向量数量积专题(总)
向量的数量积经典例题(含详细答案)
向量的数量积经典例题(含详细答案)向量的数量积经典例题(含详细答案)1.已知3,4a b ==r r ,,a b r r 的夹⾓为120o .求(1)a b r r g ,()()22a b a b +?-r r r r ;(2)23a b +r r2.已知向量a r 、b r 的夹⾓为2,||1,||23a b π==r r . (1)求a r ·b r 的值(2)若2a b -r r 和ta b +r r 垂直,求实数t 的值.3.已知平⾯向量()()1,2,2,a b m =-=r r(1)若a b ⊥r r ,求2a b +r r ;(2)若0m =,求a b +r r 与a b -r r 夹⾓的余弦值.4.已知向量(2,1),(3,2),(3,4)a b c =-=-=r r r ,(1)求()a b c ?+r r r;(2)若()a b c λ+r r r ∥,求实数λ的值.5.已知||2a =r ,||b =r (23)()2a b a b -+=r r r r .(1)求a b ?r r 的值;(2)求a r 与b r 所成⾓的⼤⼩.6.已知()1,2a =r ,()3,4b =-r(1)若ka b +r r 与2a b -r r 共线,求k ;(2)若ka b +r r 与2a b -r r 垂直,求k .7.已知2,3a b ==r r ,a r 与b r 的夹⾓为60?,53c a b =+r r r ,3d a kb =+r r r ,(1)当c d v P v 时,求实数k 的值;(2)当c d ⊥r u r 时,求实数k 的值.参考答案1.(1)6-,32-;(2)【解析】【分析】(1)根据向量数量积的定义进⾏求解;(2)根据23a b +=r r 先求数量积,再求模长.【详解】解:(1)∵3,4a b ==r r ,,a b r r 的夹⾓为120o ,∴cos120a b a b ?=r r r r g 134()2=??-=6-, ()()22a b a b +?-=r r r r 22223a b a b -+r r r r g 292163(6)=?-?+?-=32-;(2)23a b +=r r== 【点睛】本题主要考查平⾯向量的数量积的定义及平⾯向量的模长,考查计算能⼒,属于基础题. 2.(1)1-;(2)2.【解析】【分析】(1)利⽤数量积的定义直接计算即可.(2)利⽤()()20t b a b a +=-r r r r g 可求实数t 的值.【详解】(1)21cos 12132a b a b π==??-=-r r r r .(2)因为2a b -r r 和ta b +r r 垂直,故()()20t b a b a +=-r r r r g ,整理得到:()22220ta t a b b +--=r r r r g 即()12212402t t ??+---=,解得2t =.【点睛】本题考查数量积的计算以及向量的垂直,注意两个⾮零向量,a b v v 垂直的等价条件是0a b ?=v v,本题属于基础题.3.(1)25a b +=r r (2)65【解析】【分析】(1)由题可得0a b ?=r r ,解出1m =,()()()21,24,23,4a b +=-+=r r ,进⽽得出答案。
空间向量的数量积与向量积练习题
空间向量的数量积与向量积练习题在学习空间向量的数量积与向量积时,我们需要通过练习题来提高自己的理解和运用能力。
下面,我们将给出一些关于空间向量数量积与向量积的练习题,希望能够帮助大家更好地掌握这一知识点。
练习一:计算给定向量的数量积已知向量A = (-3, 2, 1) ,向量B = (4, -1, 5),求向量A与向量B的数量积。
解答:根据数量积的定义,向量A与向量B的数量积为:A·B = AX * BX + AY * BY + AZ * BZ。
将向量A与向量B的坐标代入公式中,得到:A·B = (-3) * 4 + 2 * (-1) + 1 * 5 = -12 - 2 + 5 = -9。
练习二:计算给定向量的向量积已知向量A = (1, 2, -3) ,向量B = (4, -1, 2),求向量A与向量B的向量积。
解答:根据向量积的定义,向量A与向量B的向量积为:A × B = (AY * BZ - AZ * BY , AZ * BX - AX * BZ , AX * BY - AY * BX)。
将向量A与向量B的坐标代入公式中,得到:A ×B = (2 * 2 - (-3) * (-1) , (-3) * 4 - 1 * 2 , 1 * (-1) - 2 * 4) = (4 - 3, -12 - 2, -1 - 8) = (1, -14, -9)。
练习三:判断两个向量的数量积与向量积的关系已知向量A = (1, -2, 3) ,向量B = (2, 4, 6),求向量A与向量B的数量积与向量积,并判断两者之间的关系。
解答:首先,计算向量A与向量B的数量积:A·B = (1) * 2 + (-2) * 4 + 3 * 6 = 2 - 8 + 18 = 12。
然后,计算向量A与向量B的向量积:A ×B = (-2 * 6 - 3 * 4, 3 * 2 - 1 * 6, 1 * 4 - (-2) * 2) = (-12 - 12, 6 - 6, 4 + 4) = (-24, 0, 8)。
向量的数量积运算的所有公式
向量的数量积运算的所有公式1.定义:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则a与b的数量积定义为:a·b=a1b1+a2b2+a3b32.单位向量:如果向量a是一个单位向量,则a与任何向量b的数量积等于b在a的方向上的投影长度。
3.平行向量:如果两个向量a和b平行,则它们的数量积为:a ·b = ,a,,b,cosθ其中,a,和,b,分别表示向量的模(长度),θ表示a和b之间的夹角。
4.正交向量:如果两个向量a和b互相垂直(夹角为90度),则它们的数量积为:a·b=05.向量的模:设向量a=(a1,a2,a3),则a的模定义为:a,=√(a1^2+a2^2+a3^2向量的模也可以表示为向量的数量积与自身的开方,即:a,=√(a·a6.向量的投影长度:设向量a与向量b之间的夹角为θ,则向量b 在a的方向上的投影长度为:proj_a(b) = ,b,cosθ投影长度也可以表示为数量积与向量a的模的商,即:proj_a(b) = (a · b) / ,a7.向量的夹角:设向量a和b之间的夹角为θ,则夹角的余弦可以表示为向量的数量积与两个向量模的商,即:cosθ = (a · b) / (,a,,b,)从该公式可以推导出两个向量夹角的正弦和余弦。
8.柯西-施瓦茨不等式:对于任意两个向量a和b,有:a·b,≤,a,当且仅当a和b共线时,等号成立。
9.向量的数量积的性质:-交换律:a·b=b·a-结合律:(c*a)·b=c*(a·b),其中c是一个标量-分配律:(a+b)·c=a·c+b·c这些公式是向量的数量积运算中的一些重要性质和公式。
它们在向量运算、物理学、几何学等领域具有广泛的应用。
向量的数量积
向量的数量积向量的数量积,也称为点积或内积,是线性代数中的重要概念之一。
它是将两个向量进行运算得到一个标量的过程。
本文将详细介绍向量的数量积的定义、性质和应用。
一、定义向量的数量积是将两个向量的对应分量相乘后再求和的结果。
设有两个n维向量A和B,则它们的数量积denoted as A·B,计算公式为:A·B = a1b1 + a2b2 + ... + anbn其中,ai和bi分别表示向量A和向量B中的第i个分量。
二、性质1. 交换律:A·B = B·A2. 结合律:(kA)·B = k(A·B) = A·(kB),其中k是一个标量3. 分配律:A·(B+C) = A·B + A·C,其中B和C为向量三、几何意义向量的数量积具有几何意义,它可以用来计算向量之间的夹角和向量的长度。
具体来说,设有两个向量A和B,它们的数量积可以表示为:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和向量B的长度,θ表示A与B之间的夹角。
四、应用1. 判断两个向量是否垂直:若A·B = 0,则向量A与向量B垂直。
2. 计算向量的模或长度:对于一个n维向量A,其模可以表示为:|A| = √(A·A)3. 计算两个向量的夹角:根据向量的数量积公式,可以通过已知的向量和它们之间的数量积来求解夹角。
4. 确定向量的方向:根据向量的数量积和夹角的计算结果,可以确定向量的方向。
五、实例分析为了更好地理解向量的数量积的应用,我们举个例子。
假设有两个二维向量A = (2, 3)和B = (4, -1),我们可以计算它们的数量积:A·B = 2×4 + 3×(-1) = 8 - 3 = 5根据数量积的几何意义可知,向量A与向量B的夹角θ可以通过以下公式得到:cosθ = (A·B) / (|A||B|)其中,|A| = √(2^2 + 3^2) = √(4 + 9) = √13,|B| = √(4^2 + (-1)^2) =√(16 + 1) = √17。
《向量的数量积》 讲义
《向量的数量积》讲义一、向量的基本概念在我们开始探讨向量的数量积之前,先来了解一下什么是向量。
向量是既有大小又有方向的量,它可以用有向线段来表示。
比如,一个力就是一个向量,它不仅有大小(力的强度),还有方向(力的作用方向)。
在数学中,我们通常用字母来表示向量,比如向量 a 、向量 b 。
向量的大小称为向量的模,记作|a| 、|b| 。
二、向量数量积的定义向量的数量积,也称为点积,是向量运算中的一个重要概念。
对于两个非零向量 a 和 b ,它们的数量积定义为: a·b =|a|×|b|×cosθ ,其中θ 是 a 和 b 的夹角。
需要注意的是,数量积的结果是一个标量(也就是一个数值),而不是向量。
如果两个向量中有一个是零向量,那么它们的数量积为 0 。
三、数量积的几何意义从几何角度来看,向量 a·b 等于向量 a 的模与向量 b 在向量 a 方向上的投影的乘积。
假设向量 b 在向量 a 方向上的投影为|b|cosθ ,那么 a·b =|a|×(|b|cosθ) 。
这一几何意义有助于我们更好地理解和计算数量积。
四、数量积的性质1、交换律: a·b = b·a这意味着两个向量的数量积与它们的顺序无关。
2、分配律: a·(b + c) = a·b + a·c即一个向量与两个向量之和的数量积,等于这个向量分别与这两个向量的数量积之和。
3、若 a 与 b 垂直,则 a·b = 0 ;反之,若 a·b = 0 ,则 a 与 b 垂直。
五、数量积的坐标运算在平面直角坐标系中,如果向量 a =(x₁, y₁) ,向量 b =(x₂,y₂) ,那么它们的数量积可以通过坐标来计算:a·b = x₁×x₂+ y₁×y₂这一公式为我们在具体计算数量积时提供了很大的便利。
高中数学《向量的数量积-数量积的投影定义》专题复习
(1)数量积的投影定义:向量 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即 (记 为 在 上的投影)
(2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解:
即数量积除以被投影向量的模长
5、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题
例5:若过点 的直线 与 相交于 两点,则 的取值范围是_______
思路:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
垂足为 ,通过旋转 可发现,当 时, , 位于其他位置时, 点始终位于 的反向延长线上, ,故 ,故 ,下面寻找最小值,即 的最大值,可得当 在 上的投影与 重合时, 最大,即为 ,此时直线 即为直线 。所以 。进而的范围是
二、典型例题:
例1:已知向量 满足 ,且 ,则 在 方向上的投影为( )
A.3 B. . C. D.
思路:考虑 在 上的投影为 ,所以只需求出 即可。由 可得: ,所以 。进而
答案:C
小炼有话说:本题主要应用投影的计算公式,注意在哪个向量投影,便用数量积除以该向量的模长
例2:如图,在 中, , 是边 上的高,则 的值等于( )
在 中,
即
答案:
例7:如图,菱形 的边长为 为 中点,若 为菱形内任意一点(含边界),则 的最大值为()
A. B. C. D.
思路:在所给菱形中 方向大小确定,在求数量积时可想到投影定义,即 乘以 在 上的投影,所以 的最大值只需要寻找 在 上的投影的最大值即可,而 点也确定,所以只需在菱形内部和边界寻找在 投影距离 最远的,结合图像可发现 的投影距离 最远,所以 ,再由 表示后进行数量积运算即可
向量的数量积
向量的数量积向量的数量积是线性代数中的一个重要的概念,它在计算机图形学、物理学、工程学等领域都有着广泛的应用。
本文将介绍向量的数量积的定义和性质,并探讨其在实际应用中的意义和作用。
一、向量的数量积的定义向量的数量积又称为点积或内积,是两个向量的一种运算方式。
设有两个n维向量A和B,它们的数量积定义为:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角。
二、向量的数量积的性质1. 交换律两个向量的数量积满足交换律,即A·B = B·A。
2. 分配律向量的数量积与加法满足分配律,即(A+B)·C = A·C + B·C。
3. 结合律向量的数量积与数乘满足结合律,即(kA)·B = A·(kB) = k(A·B),其中k为实数。
4. 长度两个向量的数量积的绝对值等于它们的模长的乘积与夹角的余弦值的乘积,即|A·B| = |A||B|cosθ。
三、向量的数量积的应用1. 判断两个向量的正交性若两个向量的数量积为0,则它们垂直或正交。
这个性质在几何学中非常有用,可以用来判断两条直线是否相互垂直、两个平面是否相互垂直等。
2. 求两个向量的夹角利用向量的数量积的定义,可以求出两个向量之间的夹角。
通过计算A·B = |A||B|cosθ,可以得到θ的值,从而确定两个向量的夹角。
3. 求向量在某个方向上的投影设有一个单位向量u和一个向量A,向量A在方向u上的投影可以用数量积来表示,即A在u方向上的投影等于A·u。
4. 计算向量的模长根据向量的数量积的性质,可以计算出向量的模长。
设有一个向量A,通过计算A·A = |A|^2,可以得到A的模长。
四、向量的数量积的意义向量的数量积在几何学中具有重要的应用,它可以帮助我们理解和描述空间中的向量关系。
第02讲 空间向量的数量积运算(4种类型)(答案与解析)
2023暑假新高二第02讲空间向量的数量积运算(4种类型)【知识梳理】一、空间向量的数量积1.两个向量的数量积.已知两个非零向量a、b,则|a|·|b|cos 〈a,b〉叫做向量a 与b 的数量积,记作a·b,即a·b=|a|·|b|cos 〈a,b〉.要点诠释:(1)由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.(2)两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定.(3)两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆.2.空间向量数量积的性质设,a b 是非零向量,e 是单位向量,则①||cos ,a e e a a a e ⋅=⋅=<>;②0a b a b ⊥⇔⋅= ;③2||a a a =⋅ 或||a = ④cos ,||||a b a b a b ⋅<>=⋅ ;⑤||||||a b a b ⋅≤⋅ 3.空间向量的数量积满足如下运算律:(1)(λa)·b=λ(a·b);(2)a·b=b·a(交换律);1.定义:已知两个非零向量a、b,在空间任取一点D,作OA a =,OB b =,则∠AOB 叫做向量a 与b 的夹角,记作〈a,b〉,如下图。
根据空间两个向量数量积的定义:a·b=|a|·|b|·cos〈a,b〉,那么空间两个向量a、b 的夹角的余弦cos ,||||a b a b a b ⋅〈〉=⋅。
要点诠释:1.规定:π>≤≤<b a ,02.特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果090,>=<b a ,那么a 与b 垂直,记作b a ⊥。
解答向量数量积问题的几种方法
方法集锦向量的数量积问题的常见命题形式有:(1)根据向量及其夹角求两个向量的数量积或其范围;(2)由两个向量的数量积求向量或夹角.此类问题侧重于考查向量的数量积公式、向量的模的公式、向量的数乘运算法则的应用.下面结合几道例题介绍一下求解向量数量积问题的几种方法.一、定义法向量a 、b 的数量积为:a ∙b =|a |∙|b |cos θ,其中θ为向量a 、b 的夹角.根据向量数量积的定义可知,只需要知道两个向量的模的大小以及两个向量之间的夹角的余弦值,即可求得两个向量的数量积.在利用定义法求向量的数量积时,要注意两个向量之间的夹角θ为两个向量共起点时所形成的夹角.例1.如图1所示,在ΔABC 中,M 是BC 的中点,AM =1,点P 在AM 上,且 AP =2 PM ,则 PA ∙( PB + PC )=______.解:∵M 是BC 的中点,AM =1,且 AP =2 PM ,∴ PB + PC =2 PM ,|| AP =23,∴|| PM =12||AP =13,∴ PA ∙( PB + PC )= PA ∙2 PM = PA ∙ AP =|| PA 2∙cos 180°=-49.解答本题,需根据题意和图形,通过向量运算求得 PB + PC ,将求 PA ∙( PB + PC )转化为求 PA ∙ AP .而PA 、 AP 的大小相等、方向相反,其夹角为180°,根据AM =1求得向量 AP 的模长,即可根据向量数量积的定义求得问题的答案.例2.已知△ABC 是边长为1的等边三角形,点D 在边BC 上,且BD =2DC ,则 AB · AD 的值为().A.1B.23C.43D.1+解:∵ΔABC 是边长为1的等边三角形,且BD =2DC ,∴ BD =23 BC ,∴ AB · AD = AB ·( AB + BD )= AB 2+23 AB · BC =1+23×1×1×æèöø-12=23,∴B 正确.通过向量运算,可将问题转化为 AB 2+23AB ·BC .而 AB 与 AB 之间的夹角为0,AB 与 BC 之间的夹角为60°,且||AB =|| BC =1,根据向量的数量积定义进行求解,即可快速解题.二、利用向量数量积的几何意义向量数量积的几何意义是:a 的模||a 与b 在a 方向上的投影|b|cos θ的乘积.当无法求出两个向量的夹角的余弦值时,就可以通过画图,确定一个向量在另一个向量方向上的投影,利用向量数量积的几何意义解题.例3.如图2所示,在平行四边形ABCD 中,AP ⊥BD ,AP =3,试求 AP ∙ AC 的值.解:∵ AC =2 AO ,AP ⊥BD ,∴ AO 在 AP 方向上的投影为|| AP ,∴ AC 在AP 方向上的投影为2|| AP ,∴ AP ∙ AC =|| AP ∙2|| AP =18.我们利用向量数量积的几何意义,将求 AP ∙ AC 转化为求 AC 与 AC 在AP 方向上的投影的乘积.再根据平行四边形的性质:平行四边形的对角线互相平分,求得|| AP ,即可解题.例4.如图3所示,点P 是ΔABC 的外心,且|| AC =4,||AB =2,求 AP ∙( AC - AB )的值.解:延长AP ,交圆P 于点D ,连接BD ,CD ,由圆的性质可得ABCD 为正方形,∴AC ⊥CD ,AB ⊥BD ,∴ AP =12AD ,∴ AD 在 AC 方向上的投影为:|| AC , AP 在 AC 方向上的投影为:12|| AC ,∴ AP ∙ AC =12|| AC ∙|| AC =8,同理可知: AP 在 AB 方向上的投影为:12|| AB ,∴ AP ∙ AB =12|| AB ∙|| AB =2,∴ AP ∙( AC - AB )=8-2=6.解答本题,需充分利用圆的性质:直径所对的圆周角为90°,添加辅助线,构造正方形,以利用正方形图1图2狄亚男图339方法集锦的性质确定 AD 在 AC 方向上的投影、AP 在 AC 方向上的投影、 AP 在AB 方向上的投影.再根据向量数量积的几何意义建立关系式,即可解题.三、坐标法坐标法是指通过向量的坐标运算来解题的方法.通常需先根据题意和几何图形建立合适的平面直角坐标系,求得各个点的坐标;然后通过坐标运算,求得向量的模、向量的数量积.一般地,若a =(x 1,y 1),b=(x 2,y 2),则||a =x 12+y 12,a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),a ∙b=x 1x 2+y 1y 2.例5.已知ΔABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE ,并延长到点F ,使得DE =2EF ,则 AF ∙BC 的值为______.解:以等边三角形的一条边AC 的中点为原点,建立平面直角坐标系,如图4所示,可得A æèöø-12,0,B æèçø,C æèöø12,0,F æèçø12,所以 AF =æèçø, BC =æèçø12,.则 AF ∙BC =1×2æèçø=18.对于三角形问题,通常可以三角形的一条边为坐标轴,一个顶点或该边上的中点为原点,也可以三角形的一条边及其垂线为坐标轴,来建立平面直角坐标系,这样便于快速求得各个点的坐标.例6.在ΔABC 中,∠C =90°,CB =2,CA =4,P在边AC 的中线BD 上,求 CP ∙BP 的最小值.解:以点C 为坐标原点,建立如图5所示的平面直角坐标系.可得:A (0,4),B (2,0),C (0,0),D (0,2),设点P 的坐标为(x ,y ),则 BP =(x -2,y ),BD =(-2,2),设 BP =λ BD ,因为B ,D ,P 三点共线,所以x -2=-2λ,y =2λ,解得x =2-2λ,y =2λ,则点P 的坐标为(2-2λ,2λ),所以 BP =(-2λ,2λ),CP =(2-2λ,2λ),可得 CP ∙BP =4λ2-4λ+4λ2=8λ2-4λ,因为0≤λ≤1,所以当λ=14时, CP ∙ BP 的最小值为-12.我们根据∠C =90°,即AC ⊥CB ,以AC 、BC 为坐标轴,C 为原点建立平面直角坐标系.然后求得各个点的坐标,并设出P 点的坐标,即可通过向量的坐标运算求得 CP ∙BP 的表达式,从而求得其最值.四、基底法由平面向量的基本定理可知,平面内任意一个向量均可以用两个不共线的向量表示出来.若不易求出要求的两个向量,则可选取一组合适的基底,将要求的两个向量用这组基底表示出来,求得这组基底的模长、夹角,即可根据向量的数量积定义求得问题的答案.例7.如图6所示,在ΔABC 中,∠A =60°,AB =3,AC =2,D 是AC 的中点,点E 在AB 边上,且AE =12EB ,BD 与CE 交于点M ,N 是BC 的中点,则 AM ∙AN =______.解:由题意可知,E ,M ,C 三点共线,设 AM =λ AE +μ AC ,其中λ+μ=1.因为 AE =13 AB , AM =λ3AB +μ AC ,同理可得B ,M ,D 三点共线, AM =m AB +nAD ,可得:m +n =1,因为 AD =12 AC ,所以 AM =m AB +n 2AC ,可得λ3=m ,μ=n2,所以 AM =15 AB +25 AC ,则 AN =12 AB +12AC ,所以 AM ∙ AN =æèöø15AB +25 AC ∙æèöø12 AB +12 AC =135.以 AB , AC 为基底,将 AM 、 AN 用这两个基底表示出来,根据向量的共线定理和基本定理求得15AB +25AC 、12 AB +12AC,即可解题.相比较而言,定义法、基底法、坐标法的适用范围较广,但利用向量数量积的几何意义求解,能使解题过程中的运算量大大减少.同学们需熟练掌握这四种技巧,并在解题时选用合适的技巧,这样才能有效地提升解答向量数量积问题的效率.(作者单位:江苏省南通市如皋市第二中学)图6图4图540。
数学数量积知识点总结
数学数量积知识点总结定义给定两个三维向量a=(a1, a2, a3)和b=(b1, b2, b3),它们的数量积可以表示为a·b=a1b1+a2b2+a3b3。
这就是两个向量的对应分量相乘后再相加的运算结果,也可以写成a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示夹角。
数量积的性质1. 数量积满足交换律,即a·b=b·a。
2. 数量积满足分配律,即a·(b+c)=a·b+a·c。
3. 一个向量与自身的数量积等于其模长的平方,即a·a=|a|^2。
4. 如果两个向量的数量积为零,则它们的夹角为90度,即a·b=0⟺cosθ=0⟺θ=90°。
应用1. 向量投影数量积可以用来计算一个向量在另一个向量上的投影。
给定向量a和b,向量a在b上的投影长度为|a||b|cosθ,其中θ为a和b的夹角。
2. 工作做功在物理学中,力和位移的数量积可以用来计算力对物体做功的大小。
假设一物体受到一个力F并沿着位移d移动,则力对物体做功的大小为W=F·d,其中F为力的大小,d为位移的长度。
3. 角平分线在几何学中,数量积可以用来判断两条线段之间的夹角和长度。
具体来说,两条线段之间的夹角θ可以通过它们的方向向量a和b的数量积计算得出,即cosθ=a·b|a||b|。
4. 计算夹角通过数量积,可以直接计算两个向量之间的夹角。
具体来说,给定向量a和b,则它们之间夹角的余弦值可以通过a·b|a||b|求出,进而得到夹角的大小。
5. 向量垂直通过判断两个向量的数量积是否为零,可以判断它们之间的夹角是否为90度,即它们是否垂直。
如果a·b=0,则向量a和b垂直。
6. 坐标系中的距离在三维坐标系中,两点之间的距离可以通过它们的坐标向量的数量积来计算得出。
给定点A(x1, y1, z1)和B(x2, y2, z2),则点A和B之间的距离为|AB|=√(x2−x1)^2+(y2−y1)^2+(z2−z1)^2。
向量的数量积课件
详细描述
向量数量积在计算机图形学中也有着广可以用 来计算光照和阴影的方向和强度,或者用来 实现物理模拟和动画效果。此外,向量数量 积还可以用于实现碰撞检测和运动控制等算 法。
05
总结与展望
向量数量积的重要性和意义
数学基础
,数量积为ab。
几何意义
向量数量积的几何意义是表示一个向量在另一个向量上的投 影长度。
当两个向量的夹角为锐角时,数量积为正,表示两向量方向 相同;当夹角为钝角时,数量积为负,表示两向量方向相反 ;当夹角为直角时,数量积为0。
向量数量积的运算性质
向量数量积满足交换律和分配 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积的模的性质
总结词
两个向量的数量积的值等于它们的模的乘积与它们夹角的余弦值的乘积。
详细描述
向量的数量积的模的性质表明,两个向量的数量积等于它们的模的乘积与它们 夹角的余弦值的乘积。这个性质对于计算两个向量的数量积非常重要,因为它 提供了一个公式来直接计算数量积的值。
向量数量积的交换律和结合律
向量的数量积ppt课件
目录
• 向量数量积的定义 • 向量数量积的性质 • 向量数量积的运算 • 向量数量积的应用 • 总结与展望
01
向量数量积的定义
定义
向量数量积定义为两个向量的模 长之积与夹角的余弦值的乘积,
记作a·b=abcosθ。
其中,a和b分别为两个向量,θ 为两向量的夹角。
当两个向量的夹角为90°时,数 量积为0;当夹角为0°或180°时
理论价值
向量的数量积是向量代数中的基本概 念之一,是研究向量关系和进行数学 分析的重要工具。
向量数量积的概念是线性代数和解析 几何理论体系的重要组成部分,对于 理解空间几何和线性变换的本质具有 重要意义。
数量积与向量积知识点梳理
数量积与向量积知识点梳理数量积和向量积是向量运算中的两个重要概念。
它们在物理学、几何学、工程学等领域都有广泛的应用。
本文将对数量积和向量积的定义、性质和应用进行梳理。
一、数量积1. 数量积的定义数量积,也称为点积或内积,是两个向量的乘积与它们夹角的余弦值的乘积。
设有两个向量A和B,它们的数量积用点号表示为A·B或AB。
2. 数量积的计算公式数量积的计算公式为:A·B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示A与B之间的夹角。
3. 数量积的性质数量积具有以下性质: - 交换律:A·B = B·A - 分配律:(A + B)·C = A·C + B·C - 数乘结合律:(kA)·B = k(A·B),其中k为常数 - 零向量的数量积为0:0·A = 04. 数量积的几何意义数量积的几何意义是向量A在向量B方向上的投影与向量B的模长的乘积。
具体而言,如果A与B之间的夹角为锐角,数量积为正;如果夹角为钝角,数量积为负;如果夹角为直角,数量积为零。
5. 数量积的应用数量积在物理学和几何学中有广泛的应用,如: - 计算力的功和功率:功等于力和位移的数量积,功率等于功和时间的数量积。
- 判断向量的正交性:若两个向量的数量积为零,则它们互相垂直。
- 计算夹角的余弦值:夹角的余弦等于两个向量的数量积除以它们的模长的乘积。
二、向量积1. 向量积的定义向量积,也称为叉积或外积,是两个向量的乘积与它们夹角的正弦值的乘积。
设有两个向量A和B,它们的向量积用叉号表示为A×B。
2. 向量积的计算公式向量积的计算公式为:|A×B| = |A| |B| sinθ,其中|A×B|表示向量积的模长,θ表示A与B之间的夹角。
3. 向量积的性质向量积具有以下性质: - 反交换律:A×B = -B×A - 分配律:A×(B + C) = A×B +A×C - 数乘结合律:(kA)×B = k(A×B),其中k为常数 - 零向量的向量积为零:0×A = 04. 向量积的几何意义向量积的几何意义是一个与向量A和B都垂直的向量,它的模长等于A、B构成的平行四边形的面积,方向由右手法则确定。
向量积 数量积
向量积数量积向量积,也称为数量积或点积,是线性代数中的一个重要概念。
它是两个向量的乘积,得到的结果是一个标量。
本文将深入探讨向量积的定义、性质和应用。
一、向量积的定义向量积是两个向量的乘积,表示为A·B,读作A点乘B。
对于二维向量A=(x1, y1)和B=(x2, y2),它们的向量积定义为A·B = x1x2 + y1y2。
对于三维向量A=(x1, y1, z1)和B=(x2, y2, z2),它们的向量积定义为A·B = x1x2 + y1y2 + z1z2。
二、向量积的性质1. 向量积满足交换律:A·B = B·A。
这意味着两个向量的顺序对结果没有影响。
2. 向量积不满足结合律:(A·B)·C ≠ A·(B·C)。
这意味着向量积不具备结合性质。
3. 向量积与向量的夹角:A·B = |A||B|cosθ,其中θ是A和B 之间的夹角。
4. 向量积与正交性:如果两个向量的向量积为0,即A·B = 0,那么它们是正交的,也就是说它们的夹角为90度。
三、向量积的应用1. 计算力矩:在物理学中,力矩是指力对物体产生旋转的效果。
对于一个力F作用在位置矢量r上,其力矩M定义为M = r × F,其中×表示向量积。
通过向量积可以方便地计算力矩的大小和方向。
2. 判断向量的方向:通过向量积可以判断两个向量的相对方向。
如果A·B > 0,那么A和B的夹角小于90度;如果A·B < 0,那么A和B的夹角大于90度;如果A·B = 0,那么A和B是正交的。
3. 计算平面的法向量:对于一个平面上的两个非零向量A和B,它们的向量积A·B可以得到平面的法向量。
法向量垂直于平面,可以用来描述平面的性质和方程。
4. 计算三角形的面积:对于三角形的两条边A和B,它们的向量积的大小的一半可以表示三角形的面积。
平面向量数量积的常见求法专题
平面向量数量积的常见求法1.已知|a |=4,|b |=2,且a 与b 的夹角为120°,则(a +2b )·(a +b )的值为________.2.在△ABC 中,a =5,b =8,C =π3,则BC →·CA →的值为________.3.已知|a |=22,|b |=3,a 和b 的夹角为π4,若AB →=5a +2b ,AC →=a -3b ,D 为BC 的中点,则|AD →|=________.4.向量a ,b 满足|a +b |=23|a |,且(a -b )·a =0,则a ,b 的夹角的余弦值为________.5.在△ABC 中,A =120°,AB =4.若点D 在边BC 上,且BD →=2DC →,AD =273,则AC 的长为________.6.设a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围是________.7.(1)如图1,在四边形ABCD 中,AC =3,BD =1,求(AB →+DC →)·(AC →+BD →)的值. (2)如图2,在等腰直角三角形ABC 中,AC =BC =1,点M ,N 分别是AB ,BC 的中点,点P 是△ABC(包括边界)内任一点.求AN →·MP →的取值范围.8.已知A ,B ,C 是半径为1的圆O 上的三点,AB 为圆O 的直径,P 为圆O 内一点(含圆周),求PA →·PB →+PB →·PC →+PC →·PA →的取值范围.1.答案:12. 解析:因为|a |=4,|b |=2,且a 与b 的夹角为120°,所以a ·b =|a ||b |cos120°=4×2×⎝ ⎛⎭⎪⎫-12=-4,从而(a -2b )·(a +b )=a 2-a ·b -2b 2=12.2.答案:-20.解析:如图,在△ABC 中,BC →·CA →=|BC →||CA →|cos(π-C )=5×8×⎝ ⎛⎭⎪⎫-12=-20.3.答案:152.解析:AD →=12(AB →+AC →)=3a -12b ,a 2=8,b 2=9,a ·b =6,所以|AD →|2=⎝ ⎛⎭⎪⎫3a -12b 2=9a 2+14b 2-3a ·b =2254.故|AD →|=152. 4.答案:13.解析:因为(a -b )·a=0,所以a 2=b ·a ,又|a +b |=23|a |,所以|a +b |2=12|a |2,化简得b 2=9a 2,从而cos 〈a ,b 〉=b ·a|a ||b |=a 23|a ||b |=13.5.答案:3. 解析:由BD →=2DC →,得AD→=13AB →+ 23AC →,两边平方得9AD →2=AB →2+4AC →2+4AB →·AC →,又AD =273,A =120°,所以|AC →|2-2|AC →|-3=0,所以AC =3.6.答案:⎝ ⎛⎭⎪⎫-53,0∪(0,+∞).解析:因为a 与a +λb 的夹角为锐角,所以a ·(a +λb )>0且排除a 与a +λb 共线同向.a ·(a +λb )>03λ+5>0λ>-53,a ∥(a +λb )2+λ-2-2λ=0λ=0.所以实数λ的取值范围是⎝ ⎛⎭⎪⎫-53,0∪(0,+∞). 7.答案:(1)2;(2)⎣⎢⎡⎦⎥⎤-34,34. 解析:(1)因为AC →与BD →不共线,所以AC →,BD →可以作为平面所有向量的一组基底.所以(AB →+DC →)·(AC →+BD →)=[(AC →+CB →)+(BC →-BD →)]·(AC →+BD →)=(AC →-BD →)·(AC →+BD →)=AC →2-BD →2=3-1=2.(2)以C 为坐标原点,CA ,CB 分别为x 轴和y 轴建立如图所示的直角坐标系,易知A (1,0),N ⎝ ⎛⎭⎪⎫0,12,M ⎝⎛⎭⎪⎫12,12,设P (x ,y ),则⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,,AN →=⎝ ⎛⎭⎪⎫-1,12,MP →=⎝⎛⎭⎪⎫x -12,y -12,所以AN →·MP →=-x +12y +14,根据线性规划可得AN →·MP →∈⎣⎢⎡⎦⎥⎤-34,34.8.答案:⎣⎢⎡⎦⎥⎤-43,4.解法1在平面直角坐标系xOy 中,设A (-1,0),B (1,0),C (cos α,sin α),P (r cos β,r sin β),其中α∈(0,π),r ∈[0,1],β∈R.PA →·PB →+PB →·PC →+PC →·PA →=3r 2-1-2r cos(β-α)∈[3r 2-2r-1,3r 2+2r -1]⎣⎢⎡⎦⎥⎤-43,4,当r =13,β=α时,取得最小值-43;当r=1,β=π+α时,取得最大值4.解法2PA →·PB →+PB →·PC →+PC →·PA →=错误!+PC →·(PB →+PA →)=(2PO →)2-AB →24+2PC →·PO →=PO →2+2PC →·PO →-1.以O 为坐标原点,建立直角坐标系,设P (x 0,y 0),C (cos θ,sin θ),则PO →2+2PC →·PO →-1=3x 02+3y 02-2x 0cos θ-2y 0sin θ-1,其中x 0cos θ+y 0sin θ=x 02+y 02sin(θ+φ)∈错误!.令t =错误!∈[0,1],则3t 2-2t -1≤PO→2+2PC →·PO →-1≤3t 2+2t -1,得到PO →2+2PC →·PO →-1∈⎣⎢⎡⎦⎥⎤-43,4. 解法3设A (-1,0),B (1,0),C (cos α,sin α),P (x ,y ),则PA →·PB →+PB →·PC→+PC →·PA →=PA →·PB →+2PC →·PO →=(1-x ,-y )(-1-x ,-y )+2(cos α-x ,sin α-y )(-x ,-y )=x 2-1+y 2-2x (cos α-x )-2y (sin α-y )=3x 2+3y 2-2x cosα-2y sin α-1=3错误!-43,因为点M ⎝ ⎛⎭⎪⎫13cos α,13sin α落在以原点为圆心,13为半径的圆上,而点P (x ,y )落在以原点为圆心,1为半径的圆O 内,所以点P (x ,y )到点M ⎝ ⎛⎭⎪⎫13cos α,13sin α距离平方的最大值为169,最小值为0,从而PA →·PB →+PB →·PC →+PC →·PA →的取值范围为⎣⎢⎡⎦⎥⎤-43,4.。
向量数量积的五种求法
向量的数量积的五种求解策略方法一:定义法利用向量数量积的概念,即:a ·b=∣a ∣·∣b ∣cos θ。
根据向量的数量积的公式可知,在求解两个向量的数量积时,需要先确认两个向量的模以及它们的夹角,在判断向量的夹角时,要特别注意它们是否为“共起点“,如果不是”共起点“的需要先转化为”共起点“的向量再进行求解。
定义法也是求向量数量积的最常见的方法。
例题1:在▲ABC 中,M 是BC 的中点,AM=1,点P 在AM 上,且满足AP=2PM ,则PA ·(PB+PC)=解:∵ M 是BC 的中点,AM=1,且AP=2PM 可得:PB+PC=2PM 又AP=23∴ PA ·(PB+PC)=PA ·AP=-49例题2:在▲ABC 中,角A ,B ,C 所对的边分别是a ,b ,c 且满足ccosB+bcosC=4acosA ,S ▲ABC =√15,则AB ·AC= 解:由射影定理可得:a=ccosB+bcosC=4acosA , ∴ cosA=14,可得:sinA=√154PMABC·又 S ▲ABC =12∣AB ∣··∣AC ∣·sinA可得:∣AB ∣··∣AC ∣=8∴ AB ·AC=∣AB ∣··∣AC ∣·cosA=2 方法二:数量积的几何意义a ·b 的几何意义为: a 的模∣a ∣和b 在a 方向上的投影∣b ∣cos θ的乘积。
当两个向量的夹角θ未知时,有时可以根据题目条件,利用其几何意义迅速解决向量的数量积问题。
例题1:如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,AP=3,试求AP ·AC 的数量积。
解: ∵ AC=2AO ∵ AP ⊥BD∴ 可知AO 在AP 方向上的投影为∣AP ∣ ∴ AC 在AP 方向上的投影为2∣AP ∣ ∴ AP ·AC=∣AP ∣·2∣AP ∣=18例题2:点P 是▲ABC 的外心,且∣AC ∣=4,∣AB ∣=2,求AP ·(AC-AB)的数量积。
向量的数量积与向量积向量的数量积与向量积的计算
向量的数量积与向量积向量的数量积与向量积的计算向量的数量积与向量积的计算向量是在数学与物理学中经常出现的概念,它可以用来表示大小与方向都有意义的量。
在向量的运算中,数量积和向量积是两种常见的运算方式。
本文将重点介绍向量的数量积与向量积的计算方法。
一、向量的数量积向量的数量积又被称为点积或内积,它是两个向量之间的一种二元运算。
设向量a与向量b的数量积为a·b,则其计算方法为对应分量相乘后再求和,即:a·b = a1b1 + a2b2 + ... + anbn (1)其中a1, a2, ..., an为向量a的分量,b1, b2, ..., bn为向量b的分量。
数量积有以下几个重要的性质:1. 交换律:a·b = b·a2. 分配律:a·(b+c) = a·b + a·c3. 结合律:k(a·b) = (ka)·b = a·(kb),其中k为标量向量的数量积在几何上有着重要的应用,可以用来计算向量的夹角、判断向量的正交性等。
二、向量的向量积向量的向量积又被称为外积或叉积,它是两个向量之间的一种二元运算。
设向量a与向量b的向量积为a×b,则其计算方法为:a×b = |a| |b| sinθ n其中|a|和|b|分别为向量a和b的模长,θ为a与b之间的夹角,n为垂直于a和b所在平面的单位向量。
向量积有以下几个重要的性质:1. 反交换律:a×b = -b×a2. 分配律:a×(b+c) = a×b + a×c3. 结合律:(ka)×b = a×(kb) = k(a×b),其中k为标量向量的向量积在几何上也有着重要的应用,可以用来计算平行四边形的面积、求解垂直于平面的向量等。
三、向量的数量积与向量积的关系数量积和向量积之间存在一定的关系,可以通过向量的夹角和向量的模长来表示。
专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视
专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。
平面向量的数量积与向量积详细解析与归纳
平面向量的数量积与向量积详细解析与归纳平面向量是数学中重要的概念之一,而其中的数量积(也叫点积或内积)与向量积(也叫叉积或外积)是平面向量运算中常用的两种运算方法。
本文将详细解析这两种运算,并对其进行归纳总结。
一、平面向量的数量积数量积,记作A·B,是两个向量A和B的数量上的乘积。
具体计算公式如下:A·B = |A| * |B| * cosθ其中|A|和|B|分别表示向量A和B的模(即长度),θ表示A和B 之间的夹角。
数量积有以下几个重要的性质:1. 交换律:A·B = B·A2. 分配律:(A + B)·C = A·C + B·C3. 数乘结合律:(kA)·B = k(A·B)这些性质使得数量积在计算中更加方便。
数量积的几何意义是,它等于一个向量在另一个向量方向上的投影长度与另一个向量的模的乘积。
通过数量积,我们可以计算向量的夹角、判断两个向量是否垂直以及计算向量的模等。
二、平面向量的向量积向量积,记作A×B,是两个向量A和B的向量上的乘积。
具体计算公式如下:A×B = |A| * |B| * sinθ * n其中|A|和|B|分别表示向量A和B的模,θ表示A和B之间的夹角,n为垂直于A和B所在平面的单位法向量,并满足右手法则。
向量积有以下几个重要的性质:1. 反交换律:A×B = -B×A2. 分配律:A×(B + C) = A×B + A×C3. 数乘结合律:(kA)×B = k(A×B)这些性质使得向量积在计算中更加灵活。
向量积的几何意义是,它等于一个向量在另一个向量所在平面上的投影的长度乘以一个单位法向量。
通过向量积,我们可以计算平行四边形的面积、判断两个向量是否平行以及计算平行四边形的对角线等。
三、数量积与向量积的关系数量积和向量积之间存在一定的关系:A×B = |A| * |B| * sinθ * n由此可得到以下等式:|A×B| = |A| * |B| * sinθ此等式表明,向量积的模等于数量积的模乘上夹角的正弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数量积【知识点精讲】一、平面向量的数量积(1)已知两个非零向量a 和b ,记为OA a OB b ==,,则)0(πθθ≤≤=∠AOB 叫做向量a 与b 的夹角,记作,a b <>,并规定[],0,a b π<>∈。
如果a 与b 的夹角是2π,就称a 与b 垂直,记为.a b ⊥(2)cos ,a b a b <>叫做向量a 与b 的数量积(或内积),记作a b ⋅,即b a ⋅cos ,a b a b <>.规定:零向量与任一向量的数量积为0. 两个非零向量a 与b 垂直的充要条件是0.a b ⋅= 两个非零向量a 与b 平行的充要条件是.a b a b ⋅=± 二、平面向量数量积的几何意义数量积a b ⋅等于a 的长度a 与b 在a 方向上的投影cos b θ的乘积,即cos a b a b θ⋅=(b 在a 方向上的投影为cos a b b aθ⋅=);a 在b 方向上的投影为cos .a b a bθ⋅=三、平面向量数量积的重要性质 性质1 cos .e a a e a θ⋅=⋅= 性质2 0.a b a b ⊥⇔⋅=性质3 当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或2.a a =性质4 cos (00)a b a b a bθ⋅=≠≠且性质5 a b a b ⋅≤注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。
四、平面向量数量积满足的运算律 (1)a b b a ⋅=⋅(交换律);(2)()()a b a b a b λλλ⋅=⋅=⋅(λ为实数);(3)()a b c a c b c +⋅=⋅+⋅(分配律).数量积运算法则满足交换律、分配律,但不满足结合律()()a b c a b c ⋅≠⋅,不可约分a b a c ⋅=⋅不能得到b c =。
五、平面向量数量积有关性质的坐标表示设向量()()1122,,,,a x y b x y =则1212a b x x y y ⋅=+,由此得到:(1)若(),,a x y =则2222a a x y ==+或2a x y =+(2)设()(),,,,2211y x B y x A 则B A ,()();221212y y x x -+-=(3)设()()1122,,,,a x y b x y ==θ是a与b的夹角,则.cos 222221212121y x y x y y x x +++=θ①非零向量,a b ,a b ⊥的充要条件是.02121=+y y x x ②由1cos 222221212121≤+++=y x y x y y x x θ得()()().2222212122121y x y x y y x x ++≤+六、向量中的易错点(1)平面向量的数量积是一个实数,可正、可负、可为零,且.b a b a ≤⋅(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0=⋅b a 。
当0a ≠且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有a b a c ⋅=⋅,但.b c ≠(3)数量积不满足结合律,即()()a b c b c a ⋅≠⋅,这是因为()a b c ⋅是一个与c 共线的向量,而()b c a ⋅是一个与a 共线的向量,而a 与c 不一定共线,所以()a b c ⋅不一定等于()b c a ⋅。
即凡有数量积的结合律形成的选项,一般都是错误选项。
(4)非零向量夹角为锐角(或钝角),当且仅当0a b ⋅>且()0a b λλ≠>(或0a b ⋅<且()0a b λλ≠<).【题型归纳】一、平面向量的数量积【例1】(1)在ABC Rt ∆中,,,4900==∠AC C 则=⋅AC AB ( ).16.-A 8.-B 8.C 16.D(2)(2012北京理13)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为 ;DC DE ⋅的最大值为 。
(3)在ABC ∆中,M 是BC 的中点,1=AM ,点P 在AM 上且满足PM AP 2=,则()PC PB PA +⋅等于( ).94.-A 34.-B 8.C 16.D【变式1】如图5-27所示,在平行四边形ABCD 中,BD AP ⊥,垂足为P ,且3=AP ,则=⋅AC AP .【变式2】在ABC ∆中,321===AC BC AB ,,,若G 为ABC ∆的重心,则=⋅AC AG .【例2】如图528-所示,在矩形ABCD 中,AB =,2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是 .【变式1】如图530-所示,在ABC ∆中,°120BAC ∠=,2AB =,1AC =,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .【变式2】如图531-所示,在ABC ∆中,AD AB ⊥,3BC BD =,1AD =,则AC AD ⋅= .【变式3】已知ABC ∆为等边三角形,2AB =,设点,P Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若32BQ CP ⋅=-,则λ=( )。
1.2A 1.2B ± 1.2C ± 3.2D -±【例3】已知向量,,a b c 满足0a b c ++=,1,2,2a b c ===,则a b b c a c ⋅+⋅+⋅= .【变式1】在ABC ∆中,若3,4,6AB BC AC ===,则AB BC BC CA CA AB ⋅+⋅+⋅= .【变式2】已知向量,,a b c 满足0a b c ++=,且a b ⊥,1,2a b ==,则c = .【变式3】已知向量,,a b c 满足0a b c ++=,且(),a b c a b -⊥⊥若1a =,则222a b c ++= .【例4】设,,a b c 是单位向量,且0a b ⋅=,则()()a c b c -⋅-的最小值为( ).2A - 2B .1C - .1D【变式1】已知,a b 是平面内两个相互垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值是( )..1A .2B C 2D 【变式2】(2012安徽理14)若平面向量,a b 满足23a b -≤,则,a b 的最小值是 .【例5】在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则AB AC ⋅= .二、平面向量的夹角求夹角,用数量积,由cos a b a b θ⋅=⋅,得21cos a b a bx θ⋅==,进而求得向量,a b 夹角.【例1】已知向量(1,3),(2,0)a b ==-,则a 与b 则的夹角是 .【例2】已知,a b 是非零向量且满足(2),(2)a b a b a b -⊥-⊥,则a 与b 则的夹角是( ). .6A π.3B π2.3C π 5.6D π【例3】已知向量,,a b c 满足1,2,,a b c a b c a ===+⊥,则a 与b 则的夹角等于( )..30A ︒ .60B ︒ .120C ︒ .90D ︒【变式1】若,a b 是两个非零向量,且a b a b ==-,则a 与a b +则的夹角为 .【变式2】若平面向量,αβ满足1,1αβ=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 .【例4】已知2,1a b ==,a 与b 的夹角为45︒,求使向量a b λ+与a b λ+的夹角为锐角的λ的取值范围.【变式1】设两个向量12,e e ,满足122,1e e ==,1e 与2e 的夹角为3π,若向量1227te e +与12e te +的夹角为钝角,求实数t 的范围.【变式2】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:12:10,3p a b θπ⎡⎫+>⇔∈⎪⎢⎣⎭;22:1,3p a b θππ⎛⎤+>⇔∈ ⎥⎝⎦;3:10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭;4:1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦.其中的真命题是( ).12.,A p p 13.,B p p23C.,p p24D.,p p【变式3】若向量a 与b 不共线,0a b ⋅≠,且()a ac a b a b⋅=-⋅⋅,则向量a 与c 的夹角为( )..0A .6B πC.3πD.2π三、平面向量的模长求模长,用平方,2.a a =【例1】已知5a b ==,向量a 与b 的夹角为3π,求,a b a b +-.【变式1】已知向量,a b 满足1,2a b ==,a 与b 的夹角为60︒,则_________a b -=.【变式2】已知向量,a b 满足1,2a b ==,2a b -=,则a b +等于( )..1A【变式3】在ABC ∆中,已知3,4,60AB BC ABC ==∠=︒,求AC .【例2】已知,向量a 与b 的夹角为120︒,3,13a a b =+=,则b 等于( )..5A .4B C.3 D.1【变式1】已知向量,a b 的夹角为45︒,且1,210a a b =-=,则_________b =.【变式2】已知2a b ==,()()22a b a b +⋅-=-则a 与b 的夹角为_________,【变式3】设点M 是线段BC 的中点,点A 在直线BC 外,216BC =,AB AC AB AC +=-则AM =( ).8A .4B C.2 D.1【例3】已知平面向量(),0,αβααβ≠≠,满足1β=,且β与βα-的夹角为120︒,则α的取值范围是_________.【变式1】若,,a b c 均为单位向量,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的最大值为( ).1 .1BD.2【变式2】已知,a b 是单位向量,0a b ⋅=,若向量c 满足1c a b --=,则c 的取值范围是( )..1A ⎤⎦.2B ⎤⎦C.1⎡⎤⎣⎦D.2⎡⎤+⎣⎦【例4】在平面上,12,AB AB ⊥121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是()..0,2A ⎛⎝⎦.22B ⎛⎝⎦C.2⎛⎝D.2⎛ ⎝【变式1】在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222PA PB PC+=( ).2A .4B C.5 D.10加强练习:例1:在ABC 中,O 为BC 中点,若1,3,60AB AC A ==∠=,则OA = _____例2:若,,a b c 均为单位向量,且()()0,0a b a c b c ⋅=-⋅-≤,则a b c +-的最大值为() A. 1 B. 1C. D. 2例3:平面上的向量,MA MB 满足24MA MB +=,且0MA MB ⋅=,若1233MC MA MB =+,则MC 的最小值为___________例4:已知平面向量,αβ满足23αβ-=,且αβ+与2αβ-的夹角为150,则()()32t t R αββ+-∈的最小值是( )A.34 B. 33 C. 32D. 3 例5:已知平面向量,OA OB 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,且3OA OB ==,若1233OP OA OB =+,则OP 的取值范围是__________例6:已知()2,6,2a b a b a ==⋅-=,R λ∈,则a b λ-的最小值是( ) A. 4 B. 23 C. 2 D.3例7:已知直角梯形ABCD 中,AD ∥,90,2,1BC ADC AD BC ∠===,P 为腰CD 上的动点,则23PA PB +的最小值为__________例8:如图,在边长为1的正三角形ABC 中,,E F 分别是边,AB AC 上的动点,且满足,AE mAB AF n AC ==,其中(),0,1,1m n m n ∈+=,,M N 分别是,EF BC 的中点,则MN 的最小值为( )A. 24B. 33C. 34D. 53NMABCEF例9:已知OA 与OB 的夹角为θ,=2OA ,=1OB ,且OP tOA =,1OQ t OB =-(), PQ 在0t 时取到最小值。