ) a ( x1 x2 x3 ) 2 x1 x2 2 x2 x3 2 x1 x3 的 正 负 惯 性 指 数 分 别 为 1, 2 , 则 ( )

p dQ p dQ p 可知 Q dp 120 p Q dp dQ dp Q p 120
分离变量可知
Hale Waihona Puke 两边同时积分可得 ln Q ln( p 120) C 解得 Q C ( p 120) 由最大需求量为 1200 可知
Q (0) 1200 ,解得 C 10
2 9
2
【解析】 P ( A) C3
2 1 1 11 2 C3 3 9 3 3
2
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、证明过程或演 ... 算步骤. 15 (本题满分 10 分)求极限 lim cos 2 x 2 x sin x x 4
e
1 3
16、 (本题满分 10 分) 设某商品的最大需求量为 1200 件,该商品的需求函数 Q Q( p) ,需求弹性
p ( 0) , p 为单 120 p
价(万元) (1)求需求函数的表达式 (2)求 p 100 万元时的边际收益,并说明其经济意义。 【解析】 (1)由弹性的计算公式得

2016年考研数学一真题及答案解析

2016年考研数学一真题及答案解析


2

观察选项,排除 B, C 。一元函数可导必连续,排除 A 。较易。 (3)考察非齐次方程解的性质 非齐次方程的两个解作减法是对应齐次方程的解, 即 2 1 x 是齐次解, 去系数 2 依 选 A。
2
旧是齐次解,代入齐次方程,记作方程①;非齐次方程的两个解取平均值,仍是非齐次方程 的解,即 1 x
1 1 1

1 上无定义, n 1
P AT P 1 P AT PT
T
T
T
1
P
T
1 1
AT PT BT ,符合;
1
同理,式①两边同时取逆得 P A P B ,记作式②,符合; 式①+②,即得 P 1 A A1 P B B 1 , D 亦符合。难度持平。 (6)考察二次型之惯性定理与二次曲面的方程 选B。
'
3、若 y (1 x ) 1 x , y (1 x ) 1 x 是微分方程 y p ( x) y q ( x) 的两 个解,则 q ( x ) (A) 3 x (1 x ) .
2
(B) 3 x(1 x ) .
2
( C)
x . 1 x2
( D)
1 .设数列 xn 满足 xn 1 f ( xn )( n 1, 2) . 2
证明: (1) 级数
(x
n 1

n 1
xn ) 绝对收敛;
(2) lim xn 存在,且 0 lim xn 2.
n n
20、 (本题满分 11 分)
2 1 1 1 2 a 1 ,B 1 a . 设矩形 A 2 1 1 a a 1 2

2016年全国硕士研究生入学统一考试数学(一)真题及解析

2016年全国硕士研究生入学统一考试数学(一)真题及解析

2016考研真题完整版数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y xy x=+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim2=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AXB =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

2016考研数学二试题及答案详解

2016考研数学二试题及答案详解
2016 年全国硕士研究生入学统一考试数学二试题及答案
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题 目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1) 设 a1 x (cos x 1), a2 照从低阶到高阶的排序是 (A) a1 , a2 , a3 【答案】(B)
所以由定积分定义得,原极限

1
0
x sin xdx ( x cos x sin x) 0 sin1 cos1 .
1
(11) 以 y x 2 e x 和 y x 2 为特解的一阶非齐次线性微分方程为 ___________ . 【答案】 y y 2 x x 2 【解析】设一阶非齐次线性微分方程为 y p ( x ) y q( x) .根据线性微分方程齐次与非齐次解之 间 的 关 系 知 x 2 ( x 2 e x ) e x 为 y p ( x ) y 0 的 解 . 所 以 p( x) 1 . 又 因 为 y x 2 为
0
x
f n 0 ?___________ .
5 n 2 2 【解析】当 x 0 时, f (0) 1 ;
【答案】
f ( x) ( x 1)2 2 f (t )dt 两边同时对 x 求导,得 f ( x) 2( x 1) 2 f ( x ) , f (0) 4 ;
1 1 0 1 1 1 x x 【解析】① e dx = e d = e x x 2 x 0
0
( lim e lim e ) 1 ,收敛.
x 0 1 x 1 x 0 x 0 1
1 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对该方程组的增广矩阵进行初等行变换,得
当 a≠-2, b 为任意值时,
性表示且表示方法唯一.
当 a=-2,b=-3 时,

线性表示且表示方法不唯一.
,方程组有唯一解,即 能由
线
,该方程组有无穷多解,即向量 能

,故方程组的通解为
,k 为任意常数.

,为 k 为任意常数.
,其中
,且 X 和Y相互
独立,则,
.而
根据 2 n 的典型模式
服从标准正态分布且相互独立,所以
,所以
,其中

. 均
4 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

总之
,即
,因此,
.
二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上. 9. 【答案】
,且 X 与 Y 相互独立,则
三、解答题:l5~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答应写出文 字说明、证明过程或演算步骤.
15.(本题满分 10 分)
设 解:因为
,故有
,求 .
又因为

,所以,
.
7 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

【答案】 dx+edy
十万种考研考证电子书、题库视频学习平台
【解析】
,所以
12.反常积分 【答案】 【解析】
,记
,则
13.设矩阵
,则
【答案】 【解析】由行列式的初等变换可得
6 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

14.设随机变量 【答案】17 【解析】计算得
满足条件
的解.
所以

通解为

将 x=1,y=0 代入上式可得 C=1.
故通解为
18.(本题满分 10 分) 求函数 解:由已知条件计算得
的极值.
,令
8 / 14
圣才电子书

解得驻点为(1,1).
十万种考研考证电子书、题库视频学习平台

,点(1,1)代入计算得
所以 f(1,1)=2 是 f(x,y)的极小值.

所以
3.设 A. B. C. D. 【答案】B 【解析】令
,则
,则().
所以
4.设函数
,则
的值依次为().
A.2,-4 B.2,4
C.-2,-4
【答案】A
【解析】由已知条件,计算得
2 / 14
D.-2,4
圣才电子书 十万种考研考证电子书、题库视频学习平台

,则 系数为-1.
6.设 A 为 4×5 阶矩阵,若 ().
为线性方程组
的基础解析,则
A.4
B.3
C.2
D.1
【答案】D 【解析】 A 是 4×5 矩阵,则 是 5×4 矩阵,
是 5 个方程 4 个未知数的齐
次方程组,其基础解系为 3 个解向量,故
,所以



3 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
16.(本题满分 10 分)
过点(0,0)作曲线
的切线 l,求该曲线与切线 l 及 y 轴所围有界图形的面积.
解:设切点坐标(x0,y0),则切线 l 的方程为
而点(0,0)点在直线上,故
,解得 x0 =-1,因此切点为
,所以切线方程 l 为
.所以围成的平面图形的面积为
17.(本题满分 10 分) 求微分方程 解:原微分方程可分离变量为
圣才电子书 十万种考研考证电子书、题库视频学习平台

2016 年全国硕士研究生招生考试农学门类联考数学真题及详解
一、选择题:l~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一 个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
1.设函数
21.(本题满分 11 分)
设向量
是矩阵
的特征向量.
(I)求常数 a, b 及向量a所对应的特征值l;
(II)求矩阵 A 的全部特征值和特征向量.
解:(I)设
,则根据题意可知
10 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台


,解得
(II)将 a=3,b=1 代入矩阵 A 中,即
5.多项式
中 与 的系数依次为().
A.-1,-1 B.1,-1
C.-1,1 D.1, 1
【答案】B
【解析】根据行列式定义,行列式是不同行不同列元素乘积的代数和其一般项是
本题的 项出现意味着每行元素中都有 x 项出现,因此只能是
,又
,则 项系数为 1;对于 项,一定不含 ,也一定没有 ,
那只有是
;又
解得矩阵 A 的特征值为 2,1,1.

时,解方程组

解得基础解系为


的所有特征向量为


时,解方程组

解得基础解系为


的所有特征向量为

22.(本题满分 11 分) 甲袋中有 1 个红球 2 个白球,乙袋中有 2 个红球 2 个白球,先从甲袋中任取 2 球放入 乙袋中,再从乙袋中任取 2 球,X 表示从甲袋中取出的红球数,Y 表示从乙袋中取出的红球 数.
19.(本题满分 10 分) 计算二重积分
围成. 解:计算如下
,其中有界区域 D 由直线 x=0,y=1 及曲线
20.(本题满分 11 分) 设向量组
当 a, b 为何值时,向量b能由向量组a1,a2,a3 线性表示;当表示式不唯一时,求其一
般表示式.
解:设
,得
9 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
,则

的().
A.可去间断点 B.跳跃间断点 C.振荡间断点 D.无穷间断点 【答案】D 【解析】
,而
所以 x=0 为 f (x) 的无穷间断点.
2.设函数

处可导,且
A.-2 B.2 【答案】C 【解析】
C.-6
D.6
,则
().
由于函数 f (x) 在 x = 0 处可导,则
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】由于
,由洛必达法则得
所以

10.曲线
【答案】 (0,1)
【解析】函数
的凹区间是 ___lt; 0 ,得 x Î (0,1) ,所以曲线
的凹区间是 (0,1) .
11.设函数 z = xy ,则 dz (e,1) = ______ .
5 / 14
圣才电子书


7.设二维随机变量 ( X ,Y ) 的概率分布为

().
A.0.1
B.0.18
【答案】C
【解析】根据题意可得
C.0.8
D.0.9
8.设
为来自总体
的简单随机样本.如果
服从 t 分布,则 C=().
A. 2
B.1
【答案】A
C. 2 2
D. 1 2
【解析】t 分布的典型模式为
相关文档
最新文档