【2021培优】专题2.2 基本不等式(解析版)

合集下载

2021年高考数学高分套路 基本不等式(解析版)

2021年高考数学高分套路  基本不等式(解析版)

mn
2
3.已知
a
1, b
0, a
b
2
,则
a
1 1
1 2b
的最小值为(

A. 3 2 2
B. 3 2 42
C. 3 2 2
D. 1 2 23
【答案】A
【解析】由题意知 a 1,b 0, a b 2 ,可得: (a 1) b 1, a 1 0 ,

a
1 1
1 2b
[(a
1)
b](
∴ + = [(x+2)+(y+1)] x+2 y+1 = y+1 x+2 ≥
x+2 y+1 4
4
4
x+2 4y+1
·
9
y+1 x+2 = ,
4
41
2

9
当且仅当 x=2y= 时, x+2 y+1 = min .
3
4
【套路总结】 在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数 1”的替换,或构造不等式 求解.
2 的最大值为 .
4
2
1
(2)因为 x<5,所以 5-4x>0,则 f(x)=4x-2+
1
5-4x+
=-
5-4x +3
4
4x-5
1
1
≤-2 (5-4x)· +3=-2+3=1.当且仅当 5-4x= ,即 x=1 时,等号成立.
5-4x
5-4x
1 故 f(x)=4x-2+ 的最大值为 1.
4x-5 x2+2
1
1
【解析】 x(4-3x)= ·(3x)(4-3x)≤ ·
2
2=4,
3
3
3

专题2.2 基本不等式-2020-2021学年高一数学同步培优专练(人教A版2019必修第一册)

专题2.2 基本不等式-2020-2021学年高一数学同步培优专练(人教A版2019必修第一册)

专题2.2 基本不等式(同步培优)知识储备1.基本不等式:2ba ab +≤(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)baa b +≥2(a ,b 同号). (3)ab ≤2)2(b a +(a ,b ∈R ). (4)a 2+b 22≥2)2(b a + (a ,b ∈R ).【注意】每个不等式成立的条件不一样。

【探究】函数y =x +x1的最小值是2吗? 提示 不是.因为函数y =x +x1的定义域是{x |x ≠0}, 当x <0时,y <0,所以函数y =x +x1无最小值. 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值42p .(简记:和定积最大)能力检测姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·浙江高二学业考试)已知实数x ,y 满足221x y +=,则xy 的最大值是( )A .1BC .2D .12【答案】D【解析】因为222x y xy +≥,所以222=1y x x y +≤,得12xy ≤. 故选:D.2.(2020·江门市第二中学高一期中)若实数,a b 满足22a b +=,则93a b +的最小值是( )A .18B .9C .6D .【答案】C【解析】因为90,30a b>>,22a b +=,所以936a b +≥===,当且仅当233a b =,即1,12a b ==时取等号, 所以93a b +的最小值为6, 故选:C3.(2020·上海高三其他)下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥-C .a b +≥-D .a b +≤【答案】B【解析】A.由基本不等式可知222a b ab +≥,故A 不正确;B.2222220a b ab a b ab +≥-⇒++≥,即()20a b +≥恒成立,故B 正确; C.当1,0a b =-=时,不等式不成立,故C 不正确;D.当3,1a b ==时,不等式不成立,故D 不正确. 故选:B4.(2020·全国高一)当1x >时,函数241x x y x -+=-的最小值为( )A .4B .5C .6D .7【答案】B【解析】依题意241x x y x -+=-4111x x =-++-,由于1,10x x >->,所以411151x x -++≥=-,当且仅当41,31x x x -==-时,等号成立.故选B.5.(2020·浙江高一单元测试)已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6C .4D .2【答案】C【解析】()11a ax yx y a x y y x ⎛⎫++=+++⎪⎝⎭. 若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立;③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C.6.(2020·浙江鄞州宁波华茂外国语学校高三一模)已知实数0a >,0b >,11111a b +=++,则2+a b 的最小值是( )A.B.C .3D .2【答案】B【解析】∵0a >,0b >,11111a b +=++ ∴112(1)12(1)2(1)3[(1)2(1)]()3[12]31111b a a b a b a b a b a b +++=+++-=+++⋅+-=+++-++++≥2(1)111b a a b ++=++,即a =b =.故选B 7.(多选)小王从甲地到乙地往返的速度分別为a 和()b a b <,其全程的平均速度为v ,则( )A.a v <<B.v =C2a bv +<<D .2abv a b=+ 【答案】AD【解析】设甲、乙两地之间的距离为s ,则全程所需的时间为s s a b+,22s abv s s a b a b∴==++. 0b a >>2a b+<,2ab v a b ∴=<=+ 另一方面22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=++,22220ab ab a a a v a a a b a b a b---=-=>=+++, v a ∴>,则a v <<故选:AD.8.(多选)(2020·福建省泰宁第一中学)下列各不等式,其中不正确的是( )A .212()a a a R +>∈;B .12(,0)x x R x x+≥∈≠; C 2(0)ab≥≠; D .2211()1x x R x +>∈+. 【答案】ACD【解析】对A 项,当1a =时,212a a +=,则A 错误;对B 项,当0x >时,112x x x x +=+≥=,当且仅当1x =时,等号成立当0x <时,112x x x x +=-+≥=-,当且仅当1x =-时,等号成立,则B 正确; 对C 项,当0,0a b <<0<,则C 错误; 对D 项,当0x =时,22111x x +=+,则D 错误; 故选:ACD二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020·黑龙江工农,鹤岗一中高一期末(理))若110a b<<,则不等式(1)a b ab +<;(2)a b >;(3)a b <;(4)2b aa b+>中,正确的不等式有__________个. 【答案】2【解析】110a b<<,则0a <,0b <,0ab ∴>. 0a b ab +<<,(1)中的不等式正确;110ab ab a b⋅<⋅<,则0b a <<,(3)中的不等式错误; a a b b =-<-=,(2)中的不等式错误;0b a ->->,则1b b a a -=>-,由基本不等式可得2b a a b +>=,(4)中的不等式正确. 故答案为:2.10.(2020·江苏滨湖,辅仁高中高二期中)已知正实数,x y 满足39x y +=是______.【答案】【解析】正实数,x y ,则39x y +=≥92≤, 2318x y =++≤当93,22x y ==时等号成立.故答案为: 11.(2020·黑龙江建华齐齐哈尔市实验中学高一期中)设a b c >>且11ma b b c a c+≥---恒成立,则m 的取值范围是__________. 【答案】(],4-∞【解析】因为a >b >c ,所以a-b >0,b-c >0,a-c >0.又()()()111124b c a b a c a b b c a b b c a b b c a b b c --⎛⎫⎛⎫⎡⎤-+=-+-+=++≥⎪ ⎪⎣⎦------⎝⎭⎝⎭, 当且仅当b c a ba b b c--=--,即2b=a+c 时等号成立.所以m≤4. 12.(2018·浙江高三月考)已知,a b ∈R ,222a b ab +-=,则+a b 的最大值为________,ab 的取值范围是________.【答案】 2,23⎡⎤-⎢⎥⎣⎦【解析】因为,a b ∈R ,222a b ab +-=,所以222()3()4a b a b +=+-.因为22222a b a b ++⎛⎫≤⎪⎝⎭,所以223()4()2a b a b ++≥+,解得a b -≤+≤,当且仅当a b ==222a b =+2()3ab a b ab -=+-,所以223()0ab a b =+≥+,2)823(ab a b =+≤+,解得223ab -≤≤,所以ab 的取值范围是2,23⎡⎤-⎢⎥⎣⎦.故答案为:2,23⎡⎤-⎢⎥⎣⎦.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.(2017·甘肃省会宁县第二中学高二期中)(1)已知0<x <25,求y =2x -5x 2的最大值; (2)已知x >0,y >0,且x +y =1,求8x+2y 的最小值. 【解析】(1)因为()()2125255255y x xx x x x =-=-=⨯⨯- 已知205x <≤,所以250x ->, 所以()252552512x x x x ⎛⎫+-⨯-≤= ⎪⎝⎭所以15y ≤,当且仅当525x x =-,即15x = 取等号,所以y =2x -5x 2的最大值为:15(2)因为8x +2y ()⎛⎫=++=++≥+= ⎪⎝⎭8282101018y x x y x y x y ,当且仅当 x +y =1,82y x x y =,即21,33x y ==时,取等号, 所以8x+2y 的最小值.为18.14.(2017·福建高三(理))已知a ,b 为正实数,且11a b+=. (1)求a 2+b 2的最小值;(2)若23()4()a b ab -≥,求ab 的值.【解析】(1)因为a ,b 为正实数,且11a b+=,所以11a b +=≥ab ≥12(当且仅当a =b =).因为2212212a b ab +≥≥⨯=(当且仅当a =b 2=时等号成立), 所以a 2+b 2的最小值为1.(2)因为11a b+=,所以a b +=,因为23()4()a b ab -≥,所以23()44()a b ab ab +-≥,即23)44()ab ab -≥,所以(ab )2-2ab +1≤0,(ab -1)2≤0, 因为a ,b 为正实数,所以ab =1.15.(2020·上海高三专题练习)已知x ,y ,z 是互不相等的正数,且x +y +z=1,求证:(1x-1)(1y -1)(1z-1)>8. 【解析】∵x +y +z =1,x 、y 、z 是互不相等的正实数,∴(1x -1)(1y -1)(1z -1)y z x z x y x y z y ⎛⎫⎛⎫+++⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭>8. ∴(1x-1)(1y -1)(1z -1)>816.(2020·江西南康中学高一月考)南康某服装厂拟在2020年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m 万件与年促销费用()04x x ≤≤万元满足131m x =-+.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.厂家将每件产品的销售价格定为每件产品年平均成本的2倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2020年该产品的利润y 万元表示为年促销费用x 万元的函数; (2)该服装厂2020年的促销费用投入多少万元时,利润最大? 【解析】(1)由题意知:每件产品的销售价格为8162mm+⨯, ()816116281681681635611m y m m x m x x x m x x +⎛⎫∴=⋅⨯-++=+-=+--=-- ⎪++⎝⎭[]()0,4x ∈;(2)由()161656571574911y x x x x ⎡⎤=--=-++≤-=⎢⎥++⎣⎦, 当且仅当1611x x =++,即3x =时取等号. 答:该服装厂2020年的促销费用投入3万元时,利润最大.。

专题2.2 基本不等式(解析版)

专题2.2 基本不等式(解析版)

专题2.2基本不等式知识点①基本不等式1.基本不等式:ab ≤a +b22.基本不等式成立的条件:a >0,b >0.3.等号成立的条件:当且仅当a =b 时,等号成立.4.其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.知识点②几个重要的不等式1.a 2+b 2≥2ab (a ,b ∈R ).2.b a +ab≥2(a ,b 同号).3.ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ).4.a 2+b 22≥22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ).以上不等式等号成立的条件均为a =b .知识点③利用基本不等式求最值1.已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P .2.已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.题型一解法突破:两种常数处理方法(),ka a a b b a a=+-=.例1求12x x +-的最小值(2x >).解:()1112222222x x x x x x ⎛⎫+=-++=-++ ⎪---⎝⎭因为2,20x x >->所以()122242x x ⎛⎫-++≥+=⎪-⎝⎭令122x x -=-解得3,1x x ==(舍)例2求1142x x +-的最小值(2x >).解:()()111111112242422422x x x x x x ⎛⎫+=-++=-++ ⎪---⎝⎭因为2,20x x >->所以()11113242222x x ⎛⎫-++≥+= ⎪-⎝⎭令11(2)42x x -=-解得4,0x x ==(舍)1.以分式分母为主进行配凑使其定积2.注意变量范围,是否满足一正和三相等题型二解法突破:“1”的代换例1已知0,0x y >>,21x y +=求12xy+的最小值解:()1212122212149y xx y xy x y x y x y ⎛⎫⎛⎫+=+=++=+++≥ ⎪ ⎪⎝⎭⎝⎭例2已知0,0,1x y x y >>+=求1412x y +++的最小值解:()()1124,x y x y +=∴+++=,()()141411212124x y x y x y ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()41129144124x y x y +⎛⎫+=+++≥ ⎪++⎝⎭【审题要津和评注】此类题型主要核心是“1”的等价代换,以及以分式分母为依据构造倒数形式,注意例5,例6两个题目题型三消元法解法突破:此类题目特点是有多个变量,且变量间满足等式关系例1已知0,0,39x y x y xy >>++=求3x y +的最小解:()939,39,3x x y xy y x x y x -++=+=-=+,931233333x x x y x x x x -+-+=+=-++1212313910233x x x x =-+=++-≥++题型四换元法:一般求谁最值换谁为t例1已知0,0,39x y x y xy >>++=求3x y +的最小解:()23312x y x y xy ++≥≤()()223333,931212x y x y x y xy x y x y ++∴++≤++≤++令3x y t +=则29,612t t t +≥≥或18t ≤-(舍)即3x y +的最小是6【审题要津和评注】1.题型二的例三和题型三题型四比较类似注意区分2.若一个题目在连用多个基本不等式时需注意取等时自变量取值是否相同题型五基本不等式的使用条件解法突破:使用基本不等式前要注意验证使用条件是否满足例1已知5,4x <求14245x x -+-的最大值解:11424534545x x x x -+=-++--54504x x <∴-<,11453543,4554x x x x ⎛⎫-++=--++ ⎪--⎝⎭1540,54254x x x ->-+≥-1543154x x ⎛⎫--++≤ ⎪-⎝⎭一、单选题1.下列说法正确的为()A .12x x+≥B .函数22243x y x +=+4C .若0,x >则(2)x x -最大值为1D .已知3a >时,44233+≥⋅--a a a a 43=-a a 即4a =时,43+-a a 取得最小值8【答案】C【解析】对于选项A ,只有当0x >时,才满足基本不等式的使用条件,则A 不正确;对于选项B ,22243x y x +=+2222231333x x x x ++=++++(233x t t +=≥,即(223y t t t =+≥在)3,⎡+∞⎣上单调递增,则最小值为min 2832333y =,则B 不正确;对于选项C ,()()22(2)211111x x x x x -=--++=--+≤,则C 正确;对于选项D ,当3a >时,()44433337333a a a a a a +=-++≥-⋅+=---,当且仅当433a a -=-时,即5a =,等号成立,则D 不正确.故选:C .2.函数2455())22x x f x x x -+=≥-有()A .最大值52B .最小值52C .最大值2D .最小值2【答案】D 【解析】(方法1)52x ,20x ∴->,则2245(2)11(2)222(2)x x x x x x x -+-+==-+--- ,当且仅当122x x -=-,即3x =时,等号成立.(方法2)令2x t -=,52x ,12t ∴ ,2x t ∴=+.将其代入,原函数可化为22(2)4(2)5112t t t y t t t t +-+++===+= ,当且仅当1t t =,即1t =时等号成立,此时3x =.故选:D3.已知1x >,则41x x +-的最小值是()A .5B .4C .8D .6【答案】A【解析】∵1x >,∴10x ->,∴()44111511x x x x +=-+≥=--,当且仅当411x x -=-,即3x =时等号成立,∴41x x +-的最小值是5.故选:A .4.已知a b >,且8ab =,则222a b a b+--的最小值是()A .6B .8C .14D .16【答案】A【解析】因为8ab =,所以()222216a b ab a b a b a b a b a b-++==-+---.因为a b >,所以0a b ->,所以168a b a b -+≥=-,即28a b a b +≥-,当且仅当4a b -=时,等号成立,故222a b a b+--的最小值是6.故选:A5.设0a >,0b >,且1a b +=,则4aba b+的最大值为().A .110B .19C .227D .15【答案】B【解析】∵1a b +=,1414ab a b a b=++,()41414559a b a b a b a b b a ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当23a =,13b =时取等号,∴149ab a b ≤+.故选:B .6.下列不等式恒成立的是()A .2b a a b+≥B .22a b ab +⎛⎫≥ ⎪⎝⎭C .a b +≥D .222a b ab+≥-【答案】D【解析】:对于A :若1a =、1b =-时2b aa b+=-,故A 错误;对于B :因为()20a b -≥,所以222a b ab +≥,所以2224a b ab ab ++≥,即22a b ab +⎛⎫≥ ⎪⎝⎭,当且仅当a b =时取等号,故B 错误;对于C :若1a =-、1b =-时,22a b +=-<=,故C 错误;对于D :因为()20a b +≥,所以2220a b ab ++≥,即222a b ab +≥-,当且仅当a b =时取等号,故D 正确;故选:D7.已知正实数a 、b 满足4a b +=,则11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为()A .2B .4C .254D .1+【答案】B【解析】∵正实数a 、b 满足4a b +=,∴111224a b ab b a ab ⎛⎫⎛⎫++=++= ⎪⎪⎝⎭⎝⎭≥,当且仅当1ab ab=,即1,4ab a b =+=时,取等号,故选:B.8.已知x ,y >0,当x +y =2时,求41x y+的最小值()A .52B .72C .92D .112【答案】C【解析】由题,()411411419552222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即2x y =,即42,33x y ==时取等号故选:C9.已知,a b 为正实数,且196a b a b+=++,则a b +的最小值为()A .6B .8C .9D .12【答案】B【解析】由题意,可得()()()()21996610616b a a b a b a b a b a b a b ⎛⎫+=+++=++++≥++ ⎪⎝⎭,则有()()26160a b a b +-+-≥,解得8a b +≥,当且仅当2a =,6b =取到最小值8.故选:B.10.已知x ,y 都是正数,若2x y +=,则14x y+的最小值为()A .74B .92C .134D .1【答案】B【解析】因为2x y +=,所以1414141422x y y x x y x y x y ⎛⎫⎛⎫++=+⋅=+++ ⎪ ⎪⎝⎭⎝⎭.因为x ,y都是正数,由基本不等式有:44y x x y +≥=,所以141491422y x x y x y ⎛⎫+=+++≥ ⎪⎝⎭,当且仅当2, 2,y x x y =⎧⎨+=⎩即2,343x y ⎧=⎪⎪⎨⎪=⎪⎩时取“=”.故A ,C ,D 错误.故选:B .11.已知0x >,0y >,且2x y xy +=,则2x y +的最小值为()A .8B.C .9D.【答案】C【解析】因为2x y xy +=,0x >,0y >,所以211y x+=,∴()1222221459y x x y x y x y x y ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3x y ==取得等号,则2x y +的最小值为9.故选:C12.已知正实数a 、b 满足11m a b +=,若11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为4,则实数m 的取值范围是()A .{}2B .[)2,+∞C .(]0,2D .()0,∞+【答案】B【解析】:因为,a b 为正实数,11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=12ab ab ++24³=,当1ab ab =,即1ab =时等号成立,此时有1b a=,又因为11m a b +=,所以1a m a+=,由基本不等式可知12a a+≥(1a =时等号成立),所以2m ≥.故选:B.13.若0,0a b >>,且24a b +=,则下列不等式中成立的是()A .2ab <B .2244b a +≥C .22log log 1a b +<D .9318a b +≥【答案】D【解析】0,0a b >>,24a b ∴+=≥,解得2ab ≤,当且仅当1,2a b ==时取等号,故选项A 错误;()()22222142282a b a b a b +=+≥+=,2224b a ∴+≥,当且仅当1,2a b ==时取等号,故选项B 错误;由A 可得2ab ≤,222log log log 1a b ab ∴+=≤,当且仅当1,2a b ==时取等号,故选项C 错误;2393318a b b a +≥==+,当且仅当1,2a b ==时取等号,故选项D 正确;故选:D14.已知实数,1x y >)A .1BC .2D.【答案】C【解析】因为,1x y >,所以10,10x y ->->,222++=222+≥x y =时取等号,=2≥=,2x y ==时取等号,2,故选:C15.已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为()A .1B .6C .7D.【答案】B【解析】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当22b a a b =,即25a =,15b =时取等号,∴22aa b+的最小值为6;故选:B.16.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为()A .0,0)2a ba b +>>B .220,0)a b a b +≥>>C .20,0)aba b a b≤>>+D .0,0)2a b a b +≤>>【解析】【分析】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===,又由22a b a bOC OB BC b +-=-=-=,在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤,当且仅当a b =时取等号.故选:D.17.若2a >,3b >,则2223a b a b +--的最小值是()A .16B .18C .20D .22【答案】C【解析】因为2a >,3b >,所以22224499492310232323a b a b a b a b a b a b -+-++=+=-++-++------1020≥+=(当且仅当4,6a b ==时,等号成立),所以2223a b a b +--的最小值是20.故选:C18.已知实数x ,y 满足()212x x y y +=+,则227x y -的最小值为()A .103+B .103-CD【答案】A【解析】:实数x ,y 满足()212x x y y+=+化为:()()21x y x y +-=令2x y m +=,x y n -=,则1mn =解得:23m n x +=,3m n y -=则:()()2222222222233162730916273091276309130910737m n m n m n mn m n m m x y +-=⎛⎫⎛⎫-⨯- ⎪=⨯++=⨯ ⎪++⎛⎫=⨯++ ⎪⎝⎭⎛⎫≥⨯ ⎪ ⎪⎝=⎭⎭⎝⎭⎝当且仅当22276m m =,即2m =所以227x y -故选:A.19.若对任意实数0,0x y >>,不等式()x a x y ≤+恒成立,则实数a 的最小值为()AB1C1D【答案】D【解析】由题意可得,a ≥0,0x y >>1y x +(0)t t =>2111t t x +=++,再设1(1)t m m +=>,则22111(1)1t m y t m x+===++-+212222m m m m m =-++-12≤==,当且仅当21m m ==时取得“=”.所以212a ≥,即实数a 的最小值为12.故选:D.20.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为()A .34+B .34+C .36+D .36+【答案】A【解析】:因为0,1a b >>满足5a b +=,则()21211(1114a b a b a b +=++-⨯⎡⎤⎣⎦--()21113(3414b a a b -⎡⎤=++≥+⎢⎥-⎣⎦,当且仅当()211b aa b -=-时取等号,故选:A .。

专题2.2 基本不等式(解析版).

专题2.2 基本不等式(解析版).

专题2.2基本不等式知识点一基本不等式1.基本不等式:如果0,2a ba b +>>≤,当且仅当a b =时,等号成立.其中2ab叫做正数a ,b 叫做正数a ,b 的几何平均数.2.变形:ab ≤2ab ⎛⎫⎪⎝⎭2,a ,b ∈R ,当且仅当a =b 时,等号成立.a +b ≥2,a ,b 都是正数,当且仅当a =b 时,等号成立.知识点二用基本不等式求最值用基本不等式2xy求最值应注意:(1)x ,y 是正数.(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值;②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足.知识点三基本不等式的两个变形1.22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭(,a b ∈R ,当且仅当a b =时取等号);2.2112a ba b+≥≥+(0,0a b>>,当且仅当a b=时取等号).利用基本不等式求最值(1)拼凑法,拼凑法求解最值,其实质就是先通过代数式变形拼凑出和或积为常数的两项,然后利用基本不等式求解最值.利用基本不等式求解最值时,要注意“一正、二定、三相等”,尤其是要注意验证等号成立的条件.(2)常数代换法,常数代换法解题的关键是通过代数式的变形,构造和式或积式为定值的式子,然后利用基本不等式求解最值.应用此种方法求解最值时,应把“1”的表达式与所求最值的表达式相乘求积或相除求商.【例1】4(1)y x xx=+ 的最小值为()A.2B.3C.4D.5【解答】解:由已知函数4y xx=+,1x ,∴40x>,∴44xx+=,当且仅当4xx=,即2x=时等号成立,∴当2x=时,函数4y xx=+有最小值是4,故选:C.【变式训练1】函数20()5(0)f x x xx=+>的最小值为()A.10B.15C.20D.25【解答】解:由题意20()520f x xx=+=,当且仅当205xx=,即2x=时取等号,此时取得最小值为20,故选:C.【变式训练2】若0x >,则函数1()2f x x x=+的最小值是()A B .2C .D .【解答】解:由0x >,得1()2f x x x =+= ,当且仅当12x x =,即2x =时等号成立,所以1()2f x x x=+的最小值为故选:C .【变式训练3】已知0x >,则2x x+的最小值为()AB .2C .D .4【解答】解:由0x >,2x x +=当且仅当2x x=,即x =时,取得等号,故2x x+的最小值为故选:C .【例2】函数16(2)2y x x x =+>-+取最小值时x 的值为()A .6B .2C D 【解答】解:2x >-,20x ∴+>,函数1616(2)22622y x x x x =+=++-=++ ,当且仅当1622x x +=+,即2x =时取等号.故选:B .【变式训练1】若1a >,则11a a +-有()A .最小值为3B .最大值为3C .最小值为1-D .最大值为1-【解答】解:因为1a >,所以10a ->,所以11111311a a a a +=-++=-- ,当且仅当111a a -=-,即2a =时,等号成立,所以11a a +-有最小值故选:A .【变式训练2】函数1(2)2y x x x =+>-+的最小值为()A .3B .2C .1D .0【解答】解:由2x >-,得20x +>,102x >+,所以11222022y x x x x =+=++-=++ ,当且仅当122x x +=+,即1x =-时,等号成立.所以12y x x =++的最小值为故选:D .【变式训练3】函数413(313y x x x =+>-的最小值为()A .8B .7C .6D .5【解答】解:由13x >,得310x ->,所以443311153131y x x x x =+=-+++=-- ,当且仅当43131x x -=-,即1x =时等号成立,所以4331y x x =+-的最小值为故选:D .【例3】若a ,b 是两正实数,341b a+=,则a b +的最小值是()A .B .C .7+D .7+【解答】解:因为a ,b 是两正实数,341b a+=,则4343()(777b a a b a b a b a b +=++=+++=+当且仅当43b a a b =且341b a+=,即4a =+,3b =+故选:C .【变式训练1】若0x >,0y >,且131x y+=,则3x y +的最小值为()A .12B .6C .14D .16【解答】解:因为0x >,0y >,且131x y+=,则1393(3)()6612y x x y x y x y x y +=++=+++ ,当且仅当9y x x y =且131x y +=,即2x =,6y =时取等号.故选:A .【变式训练2】已知x ,y 都是正数,若2x y +=,则14x y+的最小值为()A .74B .92C .134D .1【解答】解:已知x ,y 都是正数,且2x y +=,则141141419()()(5)2222y x x y x y x y x y +=++=+++= ,当且仅当23x =,43y =时等号成立,所以14x y +的最小值为:92.故选:B .【变式训练3】若0x >,0y >,且131x y+=,则3x y +的最小值为()A .6B .12C .14D .16【解答】解:因为1393(3)()666612y x x y x y x y x y +=++=++++= ,当且仅当9y xx y=,即2x =,6y =时取得最小值为12,故选:B .【例4】已知x ,0y >且2x y xy +=,则x y +的最小值为()A .3+B .C .D .6【解答】解:0x >,0y >,且2x y xy +=,∴121y x+=,122()()333y x x y x y y x x y ∴+=++=++++当且仅当2y x x y =且121y x+=,即1y =+2x =+时取等号,故选:A .【变式训练1】已知正实数x ,y 满足2x y xy +=,则2x y +的最小值为()A .8B .9C .5D .7【解答】解:2x y xy +=可得121x y+=,12222(2)()559y x x y x y x y x y ∴+=++=+++ ,当且仅当x y =时,取得最小值9故选:B .【变式训练2】已知0x >,0y >,且4x y xy +=,则16x y +的最小值为()A .64B .81C .100D .121【解答】解:由4(0,0)x y xy x y +=>>,可得411y x+=,则4141616(16)()16465651681x y x y x y y x y x +=++=+++++= ,当且仅当416x y y x =且411y x+=,即9x =,92y =时取等号,此时取得最小值81故选:B .【变式训练3】若正数a ,b 满足a b ab +=,则2a b +的最小值为()A .6B .C .3+D .2+【解答】解:因为正数a ,b 满足a b ab +=,所以111b a+=,则1122(2)(33b aa b a b a b a b+=++=+++ ,当且仅当2b a a b =且111a b+=,即1a =12b =+时取等号,所以2a b +的最小值为3+.故选:C .基本不等式与恒成立(1)分离参数,转化为求代数式的最值问题.(2)观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或取值范围.【例5】设0a >,0b >,191a b+=,若不等式a b m + 恒成立,则实数m 的取值范围是()A .(-∞,8]B .(-∞,16]C .(-∞,7]D .[16,)+∞【解答】解:0a >,0b >,191a b+=,则199()()191016a b a b a b a b b a +=++=++++= ,当且仅当3b a =,4a =,12b =,上式取得等号,由不等式a b m + 恒成立,可得()16min m a b += ,故选:B .【变式训练1】设0a >,0b >,142a b+=,则使得a b m + 恒成立,求m 的取值范围是()A .(,9)-∞B .(0,1]C .9(,]2-∞D .(-∞,8]【解答】解:因为0a >,0b >,142a b+=,所以1141419()()(5)(52222b a a b a b a b a b +=++=+++= ,当且仅当322b a ==时取“=”,若使得a b m + 恒成立,则m 的取值范围是92m ,即(-∞,9]2.故选:C .【变式训练2】已知x ,y R +∈且4x y +=,则使不等式14m x y+ 恒成立的实数m 的取值范围为()A .(2,)+∞B .(-∞,74C .(3,)+∞D .(-∞,94【解答】解:由题意知两个正数x ,y 满足4x y +=,则141141419()()(14)(54444y x x y x y x y x y +=++=++++= ,当且仅当43x =,83y =时取等号,94m ∴,故选:D .【变式训练3】若0x >,0y >,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是()A .81m -<<B .8m <-或1m >C .1m <-或8m >D .18m -<<【解答】解:根据题意,0x >,0y >,且211x y+=,则2142(2)()448y x x y x y x y x y +=++=+++ ,当且仅当24x y ==时等号成立,即2x y +的最小值为8,若227x y m m +>+恒成立,必有278m m +<,解可得81m -<<.即m 的取值范围为(8,1)-.故选:A .基本不等式综合【例6】已知0x >,0y >且3210x y +=,则下列结论正确的是()A .05y <<B +C .22x y +的最小值为10013D .xy 的最大值为625【解答】解:0x >,0y >,3210x y +=,31020x y ∴=->,故05y <<,故选项A 正确;22(32)x y + ,即220 ,∴+,当且仅当32x y =,即53x =,52y =时,等号成立,的最大值为,故选项B 正确;3210x y +=,1032xy -∴=,故2222103(2x x y x -+=+21315254x x =-+,由二次函数的性质知,当3013x =时取得最小值2133030100(152********⨯-⨯+=,故选项C 正确;0x >,0y >,3210x y +=,32x y ∴+,即10,5,故256xy,当且仅当32x y =,即53x =,52y =时,等号成立,故xy 的最大值为256,故选项D 错误;故选:ABC .【变式训练1】已知0a >,0b >,2a b ab +=,则下列结论正确的是()A .a b +的最小值为3+B .22a b +的最小值为16C +D .lga lgb +的最小值为32lg 【解答】解:因为0a >,0b >,2a b ab +=,即211b a+=,所以122()(33b a a b a b a b a b +=++=+++ ,当且仅当2b a a b =且211b a +=,即1a =+,2b =+此时a b +取得最小值3+,A 正确;因为1242(2)()448b a ab a b a b a b a b =+=++=+++= ,当且仅当4b aa b =且2a b ab +=,即2a =,4b =时取等号,此时ab 取最小值8,所以Lga lgb lgab =+=取得最小值832lg lg =,D 正确;因为222a b ab + (当且仅当a b =时取等号),8ab (当且仅当2a =,4b =时取等号),所以2216a b +>,B 错误;212112a b =+++=,当且仅当1212a b ==,即2a =,4b =时取等号,此+取得最大值C 正确.故选:ACD .【变式训练2】设正实数a ,b 满足1a b +=,则下列结论正确的是()A .11a b+有最小值4B 12CD .22a b +有最小值12【解答】解:因为正实数a ,b 满足1a b +=,所以11224a b a b b a a b a b a b +++=+=+++= ,当且仅当a b b a =且1a b +=,即12a b ==时取等号,a b +取得最小值4,A 正确,122a b +=,当且仅当12a b ==12,B 正确,212a b +=+++,当且仅当12a b ==+取的最大值C 正确,22211()2121242a b a b ab ab +=+-=--⨯= ,当且仅当12a b ==时取等号,22a b +取得最小值12.D 正确,故选:ABCD .【变式训练3】设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为54【解答】解:因为正实数m ,n 满足2m n +=,所以1111((2)222m n m n n m m n m n m n +++=+=++ ,当且1n =时取等号,A 正确;2(12m n mn += ,当且仅当1m n ==时取等号,B 正确;2224mn =+ ,当且仅当1m n ==时取等号,22 ,C 错误;222()2422m n m n mn mn +=+-=- ,当且仅当1m n ==时取等号,D 错误.故选:AB .不等式的证明(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例7】已知a ,b ,c 均为正数,且1abc =,求证:111a b c+++.【解答】证明:由a ,b ,c 为正数,根据平均值不等式,得11a b +11b c +,11c a +当且仅当a b c ==时等号成立,将此三式相加,得1112()a b c ++,即111a b c ++.由1abc =1=.所以,111a b c ++=【变式训练1】已知a ,b R +∈,设x =y =,求证:(1)xy ab ;(2)x y a b ++ .【解答】证明:(1)a ,b R +∈,x =y =,xy ab ∴=,当且仅当a b =时取等号.(2)a ,b R +∈,x y +=,则222222()()()()(22a b a b a b x y a b ab +++-+=+-++=-,而4422()()8()a b a b ab a b +--=+,4224()8()()a b ab a b a b ∴+-+=-,2()a b ∴+ ,22()()0a b x y ∴+-+ ,a b x y ∴++ .【变式训练2】已知0a >,0b >,且1a b +=,求证:11(19a b++ .【解答】解:0a >,0b >,且1a b +=∴11(1)(1)a b a ba b a b ++++=++22(2)(24b a a b b a a b b a a b =++=+++⨯2255549b a a b =+++=+= 当且仅当22b a a b =,即12a b ==时取“=”号.故原题得证.【变式训练3】解答下列各题.(1)设0a >,0b >,1a b +=,求证:1118a b ab++ ;(2)设a b c >>且11ma b b c a c+---恒成立,求实数m 的取值范围.【解答】解:(1)证明:0a >,0b >,1a b +=,∴11112a b a b ab ab ab ab +++=+=,21(24a b ab += ,104ab ∴<,(当且仅当12a b ==时取等号)故28ab,即1118a b ab++ .(2)a c >,0a c ∴->,11ma b b c a c +---恒成立,a c a cm a b b c--∴+--恒成立,即2a c a c a b b c a b b c b c a bm a b b c a b b c a b b c---+--+---+=+=++------,又a b c >>,0a b ∴->,0b c ->,则224b c a b a b b c --+++=-- .当且仅当b c a b -=-,即2a c b +=时上式等号成立.4m ∴ ,m ∴的取值范围是:(-∞,4].基本不等式的实际应用应用基本不等式解决实际问题的步骤(1)认真审题,恰当选择变量(x 或y),并求其取值范围;(2)用x 或y 表示要求最大(小)值的量z ;(3)利用基本不等式,求出z 的最大(小)值;(4)回到实际问题中去,写出实际问题的答案.【例8】如图,计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x ,宽为y .(1)若菜园面积为72,则x ,y 为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为30,求12x y+的最小值.【解答】解:(1)由题意知:72xy =,篱笆总长为2x y +.又224x y += ,当且仅当2x y =,即12x =,6y =时等号成立.∴当12x =,6y =时,可使所用篱笆总长最小;(2)由题意得:230x y +=,又1222()(2)559y x x y x y x y ++=+++ ,∴12310x y + ,当且仅当x y =,即10x =,10y =时等号成立.∴12x y+的最小值是310.【变式训练1】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:2920(0)31600y υυυυ=>++.(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【解答】解:(1)依题意,2920920920160031600833()y v vυυυ==++++ ,当且仅当1600v v=,即40v =时,上式等号成立,92083max y ∴=(千辆/时).当40/v km h =时,车流量最大,最大车流量约为92083千辆/时;(2)由条件得29201031600υυυ>++,整理得28916000v v -+<,即(25)(64)0v v --<,解得2564v <<,所以,如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25/km h 且小于64/km h .【变式训练2】某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出*()x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310()500xa -万元(0)a >,剩下的员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余与员工创造的年总利润,则a 的取值范围是多少?【解答】解:(1)由题意得:10(1000)(10.2%)101000x x -+⨯ ,即25000x x - ,又0x >,所以0500x < .即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为310(500xa x -万元,从事原来产业的员工的年总利润为110(1000)(1)500x x -+万元,则310()10(1000)(10.2%)500xa x x x --+ 所以223110002500500x ax x x x -+-- ,所以221000500x ax x ++ ,即210001500x a x ++ 恒成立,因为210004500x x += ,当且仅当21000500x x=,即500x =时等号成立.所以5a ,又0a >,所以05a < ,即a 的取值范围为(0,5].【变式训练3】2018年10月19日,由中国工信部、江西省政府联合主办的世界VR (虚拟现实)产业大会在南昌开幕,南昌在红谷滩新区建立VR 特色小镇项目.现某厂商抓住商机在去年用450万元购进一批VR 设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用x 年后设备的盈利额为y 万元.(1)写出y 与x 之间的函数关系式;(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额.【解答】解:(1)依题得:2*(1)180[224]4502160450()2x x y x x x x x N -=-+⨯-=-+-∈-----(6分)(2)4504502160160(2)160100y x x x x x =-+-=-+-= ,当且仅当4502x x=时,即15x =时等号成立.∴使用15年后平均盈利额达到最大值,该厂商盈利额为1500万元.--------------(12分)1.4(1)?y x x x=+ 的最小值为()A .2B .3C .4D .5【解答】解:由已知函数4y x x=+,1x ,∴40?x>,∴44?x x += ,当且仅当4?x x=,即2?x =时等号成立,?∴当2?x =时,函数4?y x x=+有最小值是4,故选:C .2.函数20()5(0)f x x x x=+>的最小值为()A .10B .15C .20D .25【解答】解:由题意20()520f x x x =+= ,当且仅当205x x=,即2x =时取等号,此时取得最小值为20,故选:C .3.若0x >,则函数1()2f x x x=+的最小值是()A B .2C .D .【解答】解:由0x >,得1()2f x x x =+= ,当且仅当12x x =,即x =时等号成立,所以1()2f x x x=+的最小值为故选:C .4.已知0x >,则2x x+的最小值为()A B .2C .D .4【解答】解:由0x >,2x x +=当且仅当2x x=,即x =时,取得等号,故2x x+的最小值为故选:C .5.函数16(2)2y x x x =+>-+取最小值时x 的值为()A .6B .2C D【解答】解:2x >-,20x ∴+>,函数1616(2)22622y x x x x =+=++-=++ ,当且仅当1622x x +=+,即2x =时取等号.故选:B .6.若1a >,则11a a +-有()A .最小值为3B .最大值为3C .最小值为1-D .最大值为1-【解答】解:因为1a >,所以10a ->,所以11111311a a a a +=-++=-- ,当且仅当111a a -=-,即2a =时,等号成立,所以11a a +-有最小值3.故选:A .7.函数1(2)2y x x x =+>-+的最小值为()A .3B .2C .1D .0【解答】解:由2x >-,得20x +>,102x >+,所以11222022y x x x x =+=++-=++ ,当且仅当122x x +=+,即1x =-时,等号成立.所以12y x x =++的最小值为0.故选:D .8.函数413()313y x x x =+>-的最小值为()A .8B .7C .6D .5【解答】解:由13x >,得310x ->,所以443311153131y x x x x =+=-+++=-- ,当且仅当43131x x -=-,即1x =时等号成立,所以4331y x x =+-的最小值为5.故选:D .9.若a ,b 是两正实数,341b a+=,则a b +的最小值是()A .B .C .7+D .7+【解答】解:因为a ,b 是两正实数,341b a+=,则4343()(777b a a b a b a b a b +=++=+++=+当且仅当43b a a b =且341b a+=,即4a =+,3b =+故选:C .10.若0x >,0y >,且131x y+=,则3x y +的最小值为()A .12B .6C .14D .16【解答】解:因为0x >,0y >,且131x y+=,则1393(3)()6612y x x y x y x y x y +=++=+++ ,当且仅当9y x x y =且131x y +=,即2x =,6y =时取等号.故选:A .11.已知x ,y 都是正数,若2x y +=,则14x y+的最小值为()A .74B .92C .134D .1【解答】解:已知x ,y 都是正数,且2x y +=,则141141419()()(5)2222y x x y x y x y x y +=++=+++= ,当且仅当23x =,43y =时等号成立,所以14x y+的最小值为:92.故选:B .12.若0x >,0y >,且131x y+=,则3x y +的最小值为()A .6B .12C .14D .16【解答】解:因为1393(3)()666612y x x y x y x y x y +=++=++++= ,当且仅当9y xx y=,即2x =,6y =时取得最小值为12,故选:B .13.已知x ,0y >且2x y xy +=,则x y +的最小值为()A .3+B .C .D .6【解答】解:0x >,0y >,且2x y xy +=,∴121y x+=,122()()333y x x y x y y x x y ∴+=++=++++当且仅当2y x x y =且121y x+=,即1y =+2x =+时取等号,故选:A .14.已知正实数x ,y 满足2x y xy +=,则2x y +的最小值为()A .8B .9C .5D .7【解答】解:2x y xy +=可得121x y+=,12222(2)()559y x x y x y x y x y ∴+=++=+++ ,当且仅当x y =时,取得最小值9.故选:B .15.已知0x >,0y >,且4x y xy +=,则16x y +的最小值为()A .64B .81C .100D .121【解答】解:由4(0,0)x y xy x y +=>>,可得411y x+=,则4141616(16)()16465651681x y x y x y y x y x +=++=+++++= ,当且仅当416x y y x =且411y x+=,即9x =,92y =时取等号,此时取得最小值81.故选:B .16.若正数a ,b 满足a b ab +=,则2a b +的最小值为()A .6B .C .3+D .2+【解答】解:因为正数a ,b 满足a b ab +=,所以111b a+=,则1122(2)(33b aa b a b a b a b+=++=+++ ,当且仅当2b a a b =且111a b+=,即1a =12b =+时取等号,所以2a b +的最小值为3+.故选:C .17.设0a >,0b >,191a b+=,若不等式a b m + 恒成立,则实数m 的取值范围是()A .(-∞,8]B .(-∞,16]C .(-∞,7]D .[16,)+∞【解答】解:0a >,0b >,191a b+=,则199()()191016a b a b a b a b b a +=++=++++= ,当且仅当3b a =,4a =,12b =,上式取得等号,由不等式a b m + 恒成立,可得()16min m a b += ,故选:B .18.设0a >,0b >,142a b+=,则使得a b m + 恒成立,求m 的取值范围是()A .(,9)-∞B .(0,1]C .9(,]2-∞D .(-∞,8]【解答】解:因为0a >,0b >,142a b+=,所以1141419()()(5)(52222b a a b a b a b a b +=++=+++= ,当且仅当322b a ==时取“=”,若使得a b m + 恒成立,则m 的取值范围是92m ,即(-∞,9]2.故选:C .19.已知x ,y R +∈且4x y +=,则使不等式14m x y+ 恒成立的实数m 的取值范围为()A .(2,)+∞B .(-∞,74C .(3,)+∞D .(-∞,94【解答】解:由题意知两个正数x ,y 满足4x y +=,则141141419()()(14)(54444y x x y x y x y x y +=++=++++= ,当且仅当43x =,83y =时取等号,94m ∴,故选:D .20.若0x >,0y >,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是()A .81m -<<B .8m <-或1m >C .1m <-或8m >D .18m -<<【解答】解:根据题意,0x >,0y >,且211x y+=,则2142(2)()448y x x y x y x y x y +=++=+++ ,当且仅当24x y ==时等号成立,即2x y +的最小值为8,若227x y m m +>+恒成立,必有278m m +<,解可得81m -<<.即m 的取值范围为(8,1)-.故选:A .21.已知0x >,0y >且3210x y +=,则下列结论正确的是()A .05y <<B +C .22x y +的最小值为10013D .xy 的最大值为625【解答】解:0x >,0y >,3210x y +=,31020x y ∴=->,故05y <<,故选项A 正确;22(32)x y + ,即220 ,∴+,当且仅当32x y =,即53x =,52y =时,等号成立,的最大值为,故选项B 正确;3210x y +=,1032xy -∴=,故2222103(2x x y x -+=+21315254x x =-+,由二次函数的性质知,当3013x =时取得最小值2133030100(152********⨯-⨯+=,故选项C 正确;0x >,0y >,3210x y +=,32x y ∴+,即10,5,故256xy,当且仅当32x y =,即53x =,52y =时,等号成立,故xy 的最大值为256,故选项D 错误;故选:ABC .22.已知0a >,0b >,2a b ab +=,则下列结论正确的是()A .a b +的最小值为3+B .22a b +的最小值为16C +D .lga lgb +的最小值为32lg 【解答】解:因为0a >,0b >,2a b ab +=,即211b a+=,所以122()(33b a a b a b a b a b +=++=+++ ,当且仅当2b a a b =且211b a +=,即1a =+,2b =+此时a b +取得最小值3+,A 正确;因为1242(2)()448b a ab a b a b a b a b =+=++=+++= ,当且仅当4b aa b =且2a b ab +=,即2a =,4b =时取等号,此时ab 取最小值8,所以Lga lgb lgab =+=取得最小值832lg lg =,D 正确;因为222a b ab + (当且仅当a b =时取等号),8ab (当且仅当2a =,4b =时取等号),所以2216a b +>,B 错误;212112a b =+++=,当且仅当1212a b ==,即2a =,4b =时取等号,此+取得最大值C 正确.故选:ACD .23.设正实数a ,b 满足1a b +=,则下列结论正确的是()A .11a b+有最小值4B 12C D .22a b +有最小值12【解答】解:因为正实数a ,b 满足1a b +=,所以11224a b a b b a a b a b a b +++=+=+++= ,当且仅当a b b a =且1a b +=,即12a b ==时取等号,a b +取得最小值4,A 正确,122a b +=,当且仅当12a b ==12,B 正确,212a b +=+++,当且仅当12a b ==+取的最大值C 正确,22211()2121242a b a b ab ab +=+-=--⨯= ,当且仅当12a b ==时取等号,22a b +取得最小值12.D 正确,故选:ABCD .24.设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为54【解答】解:因为正实数m ,n 满足2m n +=,所以1111((2)222m n m n n m m n m n m n +++=+=++ ,当且1n =时取等号,A 正确;2(12m n mn += ,当且仅当1m n ==时取等号,B 正确;2224mn =+ ,当且仅当1m n ==时取等号,22 ,C 错误;222()2422m n m n mn mn +=+-=- ,当且仅当1m n ==时取等号,D 错误.故选:AB .25.如图,计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x ,宽为y .(1)若菜园面积为72,则x ,y 为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为30,求12x y+的最小值.【解答】解:(1)由题意知:72xy =,篱笆总长为2x y +.又224x y += ,当且仅当2x y =,即12x =,6y =时等号成立.∴当12x =,6y =时,可使所用篱笆总长最小;(2)由题意得:230x y +=,又1222()(2)559y x x y x y x y ++=+++ ,∴12310x y + ,当且仅当x y =,即10x =,10y =时等号成立.∴12x y+的最小值是310.26.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:2920(0)31600y υυυυ=>++.(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【解答】解:(1)依题意,2920920920160031600833()y v vυυυ==++++ ,当且仅当1600v v=,即40v =时,上式等号成立,92083max y ∴=(千辆/时).当40/v km h =时,车流量最大,最大车流量约为92083千辆/时;(2)由条件得29201031600υυυ>++,整理得28916000v v -+<,即(25)(64)0v v --<,解得2564v <<,所以,如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25/km h 且小于64/km h .27.某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出*()x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310(500xa -万元(0)a >,剩下的员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余与员工创造的年总利润,则a 的取值范围是多少?【解答】解:(1)由题意得:10(1000)(10.2%)101000x x -+⨯ ,即25000x x - ,又0x >,所以0500x < .即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为310(500xa x -万元,从事原来产业的员工的年总利润为110(1000)(1)500x x -+万元,则310()10(1000)(10.2%)500xa x x x --+ 所以223110002500500x ax x x x -+-- ,所以221000500x ax x ++ ,即210001500x a x ++ 恒成立,因为210004500x x += ,当且仅当21000500x x=,即500x =时等号成立.所以5a ,又0a >,所以05a < ,即a 的取值范围为(0,5].28.2018年10月19日,由中国工信部、江西省政府联合主办的世界VR (虚拟现实)产业大会在南昌开幕,南昌在红谷滩新区建立VR 特色小镇项目.现某厂商抓住商机在去年用450万元购进一批VR 设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用x 年后设备的盈利额为y 万元.(1)写出y 与x 之间的函数关系式;(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额.【解答】解:(1)依题得:2*(1)180[224]4502160450()2x x y x x x x x N -=-+⨯-=-+-∈.(2)4504502160160(2)160100y x x x x x =-+-=-+-= ,当且仅当4502x x=时,即15x =时等号成立.∴使用15年后平均盈利额达到最大值,该厂商盈利额为1500万元.。

课时训练2.2基本不等式(解析版)

课时训练2.2基本不等式(解析版)
C.a2+b2≤2|ab|D.a2+b2>2|ab|
解析:∵a2+b2-2|ab|=(|a|-|b|)2≥0,∴a2+b2≥2|ab|(当且仅当|a|=|b|时,等号成立).故选A
8、设0<a<b,且a+b=1,则下列四个数中最大的是( )
A. B.a2+b2C.2abD.a
解析:因为0<a<b,所以1=a+b>2a,所以a< .又因为a2+b2≥2ab,所以四个数中的最大数一定不是a和2ab.又因为1=a+b> ,所以ab< ,所以a2+b2=(a+b)2-2ab=1-2ab>1- = ,
B. ,即 恒成立,故B正确;
C.当 时,不等式不成立,故C不正确;
D.当 时,不等式不成立,故D不正确.
3、“ 为正数”是“ ”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:若a,b为正数,取a=1,b=1,则a+b=2 ,则“a,b为正数”不是“a+b>2 ”的充分条件;若a+b>2 ,取a=1,b=0,则b不是正数,则“a,b为正数”不是“a+b>2 ”的必要条件.故“a,b为正数”是“a+b>2 ”的既不充分也不必要条件,故选D.
第二章 一元二次函数、方程和不等式
【2.2 基本不等式】
基础闯关 务实基础 达标检测
题型一 对基本不等式的理解
1、已知 ,且 ,那么下列结论一定成立的是
A. B.
C. D.
【解析】因为 ,且 ,所以 .
当且仅当 时取等号,故选C.

新高考数学总复习专题二2.2基本不等式及不等式的应用课件

新高考数学总复习专题二2.2基本不等式及不等式的应用课件
4
【注意】 1)求最值时要注意三点:“一正”“二定”“三相等”.所谓 “一正”是指两数均为正数,“二定”是指应用基本不等式求最值时,和 或积为定值,“三相等”是指x,y相等时等号成立. 2)连续使用基本不等式时,等号要同时成立.
考法一 应用基本不等式求解最值 1.利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主 要有两种思路: 1)对条件使用基本不等式,建立所求目标函数的不等式求解. 2)对条件变形,进行“1”的代换求目标函数最值. 2.有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添 项、分离常数、平方等手段使之能运用基本不等式.
a 2b
2
2
答案 (1)D (2) 2
考法二 不等式的恒成立、能成立、恰成立等问题的解题策略 1.恒成立问题:若f(x)在区间D上存在最小值,则不等式f(x)>A在区间D上恒 成立⇔f(x)min>A(x∈D); 若f(x)在区间D上存在最大值,则不等式f(x)<B在区间D上恒成立⇔f(x)max< B(x∈D). 2.能成立问题:若f(x)在区间D上存在最大值,则在区间D上存在实数x使不 等式f(x)>A成立⇔f(x)max>A(x∈D); 若f(x)在区间D上存在最小值,则在区间D上存在实数x使不等式f(x)<B成 立⇔f(x)min<B(x∈D). 3.恰成立问题:不等式f(x)>A恰在区间D上成立⇔f(x)>A的解集为D;不等式 f(x)<B恰在区间D上成立⇔f(x)<B的解集为D.
x
x
(2)记g(x)=x+ .由已知得
0 x 14.5,
解最得小值40,0总≤造x≤价22x1f5(4x.)5取,显最然小g(值x).在0故定污20x义水0 域处1内4理.5是,池减的函长数设,计所为以1当4.x5=米14时.5,时可,使g(x总)取造 价最低29.

基本不等式(解析版)

基本不等式(解析版)

基本不等式(解析版)基本不等式(解析版)基本不等式是数学中一类重要的不等式,它们在解决数学问题时起着重要的作用。

本文将介绍基本不等式的概念、性质以及应用。

让我们一起来深入了解基本不等式。

一、基本不等式概述基本不等式是指在一定条件下,对于给定的变量之间的关系,能够推导出的一类不等式。

基本不等式包括等号和不等号,通过不等式的比较可以得到更多有关变量之间的信息。

二、基本不等式性质1. 传递性:如果a>b,b>c,则a>c。

这种性质使得我们可以通过基本不等式的传递性,推导出更复杂的不等式关系。

2. 加减性:如果a>b,则a+c>b+c,a-c>b-c。

基本不等式的加减性质使得我们可以对不等式进行加减运算,得到新的不等式。

3. 乘除性:如果a>b且c>0,则ac>bc;若c<0,则ac<bc。

这使得我们可以通过乘除性质,对不等式进行乘除运算,并保持不等式的方向性。

三、基本不等式的应用1. 在证明问题中的应用:基本不等式常常被用于数学证明中,通过推导出合适的不等式进行逻辑推理,达到证明某个数学问题的目的。

2. 在优化问题中的应用:有时候我们需要找到一个使得某个函数取得最大或最小值的变量取值,而基本不等式能够帮助我们找到最优解的取值范围。

3. 在数列极限证明中的应用:数列极限证明中经常会用到基本不等式,通过合适的运算和不等式的推导,可以证明数列的极限存在或者不存在。

四、基本不等式的例子例子1:已知a>0,b>0,证明ab≥2√(ab)。

解析:由于a>0,b>0,我们可以对两边同时平方,得到a^2b^2≥4ab。

进一步化简得ab≥2√(ab),这就是我们所要证明的不等式。

例子2:证明对于任意实数x,有x^2+x+1>0。

解析:我们尝试使用求根公式来解这个问题。

根据一元二次方程的求根公式,当判别式Δ=b^2-4ac小于0时,方程无实根。

精讲02 基本不等式与二次不等式(解析版)

精讲02 基本不等式与二次不等式(解析版)

专题02基本不等式与二次不等式【专题综述与核心素养要求】与“集合”“常用逻辑用语”一样,“相等关系与不等关系”和“从函数观点看一元二次方程和一元二次不等式”的内容也是《课程标准(2017年版)》规定的高中数学课程的预备知识.它们的作用都是为高中数学课程做好学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.为什么“相等关系与不等关系”和“从函数观点看一元二次方程和一元二次不等式”的内容能发挥这样重要的作用?它们为高中数学课程的学习做了哪些方面的准备呢?首先,相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础,而方程和不等式都是重要的数学工具,在解决问题中有广泛的应用,因此对方程和不等式内容的学习,主要是为高中数学课程提供工具方面的准备.其次,函数是贯穿高中数学课程的最重要的概念和思想方法,用函数的观点看方程和不等式是要向学生渗透一种重要的思想方法——如何从函数的观点理解其他数学对象,进而把握不同数学对象的共性和相互关系.而这种思想方法对学生高中阶段的数学学习是非常重要的.最后,从学习方法来看,本章要在回顾、梳理等式内容的基础上,提炼等式中蕴含的思想方法,以及用一次函数的观点看一次方程、不等式的思想方法,再把这些思想方法迁移到对不等式内容的学习中.这种“回顾、梳理—提炼—迁移”的学习方法将适用于高中许多内容的学习. 【重要知识点与题型快速预览】【知识点精解精析】基础知识点一:不等式的性质别名性质内容注意性质1 对称性可逆性质2 传递性同向性质3 可加性可逆移项法则可逆性质3的推论性质4 可乘性的符号性质5 同向可加性同向同向,同正性质6 同向同正可乘性性质7 可乘方性同正性质8 可开方性基础知识点二:一元二次不等式的解集(1)三个“二次”之间的关系由一元二次不等式的一般形式知,任何一个一元二次不等式整理成一边形式为或,而且我们已经知道对于一元二次方程(,其中),它的解按照可分为三种情况.相应地,二次函数的图象与轴的位置关系也分为三种情况,因此,对应的一元二次不等式(或)的解集我们也分三种情况进行讨论.二次函数的图象一元二次方程的根有两不同实根有两个相等的实根无实根一元二次不等式的解集的解集或的解集时解集的结构可记为:的解集为“大于大根或小于小根”;的解集为“大于小根且小于大根”.(2)解一元二次不等式的一般步骤①对不等式变形,使一端为零且二次项系数大于零;②计算判别式;③当时,求出相应的一元二次方程的根;④根据二次函数图象写出一元二次不等式的解集.基础知识点三:基本不等式(1)重要不等式,当且仅当时,等号成立.(2)基本不等式如果,那么,当且仅当时,等号成立.其中,叫做正数的算术平均数,叫做正数的几何平均数.因此,基本不等式可以叙述为:两个正数的算术平均数不小于它们的几何平均数.温馨提示①基本不等式成立的条件是.②从不等式成立的条件来看,要求,而对没有要求.例如,当,时,成立,但显然不成立.③事实上,当时,我们分别用代替重要不等式中的,可得,变形可得.④基本不等式可变形为等.⑤由基本不等式,我们可以得到一个常用结论:.【必知必会题型深度讲解】必知必会题型一:一元二次不等式的解法解一元二次不等式的一般步骤如下:(1)化成标准式或.(2)计算对应方程根的判别式.(3)求出对应方程的解.(4)画出相应二次函数的图象.(5)由图象写出不等式的解集.【典型例题1】解下列不等式:(1)260x x -->; (2)2251010x x -+>; (3)2210x x -++<.【答案】(1){2∣<-x x 或3}x >;(2)15xx ⎧⎫≠⎨⎬⎩⎭∣;(3)12x x ⎧<-⎨⎩∣或1}x >. 【解析】(1)不等式260x x -->即为(2)(3)0x x +->,解得2x <-或3x >,因此,不等式260x x -->的解集为{2∣<-xx 或3}x >; (2)不等式2251010x x -+>即为2(51)0x ->,解得15x ≠, 因此,不等式2251010x x -+>的解集为15xx ⎧⎫≠⎨⎬⎩⎭∣; (3)不等式2210x x -++<即为2210x x -->,即(21)(1)0x x +->,解得12x <-或1x >.因此,不等式2210x x -++<的解集为12x x ⎧<-⎨⎩∣或1}x >. 【典型例题2】解下列不等式:(1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0.【答案】(1)122xx ⎧⎫-<<⎨⎬⎩⎭∣;(2){|0.5x x ≤或1}x ≥;(3)R . 【解析】(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0故原不等式的解集是122x x ⎧⎫-<<⎨⎬⎩⎭∣. (2)原不等式可化为2x 2-x -1≥0,所以(2x +1)(x -1)≥0 故原不等式的解集为{|0.5x x ≤或1}x ≥ (3)因为()224380∆=--⨯=-<故原不等式的解集是R .【典型例题3】已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ? 【答案】(1){|1x x <-或3}2x >;(2)66b -≤≤. 【解析】(1)由题意知10a -<且-3和1是方程2(1)460a xx 的两根,∴10421631a a a⎧⎪-<⎪⎪=-⎨-⎪⎪=-⎪-⎩ 解得3a =. ∴不等式22(2)0xa x a ,即为2230x x -->,解得1x <-或32x >. ∴所求不等式的解集为{|1x x <-或3}2x >; (2)230ax bx ++≥,即为2330x bx ++≥, 若此不等式的解集为R ,则24330b ∆=-⨯⨯≤, 解得66b -≤≤.必知必会题型二:含参数的一元二次不等式的解法在解含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数;(2)关于不等式对应的方程的根的讨论:两根(),无根(); (3)关于不等式对应的方程根的大小的讨论:.【典型例题1】求关于x 的不等式2(1)0x a x a +--<的解集,其中a 是常数.【答案】当a <-1时,原不等式的解集为(a ,-1);当a =-1时,原不等式的解集为∅;当a >-1时,原不等式的解集为(-1,a ). 【解析】解依题意知方程2(1)0x a x a +--=的根为x 1=1-,x 2=a ,且一元二次函数y =x 2+(1-a )x -a 的图象是开口向上的抛物线. 当a <1-时,如图,一元二次函数y =x 2十(1-a )x -a 的图象与x 轴从左至右有两个交点(a ,0)与(1-,0),所以原不等式的解集为(a ,1-).当a =1-时,如图,一元二次函数y =x 2+(1-a )x -a 的图象与x 轴只有一个交点(-1,0).所以原不等式的解集为∅. 当a >-1时,如图,一元二次函数y =x 2十(1-a )x -a 的图象与x 轴从左至右有两个交点(-1,0)与(a ,0).所以原不等式的解集为(-1,a ).综上所述,当a <-1时,原不等式的解集为(a ,-1); 当a =-1时,原不等式的解集为∅; 当a >-1时,原不等式的解集为(-1,a ).【典型例题2】解关于x 的不等式:()210x x a a --->.【答案】见解析 【解析】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->.①当12a >时,1a a ,解集为{x x a >,或}1x a <-; ②当12a =时,1a a ,解集为12x x ⎧⎫≠⎨⎬⎩⎭; ③当12a <时,1a a <-,解集为{x x a <,或}1x a >-. 综上所述, 当12a >时,原不等式的解集为{x x a >,或}1x a <-; 当12a =时,原不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当12a <时,原不等式的解集为{x x a <,或}1x a >-.【典型例题3】解下列含参数的不等式:(1)2220x ax a --<; (2)()2110ax a x -++≤;(3)230x mx m --≤.【答案】(1)见解析(2)见解析(3)见解析 【解析】(1)原不等式等价于()()20x a x a -+<,对应方程两根为212,x a x a ==-, 比较两根的大小情况,可得当0a >时,不等式的解集为(),2a a -; 当0a =时,不等式的解集为∅; 当0a <时,不等式的解集为()2,a a -.(2)当0a =时,不等式化为10x -+≤.解得[)1,x ∈+∞.当0a ≠时,方程()2110ax a x -++=的两根为11x =,21x a=. ①0a >时,分情况讨论:01a <<时,11,x a ⎡⎤∈⎢⎥⎣⎦;1a =时,{}1x ∈; 1a >时,1,1x a ⎡⎤∈⎢⎥⎣⎦.②0a <时,[)1,1,x a ⎛⎤∈-∞+∞⎥⎝⎦.综上,当1a >时,不等式的解集为1,1a ⎡⎤⎢⎥⎣⎦; 当1a =时,不等式的解集为{}1; 当01a <<时,不等式的解集为11,a ⎡⎤⎢⎥⎣⎦;当0a =时,不等式的解集为[)1,+∞;当0a <时,不等式的解集为[)1,1,a⎛⎤-∞⋃+∞ ⎥⎝⎦.(3)()21212m m m m ∆=+=+.①>0∆,即0m >或12m <-时,不等式的解集为,66m m ⎡-+⎢⎢⎥⎣⎦;②0∆=,即0m =或12=-m 时, 不等式的解集为6m ⎧⎫⎨⎬⎩⎭; ③∆<0,即120m -<<时,不等式的解集为∅.必知必会题型三:不等式中恒成立问题的解法(1)含参数的不等式的恒成立问题通过分离参数,把参数的范围问题转化为函数的最值问题.在的最大值与最小值存在的条件下,恒成立;恒成立.(2)一元二次不等式的恒成立问题 ①对任意实数均成立对任意实数均成立②若(或)在时恒成立,可利用单调性或分离参数法等求解.【典型例题1】当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,求实数a 的取值范围. 【答案】5a ≤ 【解析】对于二次函数228y x x a =-+-,抛物线开口向上,当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,则当1x =时函数值0y ≤,且当3x =时函数值0y ≤.得12809680a a -+-≤⎧⎨-+-≤⎩,解得5a ≤.所以a 的取值范围是5a ≤.【典型例题2】已知不等式2210ax ax ++>在x ∈R 时恒成立,求实数a 的取值范围.【答案】{|01}a a < 【解析】设221y ax ax =++,则0y >对x ∀∈R 成立. 当0a =时,10y =>,显然成立; 当0a ≠时,要使0y >恒成立,需函数221y ax ax =++开口向上,且与x 轴没有交点,即20,(2)410,a a a >⎧⎨∆=-⨯⨯<⎩解得01a <<. 综上知,实数a 的取值范围为{|01}a a <.【典型例题3】要使函数()124xx f x a=++·在(]1x ∈-∞,时()0f x >恒成立,求a 的取值范围. 【答案】3,4⎛⎫-+∞ ⎪⎝⎭【解析】由于1240x x a ++>·在(1]x ∈-∞,时恒成立,则124xx a +>-在(1]x ∈-∞,时恒成立. 又∵21211422x xxxy +⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭2111224x ⎡⎤⎛⎫=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当(1]x ∈-∞,时,1122x⎛⎫≥ ⎪⎝⎭,令12xt ⎛⎫= ⎪⎝⎭,则2111()(),[,)242f t t t =-++∈+∞,函数()f t 在1[,)2+∞上为减函数,13()()24f t f ≤=-, ∴为满足124xxa +>-在(1]x ∈-∞,时恒成立,需34a >-. 故a 的取值范围为3,4⎛⎫-+∞ ⎪⎝⎭. 必知必会题型四:比较数(式)的大小的方法(1)比较两个实数与的大小,作差法需归结为判断它们的差的符号,因此,因式分解时越彻底越好,若用配方法化成和的形式,则各项符号需相同.(2)用作商法比较大小时,被除数与除数同号,否则不等号方向由可能弄错. (3)比较两个数或代数式(均大于零)的大小,也可化为比较两个数平方的大小.(4)在比较两个数的大小时,若作差后不易变形,则可与中间量(如0或1等)进行比较,再由不等式的传递性得到两数的大小关系.(5)在比较两个数的大小时,若差式中变量较多,不易变形,则应考虑消元,减少式中变量,以利于判断,差式的符号.【典型例题1】比较下面两组数的大小:(1)24;(2【答案】(1)24(2>【解析】解:(1)(242+-=,因为3327810-=-=-<,20<,所以24+<.(2)22(710(314-=++-++2=⨯,因为22280-=>,所以20⨯>,>【典型例题2】已知0a >,0b >,试比较11a b M a b =+++与11b a N a b=+++的大小. 【答案】当a b =时,M N ;当ab 时,M N <.【解析】11111111ab b a a b a b M N a b a b a a b b ⎛⎫⎛⎫⎛⎫⎛⎫-=+-+=--- ⎪ ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭⎝⎭()()()()211111111a b a b a b a b a b a b a b ---⎛⎫=-=--=- ⎪++++++⎝⎭. 因为0a >,0b >,所以()()110a b ++>,()20a b --≤,得0M N -≤当a b =时,MN ;当ab 时,M N <.【典型例题3】比较下列各组中两个代数式的大小:(1)231x x -+与221x x +-; (2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110x x x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.①当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ②当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且ab 时,a bb aa b a b >.(1)对于条件不等式的证明,充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立. (2)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.【典型例题1】已知,,a b c都是正实数,求证:a b cab bc +++【答案】见解析 【解析】 证明:0a >,0b >,0c >20a b ab ∴+>,当且仅当a b =时取等号; 20b c bc +>,当且仅当c b =时取等号; 20c a ca +>,当且仅当a c =时取等号;上述三式相加可得2()2(a b c ab +++,即a b cab bc +++当且仅当a b c ==时,等号成立.【典型例题2】已知a ,b ,c 是不全相等的正数,求证:()()()2222226a b c b c a c a b abc +++++>.【答案】证明见解析 【解析】222b c bc +≥,0a >,()222a b c abc +≥∴. ①同理()222b c aabc +≥, ②()222c a b abc +≥. ③a ,b ,c 不全相等,故①②③式中至少有一式不能取等号,()()()2222226a b c b c a c a b abc+++++>∴.【典型例题3】已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. 【答案】见解析 【解析】设,,a b x b c y c a z +=+=+=,则0,0,0x y z >>>,且()()22x y z z x ya abc b c y +++-=++-+=-=. 同理,,22x y z y z xb c +-+-==. 所以原不等式的左边222y z x z x y x y zx y z+-+-+-=++ 1322y x zx z y x y x z y z ⎡⎤⎛⎫⎛⎫⎛⎫=+++++-⎢ ⎪⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦133(222)222≥⨯++-=. 当且仅当,x y z x y x x z ==,且z yy z =,即,x y z a b c ====时,等号成立.必知必会题型六:利用基本不等式求最值(1)利用基本不等式求最值的条件利用基本不等式求最值,必须同时满足以下三个条件,一正、二正、三相等. 即:①都是正数. ②积(或和)为定值(有时需通过“配凑、拆分”找出定值).③与必须能够相等(等号能够取到).特别地,当式子中等号不成立时,不能应用基本不等式,而应改用函数的单调性求最值. (2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式. (2)基本不等式与最值设是正数,①若(和为定值),则当时,积取得最大值;②若(积为定值),则当时,和取得最小值.【典型例题1】是否存在正实数a 和b ,同时满足下列条件:①10a b +=;②1a bx y+=(x >0,y >0)且x y +的最小值为18,若存在,求出a ,b 的值;若不存在,说明理由. 【答案】存在,a =2,b =8或a =8,b =2 【解析】因为1a bx y+=(x >0,y >0), 所以()22a b bx ayx y x y a b a b ab a b x y y x ⎛⎫+=++=+++≥++= ⎪⎝⎭,又x y +的最小值为18,所以218a b=.由21810a ba b ⎧=⎪⎨⎪+=⎩得28a b =⎧⎨=⎩或82a b =⎧⎨=⎩,故存在实数a =2,b =8或a =8,b =2满足条件.【典型例题2】求下列函数的最大值和最小值:(1)13y x x =-++(2)2,[1,4]y x x x =+∈; (3)4,[2,8]y x x x=-∈;(4)1121,,212y x x x ⎛⎫=-+∈-∞- ⎪+⎝⎭. 【答案】(1)min 4y =-,无最大值;(2)min 22y =, max 92y =;(3)min 0y = ,max 152y =;(4)max 4y =-,无最小值 【解析】对于(1)13y x x =-++,当3x ≥-时成立,令3,(0)t x t =+≥,故23x t =-,221174()24y t t t =-+=+-,故当0t =时,min 4y =-,无最大值.对于(2)2,[1,4]y x x x=+∈;该函数为对勾函数,当0x >时,()f x在上单调递减,在)+∞上单调递增,故当x时,min y =,当4x =时,max 92y =;对于(3)4,[2,8]y x x x =-∈,整理为4()y x x=+-,明显地,这是两个增函数相加,所以,对于4y x x =-,在(0,)+∞上单调递增,所以,当2x =时,min 0y =,当8x =时,max 152y =对于(4)1121,,212y x x x ⎛⎫=-+∈-∞- ⎪+⎝⎭,因为210x +<,所以,令21t x =+,(0)t <,则21x t =-,故可化简为:112()()2y t t t t ⎡⎤=+-=--+--⎢⎥⎣⎦,明显地,0t ->,当1t =-时,即1x =-时,max224y =--=-,该函数在1(,)2-∞-时无最小值.【典型例题3】已知函数22()x x af x x-+=. (1)当4a =时,求函数()f x 在(0,)x ∈+∞上的最小值;(2)若对任意的(0,),()0x f x ∈+∞>恒成立.试求实数a 的取值范围; (3)若0a >时,求函数()f x 在[2,)+∞上的最小值.【答案】(1)min (2)2y f ==;(2)1a >;(3)()min(04),22(4)aa f x a ⎧<⎪=⎨⎪>⎩【解析】(1)当4a =时,2244()=2x x f x x x x-+=+-,当(0,)x ∈+∞时,4()222f x x x =+-≥=, 当且仅当4x x=即2x =时等号成立, 所以()f x 的最小值为2;(2)根据题意可得220x x a -+>在(0,)x ∈+∞上恒成立, 等价于22a x x >-+在(0,)x ∈+∞上恒成立, 因为2()2g x x x =-+在()0,1上单调递增,在()1,+∞上单调递减,所以()max ()11g x g ==, 所以1a >; (3)()=2af x x x+-,设120x x <<< ()()1212121212=()(1)a a a f x f x x x x x x x x x --+-=--1121212122()()0,x x x x a x x a x x x x --=<<<∴<,12()()0f x f x ∴->,即12()()f x f x >,()f x ∴在单调递减,同理可证()f x在)+∞单调递增,当04a <≤时,02<≤,函数()f x 在[2,)+∞上单调递增,()()min 22a f x f ==; 当4a >2>,函数()f x在上单调递减,在)+∞上单调递增,()min 2f x f==.所以()min(04)22(4)aa f x a ⎧<⎪=⎨⎪>⎩.应用基本不等式解决实际问题的步骤: (1)仔细阅读题目,透彻理解提议;(2)分析实际问题中的数量关系,引入未知数,并用它表示其他的变量,把要求最值的变量表示为关于未知数的函数;(3)应用基本不等式求出函数的最值;(4)还原实际问题,作答.对于实际问题一定要注意变量的取值范围.【典型例题1】为迎北京冬奥会,某校要设计如图所示的一张矩形宣传广告牌,该广告牌含有大小相等的左、中、右三个矩形栏目,这三个矩形栏目的面积之和为26000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目长与宽的尺寸(单位:cm ),使整个矩形广告牌面积最小?【答案】当矩形栏目的长为200cm ,宽为时100cm ,可使整个矩形广告牌的面积最小; 【解析】解:设矩形栏目的长为cm a ,宽为cm b , 则20000ab =,∴20000b a=, ∴整个矩形广告牌的长为()20cm a +,宽为()330cm b +(其中0a >,0b >), ∴整个矩形广告牌的面积()()20330S a b =++()30260600a b =++400003060600a a ⎛⎫=++ ⎪⎝⎭4000030260600120006060072600a a≥⨯⨯=+=, 当且仅当40000a a=,即200a =时,取等号,此时100b =. 故当矩形栏目的长为200cm ,宽为时100cm ,可使整个矩形广告牌的面积最小.【典型例题2】如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米? 【答案】(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【解析】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>, (2)10002000020000(20)(8)116081160281960S x x x x x x=++=++≥+⋅= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米.【典型例题3】某小区要建一个八边形的休闲区,如图所示,它的主要造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为2200m 的十字形区域.计划在正方形MNPQ 上建一个花坛,造价为4200元/2m ,在四个相同的矩形(图中阴影部分)上铺设花岗岩地面,造价为210元/2m ,再在四个等腰直角三角形上铺设草坪,造价为80元/2m .求当AD 的长度为多少时,建设这个休闲区的总价最低.【答案】当AD 时,建设休闲区总价最低 【解析】设AD 的长度为xm ,建设休闲区的总价为y 元,则中间正方形区域面积为22x m ,四个矩形面积之和为()22200x m -,22004x DQ x-∴=,四块等腰直角三角形的面积之和为()2222220028x DQ m x -=.∴()()222222004200210200808x y x x x-=+⨯-+⨯22400000400038000x x=++.由0AD >,0DQ >,可得(x ∈.2240000040003800038000118000y x x ∴=++≥=,当且仅当224000004000x x =,即x =时,等号成立.所以,当AD 时,建设休闲区总价最低.。

2.2 基本不等式(原卷版附答案).pdf

2.2 基本不等式(原卷版附答案).pdf

2.2 基本不等式考点1:利用基本不等式比较大小1.重要不等式如果a ,b ∈R,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).2.基本不等式:≤ab a +b 2(1)基本不等式成立的条件:a ,b 均为正实数;(2)等号成立的条件:当且仅当a =b 时取等号.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为,几何平均数为;a +b 2ab (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.【例1】 已知0<a <1,0<b <1,则a +b ,2,a 2+b 2,2ab 中哪一个最大?ab 【方法技巧】(1)在使用基本不等式≤(a ≥0,b ≥0)时,要注意不等式的双向性.ab a +b 2①从左到右:常使用基本不等式的变形公式ab ≤;22⎪⎭⎫ ⎝⎛+b a ②从右到左:常使用a +b ≥2.ab (2)运用基本不等式比较大小应注意等号成立的条件.(3)特殊值法是解决不等式的一个有效方法, 但要使特殊值具有一般性.【针对训练】1. 下列不等式中,正确的个数是( )①若a ,b ∈R,则≥;②若x ∈R,则x 2+2+≥2;a +b2ab 1x2+2③若x ∈R,则x 2+1+≥2;④若a ,b 为正实数,则≥.1x2+1a +b2ab A .0 B .1 C .2 D .32.已知m =a +(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________.1a -2考点2:利用基本不等式证明不等式【例2】 已知a ,b ,c 为不全相等的正实数.求证:a +b +c >++.ab bc ca 【方法技巧】1.所证不等式一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,可尝试用基本不等式证明.2.利用基本不等式证明不等式的注意点(1)多次使用基本不等式时,要注意等号能否成立;(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用;(3)对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【针对训练】3.已知a ,b ,c 为正实数,且a +b +c =1,求证:8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-c b a 考点3:基本不等式的实际应用【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?【变式练习】某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.考点4:利用基本不等式求最值1.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =时,积xy 有最大值为.s 2s24(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =时,和x +y 有最小值为2.p p 2.基本不等式求最值的条件(1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.【例4】 设x ,y ,z 均是正数,x -2y +3z =0,则的最小值为________.y2xz 【方法技巧】1.本题解题的关键是根据已知条件消掉目标函数中的y ,通过对目标函数的变形,转化为考生所熟悉的使用基本不等式求最值的问题.2.使用基本不等式求最值,必须同时满足三个条件:①各项均为正数;②其和或积为定值;③等号必须成立,即“一正、二定、三相等”.在具体问题中,“定值”条件决定着基本不等式应用的可行性,决定着成败的关键.【针对训练】4.已知x >0,y >0,且+=1,试求x +y 的最小值.1x 9y考点过关1.下列不等式中,正确的是( )A .a +≥4B .a 2+b 2≥4ab 4a C.≥ D .x 2+≥2ab a +b 23x232.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A .a 2+b 2≥2|ab |B .a 2+b 2=2|ab |C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |3.已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤ B .ab ≥1212C .a 2+b 2≥2 D .a 2+b 2≤34.若a >0,b >0,a +2b =5,则ab 的最大值为( )A .25 B.252C. D.2542585.已知x >0,函数的最小值是( )9y x x =+A .2B .4C .6D .87.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A.+<1B.+≥11a 1b 1a 1b C.+<2 D.+≥21a 1b 1a 1b 8.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A .+<1B .+≥11a 1b 1a 1b C .+<2D .+≥21a 1b 1a 1b 9.若x >0,y >0,且+=1,则xy 有( )2x 8y A .最大值64B .最小值164C .最小值D .最小值641210.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( )A .16B .25C .9D .36二、填空题11.若a >0,b >0,且+=,则a 3+b 3的最小值为________.1a 1b ab 12.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.13.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.14.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.三、解答题15.设a ,b ,c 都是正数,试证明不等式:++≥6.b +c a c +a b a +b c 16. 设 求证:0,0,1a b a b >>+=1118a b ab ++≥17.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2020年该产品的利润y (单位:万元)表示为年促销费用m 的函数;(2)该厂家2020年的促销费用为多少万元时,厂家的利润最大?2.2 基本不等式考点1:利用基本不等式比较大小1.重要不等式如果a ,b ∈R,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).2.基本不等式:≤ab a +b2(1)基本不等式成立的条件:a ,b 均为正实数;(2)等号成立的条件:当且仅当a =b 时取等号.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为,几何平均数为;a +b2ab (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.【例1】 已知0<a <1,0<b <1,则a +b ,2,a 2+b 2,2ab 中哪一个最大?ab [解] 法一:因为a >0,b >0,所以a +b ≥2,a 2+b 2≥2ab ,ab 所以四个数中最大的数应为a +b 或a 2+b 2.又因为0<a <1,0<b <1,所以a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0,所以a 2+b 2<a +b ,所以a +b 最大.法二:令a =b =,12则a +b =1,2=1,a 2+b 2=,2ab =2××=,ab 12121212再令a =,b =,a +b =+=,12181218582=2=,ab 12×1812所以a +b 最大.【方法技巧】(1)在使用基本不等式≤(a ≥0,b ≥0)时,要注意不等式的双向性.ab a +b2①从左到右:常使用基本不等式的变形公式ab ≤;22⎪⎭⎫ ⎝⎛+b a ②从右到左:常使用a +b ≥2.ab (2)运用基本不等式比较大小应注意等号成立的条件.(3)特殊值法是解决不等式的一个有效方法, 但要使特殊值具有一般性.【针对训练】2. 下列不等式中,正确的个数是( )①若a ,b ∈R,则≥;②若x ∈R,则x 2+2+≥2;a +b2ab 1x2+2③若x ∈R,则x 2+1+≥2;④若a ,b 为正实数,则≥.1x2+1a +b2ab A .0 B .1 C .2 D .3C [显然①不正确;③正确;对于②,虽然x 2+2=无解,但x 2+2+>2成立,故②正确;1x2+21x2+2④不正确,如a =1,b =4.]2.已知m =a +(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________.1a -2m >n [因为a >2,所以a -2>0,又因为m =a +=(a -2)++2,所以m ≥2+2=4,由b ≠0,得b 2≠0,1a -21a -2(a -2)·1a -2所以2-b 2<2,n =22-b 2<4,综上可知m >n .考点2:利用基本不等式证明不等式【例2】 已知a ,b ,c 为不全相等的正实数.求证:a +b +c >++.ab bc ca 思路探究:构造基本不等式的条件→运用基本不等式证明→判断等号成立的条件→得出结论[解] ∵a >0,b >0,c >0,∴a +b ≥2>0,ab b +c ≥2>0,bc c +a ≥2>0,ca∴2(a +b +c )≥2(++),ab bc ca 即a +b +c ≥++.ab bc ca 由于a ,b ,c 为不全相等的正实数,故等号不成立.∴a +b +c >++.ab bc ca 【方法技巧】1.所证不等式一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,可尝试用基本不等式证明.2.利用基本不等式证明不等式的注意点(1)多次使用基本不等式时,要注意等号能否成立;(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用;(3)对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【针对训练】3.已知a ,b ,c 为正实数,且a +b +c =1,求证:8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-c b a [证明] 因为a ,b ,c 为正实数,且a +b +c =1,所以-1==≥.1a 1-a a b +c a 2bca 同理,-1≥,-1≥.1b 2ac b 1c 2abc 上述三个不等式两边均为正,相乘得≥··=8,当且仅当a =b =c =时,取等号.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-111111c b a 2bc a 2ac b 2ab c 13考点3:基本不等式的实际应用【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:(1)已知a +b 为定值,如何求ab 的最大值?(2)已知ab 为定值,如何求a +b 的最小值?[解] 设每间虎笼长x m,宽y m,则由条件知:4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥2=2,2x·3y 6xy ∴2≤18,得xy ≤,6xy 272即S ≤,当且仅当2x =3y 时,等号成立.272由解得{2x +3y =182x =3y ){x =4.5y =3.)故每间虎笼长4.5 m,宽3 m 时,可使面积最大.法二:由2x +3y =18,得x =9-y .32∵x >0,∴9-y >0,∴0<y <6,32S =xy =y =(6-y )·y .⎪⎭⎫ ⎝⎛-y 23932∵0<y <6,∴6-y >0,∴S ≤·=.32()226⎥⎦⎤⎢⎣⎡+-y y 272当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .法一:∵2x +3y ≥2=2=24,2x·3y 6xy ∴l =4x +6y =2(2x +3y )≥48.当且仅当2x =3y 时,等号成立.由,解得{2x =3y xy =24){x =6y =4.)故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.法二:由xy =24,得x =.24y∴l =4x +6y =+6y =6≥6×2=48.96y ⎪⎪⎭⎫ ⎝⎛+y y 1616y·y 当且仅当=y ,即y =4时,等号成立,此时x =6.16y 故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.【变式练习】某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.[解] 设污水池的长为x 米,则宽为米,总造价y =(2x +2·)·200+2×250·+80×400=400+32 000≥400×2+32 000=56 000(元),当且仅当x 400x 400x 400x ⎪⎭⎫ ⎝⎛+x x 900x·900x=,即x =30时取等号.900x 故污水池的长为30米、宽为米时,最低造价为56 000元.403考点4:利用基本不等式求最值1.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =时,积xy 有最大值为.s 2s24(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =时,和x +y 有最小值为2.p p 2.基本不等式求最值的条件(1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.【例4】 设x ,y ,z 均是正数,x -2y +3z =0,则的最小值为________.y2xz [点拨] 由条件表示y ,代入到中,变形为能运用基本不等式求最值的形式,求出最小值,但要注意等号取到的条件.y2xz[解] 由x -2y +3z =0,得y =,x +3z 2∴==≥=3.y2xz x2+9z2+6xz 4xz 14⎪⎭⎫ ⎝⎛++69x z z x ⎪⎪⎭⎫ ⎝⎛+⋅69241x z z x 当且仅当x =y =3z 时,取得最小值3.y2xz【方法技巧】1.本题解题的关键是根据已知条件消掉目标函数中的y ,通过对目标函数的变形,转化为考生所熟悉的使用基本不等式求最值的问题.2.使用基本不等式求最值,必须同时满足三个条件:①各项均为正数;②其和或积为定值;③等号必须成立,即“一正、二定、三相等”.在具体问题中,“定值”条件决定着基本不等式应用的可行性,决定着成败的关键.【针对训练】4.已知x >0,y >0,且+=1,试求x +y 的最小值.1x 9y[解] ∵x >0,y >0,且+=1,1x 9y∴x +y =(x +y )=++10≥2+10=16.(1x +9y )y x 9x y y x ·9x y 当且仅当=,即y =3x 时等号成立.y x 9x y又+=1,∴当x =4,y =12时,(x +y )min =16.1x 9y考点过1.下列不等式中,正确的是( )A .a +≥4B .a 2+b 2≥4ab4a C.≥ D .x 2+≥2ab a +b23x23解析:选D.a <0,则a +≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错,a =4,b =16,则<,故C 错;由基本不等式可知D 项正确.4a ab a +b22.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A .a 2+b 2≥2|ab |B .a 2+b 2=2|ab |C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).3.已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤B .ab ≥1212C .a 2+b 2≥2D .a 2+b 2≤3解析:∵a +b =2,∴a 2+b 2=a 2+(2-a )2=2a 2-4a +4=2(a -1)2+2,又由题意知0≤a ≤2,则2≤a 2+b 2≤4,故选C.4.若a >0,b >0,a +2b =5,则ab 的最大值为( )A .25 B.252C. D.254258解析:选D.a >0,b >0,a +2b =5,则ab =a ·2b ≤×=,当且仅当a =,b =时取等号,故选D.1212(a +2b 2)2 25852545.已知x >0,函数的最小值是( )9y x x =+A .2B .4C .6D .8解析:∵x >0,∴函数,当且仅当x=3时取等号,96y x x =+≥=∴y 的最小值是6.故选:C .7.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A.+<1B.+≥11a 1b 1a 1b C.+<2 D.+≥21a 1b 1a 1b 解析:因为ab ≤2≤2=4,所以+≥2≥2=1.(a +b 2)(42)1a 1b 1ab 148.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A .+<1B .+≥11a 1b 1a 1b C .+<2D .+≥21a 1b 1a 1b 解析: [因为ab ≤≤=4,所以+≥2≥2=1.] 故选B(a +b 2)2(42)2 1a 1b 1ab 149.若x >0,y >0,且+=1,则xy 有( )2x 8y A .最大值64B .最小值164C .最小值D .最小值6412解析:D [由题意xy =xy =2y +8x ≥2=8,∴≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.](2x +8y )2y·8x xy xy 10.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( )A .16B .25C .9D .36解析:B [(1+x )(1+y )≤===25,因此当且仅当1+x =1+y ,即x =y =4时,(1+x )(1+y )取最大值25,故选B .][(1+x )+(1+y )2]2 [2+(x +y)2]2(2+82)2二、填空题11.若a >0,b >0,且+=,则a 3+b 3的最小值为________.1a 1b ab 4 [∵a >0,b >0,∴=+≥2,即ab ≥2,当且仅当a =b =时取等号,∴a 3+b 3≥2≥2=4,当且仅当a =b =时取等号,则a 3+b 3的最小值为4.]2ab 1a 1b 1ab 2(ab )32322212.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. [由x (3-3x )=×3x (3-3x )≤×=,当且仅当3x =3-3x ,即x =时等号成立.]121313(3x +3-3x 2)2 341213.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________. [∵x 2+y 2+xy =1,∴(x +y )2=1+xy .233∵xy ≤,∴(x +y )2-1≤,(x +y )24(x +y )24整理求得-≤x +y ≤,233233∴x +y 的最大值是.]23314.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.1 760 [设池底一边长为x m,总造价为y 元.则y =4×120+2×80=320+480(x >0).(2x +2×4x )(x +4x )因为x +≥2=4,4x x·4x当且仅当x =即x =2时取等号,4x 所以y min =480+320×4=1 760(元).]三、解答题15.设a ,b ,c 都是正数,试证明不等式:++≥6.b +c a c +a b a +b c 证明:因为a >0,b >0,c >0,所以+≥2,+≥2,+≥2,b a a bc a a c b c c b 所以++=++≥6,当且仅当=,=,=,即a =b =c 时,等号成立.b +c a c +a b a +b c (b a +a b )(c a +a c )(b c +c b )b a a b c a a c c b b c 所以++≥6.b +c a c +a b a +b c 16. 设 求证: 0,0,1a b a b >>+=1118a b ab ++≥【解析】证明[法一]:0,0,1a b a b >>+=1111a b a b ab ab ab +∴++=+22112228122ab ab ab a b =+=≥==+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭当且仅当,取“=”号。

高考数学复习考点知识归纳专题解析20基本不等式(解析版)

高考数学复习考点知识归纳专题解析20基本不等式(解析版)

高考数学复习考点知识归纳专题解析专题20基本不等式考点知识归纳常考点01 不等式性质及其应用 (1)【典例1】 ................................................................................................................................................ 1 【考点总结与提高】 ............................................................................................................................... 2 【变式演练1】 ........................................................................................................................................ 2 常考点02不等式解法 . (3)【典例2】 ................................................................................................................................................ 3 【考点总结与提高】 ............................................................................................................................... 4 【变式演练2】 ........................................................................................................................................ 4 常考点03 含参不等式恒成立问题的求解策略 .. (4)【典例3】 ................................................................................................................................................ 5 【考点总结与提高】 ............................................................................................................................... 6 【变式演练3】 ........................................................................................................................................ 7 常考点04基本不等式应用 .. (8)【典例4】 ................................................................................................................................................ 8 【考点总结与提高】 ............................................................................................................................... 9 【变式演练4】 ........................................................................................................................................ 9 常考点05线性目标函数的最值问题 .. (10)【典例5】 .............................................................................................................................................. 10 【考点总结与提高】 ............................................................................................................................. 11 【变式演练5】 ...................................................................................................................................... 11 【冲关突破训练】 .. (12)常考点01 不等式性质及其应用【典例1】1.(2021年天津卷)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为A.a b c <<B.c a b <<C.b c a <<D.a c b <<【答案】D【解析】22log 0.3log 10<=,0a ∴<,122225log 0.4log 0.4log log 212=-=>=,1b ∴>,0.3000.40.41<<=,01c ∴<<,a c b ∴<<.故选:D.2.(2021年新高考2卷)已知,,,则下列判断正确的是() A. B.C.D.【答案】C【解析】,即.故选:C.【考点总结与提高】比较大小的常用方法:(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. (4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.【变式演练1】1.已知2log 0.2a =,0.22b =,0.30.2c =,则()5log 2a =8log 3b =12c =c b a<<b a c <<a cb <<a bc <<55881log 2log log log 32a b =<==<=a c b <<A .a b c <<B .a c b <<C .c a b <<D .b c a << 【答案】B 【解析】依题意, , 因为, 所以, 所以.故选B .2.(设3.0log 3.0log 22.0==b a ,,则( )A .0<<+ab b aB .0<+<b a abC .ab b a <<+0D .b a ab +<<0 【答案】B【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a bab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .常考点02不等式解法【典例2】1.(2021年浙江卷)设集合{}|1A x x =≥,{}|12B x x =-<<则A B =().A .{}|1x x >-B .{}|1x x ≥C .{}|11x x -<<D .{}|12x x <【答案】D【解析】由交集运算,得{|12}AB x x =≤<,故选D .2.设全集U =R ,集合{}2{1},230A xx B x x x =<=--<∣∣,则()U A B =() A .{31}xx -<∣ B .{11}x x -<∣ C .{13}x x -<<∣ D .{13}xx <∣ 【答案】D【解析】因为集合{1}A xx =<∣,所以{1}U A x x =∣C . 因为{()(){}2230}310{13}B xx x x x x x x =--<=-+<=-<<∣∣∣,所以(){13}U A B x x ⋂=<∣. 故选:D .22log 0.2log 10a ==<0.20221b ==>0.3000.20.21=<<0.30.201c =∈(,)a c b <<【考点总结与提高】由一元二次不等式与相应的方程、函数之间的关系可知,求一元二次不等式的解集的步骤如下: (1)变形:将不等式的右边化为零,左边化为二次项系数大于零的不等式,即20(0)ax bx c a ++>>或20(0)ax bx c a ++<>;(2)计算:求出相应的一元二次方程(20(0)ax bx c a ++=>)的根,有三种情况:0,0∆,∆∆=0<>;(3)画图:画出对应二次函数的图象的草图;(4)求解:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.【变式演练2】1.已知集合{}2|log 2A x x =≤,{}2|60B x x x =--≤,则A B =()A .{}|04x x <≤B .{}|24x x -≤≤C .{}|03x x <≤D .{}|03x x x <≤或 【答案】C【解析】∵{}{}2|log 2|04A x x x x =≤=<≤,{}{}2|60|23B x x x x x =--≤=-≤≤,∴{}|03A B x x =<≤, 故选:C .2.记全集U =R ,集合{}260A x x x =--≤,集合401x B xx -⎧⎫=≥⎨⎬-⎩⎭,则()UA B =()A .()1,4B .[]0,2C .()1,3D .[]1,3【答案】D【解析】由260x x --≤得()()3+20x x -≤,即23x -≤≤,所以集合[]2,3A =-, 由401x x -≥-得4x ≥或1x <,所以集合()[),14,B =-∞+∞,所以[)U14B =,,所以()[]U13AB =,,故选:D.常考点03 含参不等式恒成立问题的求解策略【典例3】1.已知函数222,0,()ln(1),0,x x x f x x x ⎧---≤=⎨+>⎩若关于x 的不等式1()2f x ax a ≤+-在R 上恒成立,则实数a 的取值范围是()A.12e -⎡⎢⎣B .122,e ⎤⎥⎦C.12e -⎡⎢⎣D.12e ⎡⎢⎣【答案】A【解析】画出函数()f x 的图像如图所示.1()2f x ax a ≤+-在R 上恒成立即函数()y f x =的图像恒在直线12y ax a =+-的图像的下方, 且直线12y ax a =+-过定点11,2⎛⎫-- ⎪⎝⎭,当直线与ln(1)(0)=+>y x x 相切时,设切点()()00,ln 1P x x +,11y x '=+, 可得()0001ln 11211x x x ++=++,解得120e 1x =-,则直线斜率为12e -,即12e a -=; 当直线与222(0)y x x x =---≤相切时,此时由21222ax a x x +-=---, 得23(2)02x a x a ++++=,令2(2)460a a ∆=+--=,得a =a =,所以由图像可知12e a -≤≤2.已知不等式()22log 251ax x -+>的解集为R ,则a 的取值范围是________【答案】103a <<【解析】所给条件等价于22252250ax x ax x ⎧-+>⎪⎨-+>⎪⎩的解集为R ,即2230ax x -+>的解集为R ,由此可得:4120a a >⎧⎨∆=->⎩解得:103a << 答案:103a <<【考点总结与提高】解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:(1)变换主元,转化为一次函数问题.解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果. (2)联系不等式、函数、方程,转化为方程根的分布问题.(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a < (或()f x a ≤)恒成立⇔a m >(或a m ≥); ②若()f x 在定义域内存在最小值m ,则()f x a > (或()f x a ≥)恒成立⇔a m <(或a m ≤); ③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到.(4)转化为两个函数图象之间的关系,数形结合求参数.在不等式恒成立问题的处理中,若能画出不等式两边相应的函数图象,恒成立的代数问题立即变得直观化,等价的数量关系式随之获得,数形结合可使求解过程简单、快捷.【变式演练3】1已知不等式()22log 362ax x -+>的解集为()(),1,+b -∞∞,则a =___,b =____【答案】1,2a b ==【解析】所解不等式()22222360log 36log 4364ax x ax x ax x ⎧-+>⎪⎨-+>⇒-+>⎪⎩,即22360320ax x ax x ⎧-+>⎪⎨-+>⎪⎩,观察可得只要x 让第二个不等式成立,则第一个一定成立。

高考数学重难点培优讲义之基本不等式求最值典型题型(含答案解析)

高考数学重难点培优讲义之基本不等式求最值典型题型(含答案解析)

基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (3)【题型4 消元法求最值】 (4)【题型5 构造不等式法求最值】 (5)【题型6 多次使用基本不等式求最值】 (6)【题型7 实际应用中的最值问题】 (6)【题型8 与其他知识交汇的最值问题】 (9)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.【知识点1 利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1+1的最小值为()aA.2B.3C.4D.5【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4的最小值为()xA.-2B.0C.1D.2√2【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9(x>0)的最小值为()xA.1B.3C.5D.9【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1)(1+4x2)的最小值为()x2A.9√3B.7+4√2C.8√3D.7+4√3【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【变式3-1】(2023·河南·校联考模拟预测)已知正实数a,b,点M(1,4)在直线xa +yb=1上,则a+b的最小值为()A.4B.6C.9D.12【变式3-2】(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y−xy=0,则2x+y的最大值为()A.25B.16C.37D.19【变式3-3】(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2 −ab+1=0,c2 +d2 =1,则当(a−c)2 +(b−d)2取得最小值时,ab=.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a−1+2b−2的最小值为2C.a+b有最小值3+√2D.a2−2a+b2−4b有最大值4【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.(2≤x≤6)(1)当宽为多少时,甲工程队报价最低,并求出最低报价.元(a>0)(整体报价中含固定费用).若无论(2)现有乙工程队也要参与竞标,其给出的整体报价为900a(x+2)x宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的.因此室的后长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;元,问是否存在实数t,使得(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【变式7-3】(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=x cm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【题型8 与其他知识交汇的最值问题】【例8】(2023上·安徽·高三校联考阶段练习)记△ABC的内角A,B,C的对边分别为a,b,c,满足c+bcos2A= 2acosAcosB(A≤B).(1)求A;(2)若角A的平分线交BC于D点,且AD=1,求△ABC面积的最小值.【变式8-1】(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l′都经过点(0,2),且l⊥l′,直线l交圆C于M,N两点,直线l′交圆C于P,Q两点,求四边形PMQN 面积的最大值.【变式8-2】(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f(x)满足f(f(x)+1−2x+1恒成立.ln x)=23(1)设f(x)+1−ln x=k,求实数k的值;2x+1(2)解不等式f(7+2x)>−2x+ln(−ex);2x+1(3)设g(x)=f(x)−ln x,若g(x)≥mg(2x)对于任意的x∈[1,2]恒成立,求实数m的取值范围.【变式8-3】(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD−A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A−PD1−C的平面角.(1)证明:点P在A1C1上;(2)若AB=BC,求直线PA与平面PCD所成角的正弦的最大值.1.(2022·全国·统考高考真题)若x,y满足x2+y2−xy=1,则()A.x+y≤1B.x+y≥−2C.x2+y2≤2D.x2+y2≥12.(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤√23.(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.324.(2021·天津·统考高考真题)若a>0,b>0,则1a +ab2+b的最小值为.5.(2020·天津·统考高考真题)已知a>0,b>0,且ab=1,则12a +12b+8a+b的最小值为.6.(2020·江苏·统考高考真题)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.7.(2019·天津·高考真题)设x>0,y>0,x+2y=5,则√xy的最小值为. 8.(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (4)【题型4 消元法求最值】 (6)【题型5 构造不等式法求最值】 (8)【题型6 多次使用基本不等式求最值】 (11)【题型7 实际应用中的最值问题】 (13)【题型8 与其他知识交汇的最值问题】 (17)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a +1≥2√a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4x的最小值为()A.-2B.0C.1D.2√2【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x −4≥2√x×4x−4=0,当且仅当x=4x即x=2时等号成立.故选:B.【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2−x+9x =x+9x−1≥2√x⋅9x−1=5,当且仅当x=9x,即x=3时等号成立,故选:C.【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1x2)(1+4x2)的最小值为()A.9√3B.7+4√2C.8√3D.7+4√3【解题思路】依题意可得(3+1x2)(1+4x2)=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】(3+1x2)(1+4x2)=7+1x2+12x2≥7+2√1x2⋅12x2=7+4√3,当且仅当1x2=12x2,即x4=112时,等号成立,故(3+1x2)(1+4x2)的最小值为7+4√3.故选:D.【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a−1=a−1+16a−1+1≥2√(a−1)⋅16a−1+1=9,当且仅当a−1=16a−1时取等号,即a=5时取等号,故选:B.【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x−3>0,则y=2x−3+2(x−3)+6≥2√2x−3⋅2(x−3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x−2>0,所以y=4x−1+4x−2=4(x−2)+4x−2+7≥2√4(x−2)⋅4x−2+7=15,当且仅当4(x−2)=4x−2,即x=3时等号成立,所以函数y=4x−1+4x−2的最小值为15,故选:D.【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x>0,y>0且满足x+y=xy,则有1x +1y=1,所以x>1,y>1,2x x−1+4yy−1=2(x−1)+2x−1+4(y−1)+4y−1=6+2x−1+4y−1≥6+2√2x−1⋅4y−1=6+2√8xy−(x+y)+1=6+4√2,当且仅当2x−1=4y−1,即x=1+√22,y=1+√2时等号成立.所以2xx−1+4yy−1的最小值为6+4√2.故选:D.【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a>0,b>0,2a +3b=1,所以2a+b3=(2a+b3)(2a+3b)=4+1+2b3a+6ab≥5+2√2b3a×6ab=9,当且仅当2b3a =6ab时,即a=3,b=9,取等号,故B项正确.故选:B.【变式3-1】(2023·河南·校联考模拟预测)已知正实数a ,b ,点M (1,4)在直线x a+yb=1上,则a +b 的最小值为( )A .4B .6C .9D .12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解. 【解答过程】由题意得1a +4b =1,且a >0,b >0, 故a +b =(a +b )⋅(1a +4b )=5+ba +4a b≥5+2√b a ×4a b=9,当且仅当ba =4a b,即a =3,b =6时,等号成立.故选:C.【变式3-2】(2023上·重庆·高一统考期末)若正实数x ,y 满足2x +8y −xy =0,则2x+y 的最大值为( )A .25B .16C .37D .19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值. 【解答过程】∵x >0,y >0,2x +8y −xy =0,∴2y +8x =1, x +y=(x +y )(2y +8x )=2x y+8+2+8y x≥2√2x y×8y x+10=18,∴2x+y ≤218=19. 故选:D.【变式3-3】(2023·重庆·统考一模)已知a ,b 为非负实数,且2a +b =1,则2a 2a+1+b 2+1b的最小值为( )A .1B .2C .3D .4【解题思路】首先根据题意求出0≤a <12,0<b ≤1,然后将原式变形得2a 2a+1+b 2+1b=2a+1+1b−1,最后利用1的妙用即可求出其最值.【解答过程】∵2a +b =1,且a ,b 为非负实数,b ≠0, 则a ≥0,b >0则b =1−2a >0,解得0≤a <12,2a =1−b ≥0,解得0<b ≤1,∴2a2a+1+b2+1b=2(a+1)2−4(a+1)+2a+1+b2+1b=2(a+1)−4+2a+1+b+1b=(2a+b−2)+2a+1+1b=2a+1+1b−12 a+1+1b=42a+2+1b=13[(2a+2)+b]⋅(42a+2+1b)=13(5+4b2a+2+2a+2b)≥13(5+2√4b2a+2⋅2a+2b)=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故(2a+1+1b−1)min=2,故选:B.【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为12 .【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x−4=9y,可得x−4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y =2y+8y+4≥2√2y⋅8y+4=12,当且仅当y=2,x=8所以x+8y的最小值为12.故答案为:12.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为6√2−5.【解题思路】根据题意,化简得到x+2y=x2−3x+14x+1,设t=x+1,求得x2−3x+14x+1=t+18t−5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7−2xx+1,则x+2y=x+2×7−2xx+1=x2−3x+14x+1,设t=x+1,可得x=t−1且t>1,可得x2−3x+14x+1=t2−5t+18t=t+18t−5≥2√t⋅18t−5=6√2−5,当且仅当t=18t时,即t=3√2时,等号成立,所以x+2y的最小值为6√2−5.故答案为:6√2−5.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13 .【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b−2>0,由于b>0,所以b>2,故a+2b=b+6b−2+2b=8b−2+2(b−2)+5,由于b>2,所以8b−2+2(b−2)≥2√16=8,当且仅当b=4时等号成立,故a+2b=8b−2+2(b−2)+5≥13,故a+2b的最小值为13,故答案为:13.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2−ab+1=0,c2+d2=1,则当(a−c)2+(b−d)2取得最小值时,ab=√22+1.【解题思路】将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,进而转化为(a,b)与圆心(0,0)的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,由a2−ab+1=0,得b=a+1a,而c2+d2=1表示以(0,0)为圆心,1为半径的圆,(c,d)为圆上一点,则(a,b)与圆心(0,0)的距离为:√a2+b2=√a2+(a+1a )2=√2a2+1a2+2≥√2√2a2⋅1a2+2=√2√2+2,当且仅当2a2=1a2,即a=±√124时等号成立,此时(a,b)与圆心(0,0)的距离最小,即(a,b)与(c,d)两点间距离的平方最小,即(a −c)2+(b −d)2取得最小值. 当a =√124时,ab =a 2+1=√22+1,故答案为:√22+1.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a +b =ab(a >0,b >0),下列说法正确的是( )A .ab 的最大值为8B .1a−1+2b−2的最小值为2 C .a +b 有最小值3+√2 D .a 2−2a +b 2−4b 有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab ≥8,所以A 错误;将原式化成(a −1)(b −2)=2,即可得1a−1+2b−2=1a−1+(a −1)≥2,即B 正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a +b ≥3+2√2,C 错误;将式子配方可得a 2−2a +b 2−4b =(a −1)2+(b −2)2−5,再利用基本不等式可得其有最小值−1,无最大值,D 错误. 【解答过程】对于A 选项,ab =2a +b ≥2√2ab ,即√ab ≥2√2,故ab ≥8, 当且仅当a =2,b =4时等号成立,故ab 的最小值为8,A 错误; 对于B 选项,原式化为(a −1)(b −2)=2,b =2a a−1>0,故a −1>0;a =b b−2>0,故b −2>0;所以1a−1+2b−2=1a−1+(a −1)≥2,当且仅当a =2,b =4时等号成立,B 正确;对于C 选项,原式化为2b +1a =1,故a +b =(a +b )(2b +1a )=2a b+1+2+ba ≥3+2√2,当且仅当a =√2+1,b =2+√2时等号成立,C 错误;对于D 选项,a 2−2a +b 2−4b =(a −1)2+(b −2)2−5≥2(a −1)(b −2)−5=−1, 当且仅当a =1+√2,b =2+√2时等号成立,故有最小值−1,D 错误. 故选:B.【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【解题思路】利用基本不等式得x+y+xy−3≥(√xy+3)(√xy−1)、x+y+xy−3≤(x+y)24+(x+y)−3分别求xy、x+y的最值,注意取等条件;由题设有x=3−yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy−3≥xy+2√xy−3=(√xy+3)(√xy−1),当且仅当x=y=1时等号成立,即(√xy+3)(√xy−1)≤0,又x>0,y>0,故0<√xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy−3≤(x+y)24+(x+y)−3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)−3≥0,即(x+y+6)(x+y−2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy−3=0,x>0,y>0,可得x=3−yy+1,且0<y<3,所以x+4y=3−yy+1+4y=4y2+3y+3y+1=4(y+1)2−5(y+1)+4y+1=4(y+1)+4y+1−5≥2√4(y+1)⋅4y+1−5=3,当且仅当y+1=1,即y=0、x时等号成立,故x+4y>3,C错误;同上,x+2y=3−yy+1+2y=2y2+y+3y+1=2(y+1)2−3(y+1)+4y+1=2(y+1)+4y+1−3≥2√2(y+1)⋅4y+1−3=4√2−3,当且仅当y+1=√2,即y=√2−1、x=2√2−1时等号成立,故x+2y≥4√2−3,D错误;故选:B.【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【解题思路】选项A:将函数变形再利用基本不等式进行判断最值即可,选项B:由基本不等式进行判断即可,选项C:结合换元法与基本不等式求最值进行判断即可,选项D:对式子进行变形得到1+yx−1+2(x−1)y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A:y=x+1x−1=x−1+1x−1+1⩾2√x−1·1x−1+1=3,当且仅当(x−1)2=1时可以取等号,但题设条件中x>2,故函数最小值取不到3,故A错误;选项B:若x>0,y>0,3x +1y=5,则5x+4y=15(3x+1y)(5x+4y)=15(19+5xy+12yx)⩾15(19+2√5xy·12yx)=19+4√155,当且仅当5xy=12yx时不等式可取等号,故B错误;选项C:3−xy=x+y⩾2√xy⇒xy+2√xy−3⩽0当且仅当x=y时取等号,令√xy=t(t⩾0),t2+2t−3⩽0,解得−3⩽t⩽1,即0<√xy⩽1,故xy的最大值为1,故C错误;选项D:x+y=2,(x−1)+y=1,1 x−1+2y=(1x−1+2y)·[(x−1)+y]=1+yx−1+2(x−1)y+2⩾3+2√yx−1·2(x−1)y=3+2√2,当且仅当y=√2x−√2时取等号,又因为x+y=2,故{x=√2y=2−√2时等号成立,即1x−1+2y最小值可取到3+2√2,故D正确.故选:D.【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A,yx +3y=yx+x+2yy=yx+xy+2≥2√yxxy+2=4,当且仅当x=y=1时取等号,故A正确;对于B,xy=12⋅x⋅2y≤12×(x+2y2)2=12×94=98,当且仅当x=2y,即x=32,y=34时取等号,故B正确;对于C,(√x+√2y)2=x+2y+2√2xy≤3+2√2×98=3+3=6,则√x+√2y≤√6,当且仅当x=2y,即x=32,y=34时,故C错误;对于D,x2+4y2=(x+2y)2−4xy≥9−4×98=92,当且仅当x=32,y=34时取等号,故D正确.故选:C.【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【解题思路】先根据基本不等式求出(92a +2b)(a+b)≥252.然后即可根据不等式的性质得出(a+b)2≥(9 2a +2b)(a+b)≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a>0,b>0,a+b>0.因为(92a +2b)(a+b)=92+2+9b2a+2ab≥2√9b2a×2ab+132=6+132=252,当且仅当9b2a =2ab,即2a=3b时等号成立.所以,(a+b)2≥(92a +2b)(a+b)≥252,当且仅当{2a=3ba+b=92a+2b,即{a=3√22b=√2时,两个等号同时成立.所以,a+b≥3√22+√2=5√22.故选:D.【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1|x|+2|x|y=x+yx+2xy=yx+2xy+1≥2√yx⋅2xy+1=2√2+1,当且仅当yx =2xy,即x=√2−1,y=2−√2时等号成立,此时有最小值2√2+1;当x<0时,1|x|+2|x|y=x+y−x+−2xy=y−x+−2xy−1≥2√y−x⋅−2xy−1=2√2−1.当且仅当y−x =−2xy,即x=−1−√2,y=2+√2时等号成立,此时有最小值2√2−1.所以,1|x|+2|x|y的最小值为2√2−1.故选:A.【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy+zx =2≥2√xy×zx=2√yz⇒yz≤1,当且仅当z=yx2时,yz=1,所以4y +1z≥2√4y×1z=2√4yz≥2√41=4,当且仅当4y=1z且yz=1时,等号成立;所以当yz=1且4y =1z时,4y+1z取得最小值4,此时解得{y=2z=12⇒y+z=52,故选:D.【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【解题思路】由已知可得a2+3aba+2b +1b+1=3−2b−1b+1,进而有a2+3aba+2b+2b+1−1b=3−2b−1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a2+3aba+2b +1b+1=a(a+3b)+1b+1=a(2b+1)+1b+1,而a=1−b>0,b>0,所以a(2b+1)+1b+1=2+b−2b2b+1=1+1−2b2b+1=1+2(1−b2)−1b+1=3−2b−1b+1,所以a2+3aba+2b +2b+1−1b=3−2b−1b且0<b<1,又2b+1b ≥2√2b⋅1b=2√2,当且仅当b=√22时取等号,所以a2+3aba+2b +2b+1−1b≤3−2√2,当且仅当a=1−√22,b=√22时取等号,即目标式最大值为3−2√2.故选:D.【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400−x24x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400−x24,因此AM=400−x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×(400−x2)+160×4×12×(400−x24x)2=8000x2+3200000x2+152000,0<x<20,由基本不等式y ≥2√8000x 2×3200000x 2+152000=472000,当且仅当8000x 2=3200000x 2,即x =2√5时,等号成立,故当x =2√5时,总造价y 最小,最小值为472000元.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x 米.(2≤x ≤6) (1)当宽为多少时,甲工程队报价最低,并求出最低报价. (2)现有乙工程队也要参与竞标,其给出的整体报价为900a (x+2)x元(a >0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a 的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果; (2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果. 【解答过程】(1)设甲工程队的总造价为y 元,则 y =150×2(x +16x)×3+400×16+800 =900(x +16x )+7200≥900×2√x ⋅16x+7200 =14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元. (2)由题意可得900(x +16x)+7200>900a (x+2)x.对∀x ∈[2,6]恒成立.即a <x 2+8x+16x+12令y =x 2+8x+16x+2=(x +2)+4x+2+4∵2≤x ≤6,∴4≤x +2≤8. 令t =x +2,t ∈[4,8],则y=t+4t+4在[4,8]上单调递增.且t=4时,y min=9.∴0<a<9.即a的取值范围为(0,9).【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x元,问是否存在实数t,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,进而转化t<10x2−13x+18420(x+1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为360(4×24x−2×6),故y=360(4×24x −2×6)+4×24x×100+2×300×4x+1200=240(184x+10x)−3120,1≤x≤5.(2)由题意知, 240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2−13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k−1,k∈[2,6],。

高考数学专题《基本不等式及其应用》习题含答案解析

高考数学专题《基本不等式及其应用》习题含答案解析

专题2.2 基本不等式及其应用1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=的( ) AB C D .最小值是3【答案】B 【解析】 由题意得32a cb +=,再代入所求式子利用基本不等式,即可得到答案; 【详解】因为320a b c -+=,所以32a cb +=, =≤3a c =. 故选:B.2.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】取100,2a b ==可得由2ab a b ≤+推不出16ab ≤,反过来,由基本不等式可得由16ab ≤能推出2aba b≤+,然后可选出答案. 【详解】取100,2a b ==,则2002102ab a b =<+,但20016ab =>,所以由2ab a b≤+推不出16ab ≤, 练基础反过来,若16ab ≤,则2ab a b ≤=≤+,当且仅当4a b ==时取等号, 所以由16ab ≤能推出2ab a b ≤+,所以“2ab a b≤+”是“16ab ≤”的必要不充分条件, 故选:C3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+ ,则ABC 的三个内角大小为( ) A .60A B C === B .90,45A B C === C .120,30A B C === D .90,30,60A B C ===【答案】B 【解析】由ABC 的面积是()2214S b c =+,利用面积公式及基本不等式判断出90A =︒,由b=c 得45B C ==. 【详解】因为222b c bc +≥,所以()221142S b c bc =+≥(当且仅当b=c 时取等号). 而ABC 的面积是1sin 2S bc A =, 所以11sin 22S bc A bc =≥,即sin 1A ≥,所以sin =1A , 因为A 为三角形内角,所以90A =︒. 又因为b=c ,所以90,45A B C ===. 故选:B4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是( )A .2-B .C .D .1-【答案】D 【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值性质进行求解即可. 【详解】由22224414x x y y +=⇒+=,令2cos sin x y θθ=⎧⎨=⎩, 因此2cos sin sin 2xy θθθ==,因为1sin 21θ-≤≤,所以11xy -≤≤, 因此xy 的最小值是1-, 故选:D5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为( ) A .5 B .6C .7D .8【答案】D 【解析】根据题意求出年平均利润函数。

专题2.2 基本不等式【九大题型】(解析版)

专题2.2 基本不等式【九大题型】(解析版)
vQ
2+2
2
g 1 +
&
>
+
2
2+2
%
2
2
Qe
2+2
2
2
> 1+
>
+
%
2
+
Q
2
2
Q
!"#u(1 + %)(1 + %) < 1 +
vQ 1 +
2+2
%
2

C.
3
+,
2
> 1+
+
%
2
2
+
%
2
2
Q
> (1 + %)(1 + %).
>?@ 1 AB!"#
1. AB!"#
!"#
CD
" 7834
EF!"#
a2+b2≥2ab(a,bGR)
HIJH“a=b”
KL“=”

!"#
a+b
HIJH“a=b”
2
KL“=”
abM
(a>0,b>0)
a+b
2

NOP aQb $RSTU Q abNOP aQb $VWTU X
!"#Y.
ABP $RSTU !*Z[\$VWTU X
2+5
1
Z BQ 2 +2 > 0Qv2 +2 + 2+2 ≥ 2 (2 + 2) ⋅
" !78Q B !

2.2.1基本不等式【解析版】

2.2.1基本不等式【解析版】

2.2.1基本不等式【解析版】2.2.1基本不等式1.下列不等式中,正确的是( ) A .a +4a ≥4 B .a 2+b 2≥4ab C.ab ≥a +b2D .x 2+3x 2≥23解析:选D.a <0,则a +4a ≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错,a =4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 项正确. 2.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 3.已知a ≥0,b ≥0,且a +b =2,则( ) A .ab ≤12 B .ab ≥12 C .a 2+b 2≥2D .a 2+b 2≤3解析:∵a +b =2,∴a 2+b 2=a 2+(2-a )2=2a 2-4a +4=2(a -1)2+2,又由题意知0≤a ≤2,则2≤a 2+b 2≤4,故选C.4.若a >0,b >0,a +2b =5,则ab 的最大值为( ) A .25 B.252 C.254D.258解析:选D.a >0,b >0,a +2b =5,则ab =12a ·2b ≤12×?a +2b 22=258,当且仅当a =52,b =54时取等号,故选D.5.已知x >0,函数9y x x=+的最小值是() A .2B .4C .6D .8解析:∵x >0,∴函数96y x x =+≥=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .6.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92 C .3D.322解析:选B.因为-6≤a ≤3,所以3-a ≥0,a +6≥0,所以(3-a )(a +6)≤(3-a )+(a +6)2=92.即(3-a )(a +6)(-6≤a ≤3)的最大值为92.7.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥2解析:因为ab ≤?a +b 22≤? ????422=4,所以1a +1b ≥21ab ≥214=1.8.设x >0,则y =3-3x -1x 的最大值是( )A .3B .3-22C .3-2 3D .-1解析:选C.y =3-3x -1x =3-? ?3x +1x ≤3-23x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号.9.已知a ,b ∈R ,且ab ≠0,则在①a 2+b 22≥ab ;②b a +ab ≥2;③ab ≤?a +b 22;④? ??a +b 22≤a 2+b 22这四个不等式中,恒成立的个数为( ) A .1 B .2 C .3D .4解析:①由a ,b ∈R ,得a 2+b 22≥ab ;②由a ,b ∈R ,得b a 与ab 不一定是正数,不等式不一定成立;③ab -?a +b 22=-a -b 24≤0;④?a +b 22-a 2+b22=-a -b24≤0,故①③④恒成立,故选C.10.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a+b2≥ab(a>0,b>0) B.a2+b2≥2ab(a>0,b>0)C.2aba+b≤ab(a>0,b>0) D.a+b2≤a2+b22(a>0,b>0)解析:由图形可知OF=12A A B=a+b2,OC=a-b2.在Rt△OCF中,由勾股定理可得CF=a+b 22+a-b22=a2+b22.∵CF≥OF,∴a+b2≤a2+b22(a>0,b>0).11.已知x>0,y>0,2x+3y=6,则xy的最大值为________.解析:因为x>0,y>0,2x+3y=6,所以xy=16(2x·3y)≤16·?2x+3y22=16·?622=32.当且仅当2x=3y,即x=3,y=1时,xy取到最大值32.12.不等式a2+4≥4a中,等号成立的条件为A A A A A A A A A A.解析:令a2+4=4a,则a2-4a+4=0,∴a=2.13.若正数a,b满足ab=a+b+3,则ab的取值范围是A A A A A A A A.解析:∵a>0,b>0,∴ab=a+b+3≥2ab+3,即ab-2ab-3≥0,解得ab≥3,即ab≥9.14.给出下面三个推导过程:①∵a,b为正实数,∴ba+ab≥2ba·ab=2;②∵a∈R,a≠0,∴4a+a≥4a·a=4;③∵x ,y ∈R ,xy <0,∴x y +y x =--x y +? ????-y x ≤-2-x y ? ??-y x =-2. 其中正确的推导过程为 .解析:①∵a ,b 为正实数,∴b a ,ab 为正实数,符合基本不等式的条件,故①的推导过程正确;②a ∈R ,a ≠0,不符合基本不等式的条件,∴②的推导过程错误;③由xy <0,得x y ,yx 均为负数,∴? ????-x y ,? ????-y x 均为正数,符合基本不等式的条件,故③的推导过程正确.故选①③.15.给出下列不等式:①x +1x ≥2;②x +1x ≥2;③x 2+y 2xy ≥2;④x 2+y 22>xy ;⑤|x +y |2≥|xy |.其中正确的是________(写出序号即可).解析:当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2,①不正确;因为x 与1x 同号,所以x +1x =|x |+1|x |≥2,②正确;当x ,y 异号时,③不正确;当x =y 时,x 2+y 22=xy ,④不正确;当x =1,y =-1时,⑤不正确.答案:②16.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc ≥6.证明:因为a >0,b >0,c >0,所以b a +a b ≥2,c a +a c ≥2,b c +cb ≥2,所以b +c a +c +a b +a +b c =? ????b a +a b +? ????c a +a c +? ????b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc ,即a=b =c 时,等号成立.所以b +c a +c +a b +a +b c ≥6. 17.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ; (2)(a +b +c )? ????1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2 =(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]? ????1a +1b +c ≥2a b +c ·21ab +c=4=右边,当且仅当a =b +c 时,等号成立.18. 设0,0,1a b a b >>+= 求证:1118a b ab++≥【解析】证明[法一]:0,0,1a b a b >>+=1111a b a b ab ab ab+∴++=+22112228122ab ab ab a b =+=≥==+???? ? ?????当且仅当1==2a b ,取“=”号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旗开得胜
1
专题2.2 基本不等式
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020·浙江高二学业考试)已知实数x ,y 满足2
2
1x y +=,则xy 的最大值是( )
A .1
B 3
C .
22
D .
12
【答案】D
【解析】因为22
2x y xy +≥,所以22
2=1y x x y +≤,得12
xy ≤
. 故选:D.
2.(2020·江门市第二中学高一期中)若实数,a b 满足22a b +=,则93a b +的最小值是( ) A .18 B .9 C .6 D .3【答案】C
【解析】因为90,30a
b
>>,22a b +=,
所以2293293233236a b a b a b a b ++≥⋅=⋅==,
旗开得胜
1
当且仅当233a b =,即1
,12
a b =
=时取等号, 所以93a b +的最小值为6, 故选:C
3.(2020·上海高三其他)下列不等式恒成立的是( ) A .222a b ab +≤ B .222a b ab +≥- C .2a b ab +≥-D .2a b ab +≤【答案】B
【解析】A.由基本不等式可知222a b ab +≥,故A 不正确;
B.2222220a b ab a b ab +≥-⇒++≥,即()2
0a b +≥恒成立,故B 正确; C.当1,0a b =-=时,不等式不成立,故C 不正确; D.当3,1a b ==时,不等式不成立,故D 不正确. 故选:B
4.(2020·全国高一)当1x >时,函数241
x x y x -+=-的最小值为( )
A .4
B .5
C .6
D .7
【答案】B
【解析】依题意24
1
x x y x -+=
-4111x x =-++-,由于1,10x x >->,所以
1
()4
4
111151
1
x x x x -+
+≥-⋅
=--,当且仅当41,31x x x -=
=-时,等号成立. 故选B.
5.(2020·浙江高一单元测试)已知不等式()19a x y x y ⎛⎫
++
⎪⎝⎭
≥对任意实数x 、y 恒成立,则实数a 的最小值为( )
A .8
B .6
C .4
D .2
【答案】C
【解析】(
)11a ax y x y a x y y x
⎛⎫++=+++ ⎪⎝⎭. 若0xy <,则
0y
x
<,从而1ax y a y x +++无最小值,不合乎题意;
若0xy >,则
0y
x
>,0x y >.
①当0a <时,
1ax y
a y x
+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭
≥不恒成立; ③当0a >时,())
2
1121211a ax y ax y x y a a a a a x y y x
y x ⎛⎫++=+++≥⋅+=+=
⎪⎝⎭,
当且仅当=
y ax 时,等号成立.
所以,
)
2
19a ≥,解得4a ≥,因此,实数a 的最小值为4.
1
故选:C.
6.(2020·浙江鄞州宁波华茂外国语学校高三一模)已知实数0a >,0b >,
11
111
a b +=++,则2+a b 的最小值是( )
A .32
B .22
C .3
D .2
【答案】B
【解析】∵0a >,0b >,
11111
a b +=++ ∴112(1)12(1)2(1)3[(1)2(1)](
)3[12]31111
b a a b a b a b a b a b +++=+++-=+++⋅+-=+++-++++3+223=22≥2(1)111b a a b ++=++,即2a =2
b =.故选B 7.(多选)小王从甲地到乙地往返的速度分別为a 和()b a b <,其全程的平均速度为v ,则( ) A .a v ab <<
B .v ab =
C 2
a b
ab v +<<
D .2ab
v a b
=
+ 【答案】AD
【解析】设甲、乙两地之间的距离为s ,则全程所需的时间为s s a b
+,
22s ab
v s s a b a b
∴==
++. 0b a >>2
a b
ab +<

22ab v ab a b ab ∴=<=+ 另一方面2
2222
a b ab a b v a b a b +⎛⎫
⋅ ⎪+⎝⎭=<=++,22220ab ab a a a v a a a b a b a b
---=-=>=+++,。

相关文档
最新文档