发电厂电气设计
发电厂电气一次部分设计-2300MW
发电厂电气一次局部设计-2×300MW引言本设计是对 2 某300MW 总装机容量为 6000MW 的凝汽式区域性火电厂进展电气一次局部及其厂用电高压局部的设计,它主要包括了四大局部,分别为电气主接线的选择、短路电流的计算、电气设备的选择、配电装置的选择。
其中具体描述了主接线的选择、短路电流的计算和电气设备的选择,从不同的短路状况进展分析和计算,对不同的短路参数来进展不同种类设备的选择,并对设计进展了理论分析。
设计电厂为大型凝气式火电厂,其容量为 2 某300=600MW,最大单机容量为 300MW,即具有大中型容量的规模、大中型机组的特点。
当电厂全部机组投入运行后,将占电力系统总容量600/6000≈10%,没有超过电力系统的检修备用容量为 8%~15%和事故备用容量为 10%的限额,说明该电厂在将来电力系统中不占主导作用和主导地位,主要供给地区用电。
发电厂运行方式及年利用小时数直接影响着主接线设计。
从年利用小时数看,该电厂年利用小时数为 6500h/a,远大于我国电力系统发电机组的平均最大负荷利用小时数 5000h/年;又为火电厂,所以该发电厂为带基荷的发电厂,在电力系统占比较重要的地位,因此,该厂主接线要求有较高的牢靠性;从负荷特点及电压等级可知,该电厂具有110KV 和220KV 两级电压负荷。
110KV 电压等级有 8 回架空线路,担当一级负荷,最大输送功率为 110MW,最大年利用小时数为 4000h/a,说明对其牢靠性有肯定要求;220KV 电压等级有 10 回架空线路,担当一级负荷,最大输送功率为500MW,最大年利用小时数为 4500h/a,其牢靠性要求较高,为保证检修出线断路器不致对该回路断电,拟承受带旁路母线接线形式。
2、电气主接线3、2.1、主接线方案的选择2.1.1方案拟定的依据第1 页共13 页对电气主接线的根本要求,概括的说应当包括牢靠性、敏捷性和经济性三方面。
火力发电厂电气部分设计论文
火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。
论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。
一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。
在火力发电厂的总体设计中,电气部分的设计至关重要。
本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。
二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。
在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。
2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。
直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。
对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。
3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。
在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。
4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。
发电厂电气课程设计
发电厂电气 课程设计一、课程目标知识目标:1. 学生能够理解发电厂电气系统的基础知识,掌握发电机、变压器、配电装置等主要设备的结构和工作原理。
2. 学生能够掌握发电厂电气设备的运行维护原则,了解电力系统的高压电气设备安全操作规程。
3. 学生能够解释发电厂电气系统的基本电路原理,并运用相关知识分析简单电路。
技能目标:1. 学生能够运用所学知识,进行发电厂电气设备的常规检查和简单故障排除。
2. 学生通过实验和实践操作,掌握发电厂电气设备的基本操作技能,能够安全地完成模拟操作任务。
3. 学生能够运用电气绘图软件,绘制基本的电气原理图和安装图。
情感态度价值观目标:1. 培养学生对电力工程领域的兴趣,激发他们探索电力科学奥秘的热情。
2. 增强学生的安全意识,培养他们在操作电气设备时的责任感,形成良好的职业操守。
3. 通过团队合作完成任务,培养学生的协作精神和集体荣誉感,提高他们解决问题的能力。
课程性质:本课程属于专业技术课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生应为具备一定物理基础知识和电工基础的年级学生,具有一定的逻辑思维能力和动手能力。
教学要求:课程应结合实际案例,以实物和模型展示电气设备结构,注重培养学生的实际操作技能和问题解决能力。
同时,注重理论与实践相结合,确保学生能够达到课程目标所设定的具体学习成果。
二、教学内容1. 发电厂电气系统概述:包括发电厂电气系统的组成、发展历程以及在我国的应用现状。
教材章节:第一章 发电厂电气系统概述2. 发电机与变压器:讲解发电机的结构、工作原理及类型;变压器的工作原理、分类和主要参数。
教材章节:第二章 发电机与变压器3. 配电装置与保护:介绍配电装置的组成、类型及功能;电力系统保护的基础知识。
教材章节:第三章 配电装置与保护4. 高压电气设备:阐述高压断路器、隔离开关、负荷开关等设备的工作原理、结构及应用。
教材章节:第四章 高压电气设备5. 发电厂电气设备运行维护:讲解发电厂电气设备的运行维护原则、方法以及故障处理。
2X50MW发电厂电气部分设计
摘要电能是经济发展最重要的一种能源,可以方便、高效地转换成其它能源形式。
电力系统由发电厂、变电所、线路及用户组成。
发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。
发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路传送,再经变电所若干次降压后,才能供给用户使用。
直接生产、转换和输配电能的如:开关设备,载流导体成为一次设备。
本次设计为发电厂一次设备部分的设计。
设计中将主要从理论上在电气主接线设计,所用电设计,短路电流计算,电气设备的选择,配电装置设计规划及选择,变电所总平面布置,防雷接地保护设计等方面做详尽的论述,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证该发电厂实际设计的合理性与经济性。
在计算和论证的过程中,结合新编电气工程手册规范,采用Microsoft Office Visio 软件绘制了大量电气图,进一步完善了设计。
作为现代化中型发电厂,是建立大型发电厂的基础,因为意义重大。
关键词:电气主接线设计厂用电设计短路电流计算配电装置设计规划及选择总平面布置防雷接地保护设计AbstractElectricity is the most important energy of economic development which can be conveniently and efficiently converted into other forms of energy. Today,not only in China but also in the world ,the thermoelectricity capacity accounts to about 70% and the power about 80%.So, electricity plays an important role in our country which is a developing country.In this design, I will mainly discuss main electric connection design, short circuit account, electric equipment choice, electric equipment layout, lightning strike defending design,electrical machine, transformer and generatrix protective relaying detailedly in theory and comparing with the power plant of San he,while ensuring the reliability of the design, under the premise we should also take into account economic and flexibility demonstrated by calculating the effective thermal power plant design and reasonable economy.During my counting and demonstrating,in order to consummate my design, I will protract a great lot of electric engineering-pictures by Microsoft Office Visio following the new criterion of electric engineering-enchiridion.Keywords:main electric connection design ,short current, electric equipment choice, electric equipment layout,protective relaying目录摘要 (1)Abstract (2)目录 (3)第1章电气主接线的设计 (5)1.1 明确任务和设计原理 (6)1.1.1原始资料 (6)1.1.2原始资料的分析 (6)1.2方案的设计、论证和选择 (6)1.2.1 方案设计 (6)1.2.2设计方案比较 (10)1.3 小结 (11)第 2 章厂用电设计 (11)2.1 负荷的分类与统计 (11)2.2厂用电接线的设计 (13)2.2.1厂用供电电压等级的确定 (13)2.2.2厂用电系统接地方式 (13)2.2.3 厂用工作电源引接方式 (13)2.2.4厂用备用电源和启动电源引接方式 (14)2.2.5 确定厂用电系统 (14)2.3 厂用主变选择 (15)2.3.1 厂用电主变选择原则 (16)2.3.2 确定厂用电主变容量 (16)第3章短路电流的计算 (16)3.1 短路电流计算的目的 (16)3.1.1基本假定 (17)3.1.2 一般规定 (17)3.2 短路的原因、后果及其形式 (18)3.3短路的物理过程及计算方法 (18)3.4短路电流的计算数据和计算结果 (21)3.4.1电路元件参数的计算 (21)3.5 短路电流的详细计算结果 (23)3.5.1效电抗标幺值画出等值计算网络电路图 (23)3.5.2计算短路电流 (23)3.5.3短路计算结果列表 (33)第4章电气设备的选择 (34)4.1电气设备选择概述 (34)4.2电气设备选择的一般原则 (34)4.3电气设备选择的校验内容 (35)4.4 电气设备选择的技术条件 (36)4.5 主变压器和发电机的选择 (37)4.5.1发电机的选择 (37)4.5.2主变压器的选择 (37)4.6高低压电器设备的选择 (38)4.6.1断路器的选择 (38)4.6.2隔离开关的选择 (39)4.6.3 互感器的选择 (40)4.6.4熔断器的选择 (41)4.6.5限流电抗器的选择 (42)4.6.6避雷器的选择 (42)4.7导体的设计和选择 (43)4.7.1分相封闭母线 (43)4.7.2设备选择 (45)第5章配电装置 (47)5.1屋外配电装置 (47)5.1.1 220KV室外配电装置 (47)5.2屋内配电装置 (49)5.2.1 220KV、6kV屋内配电装置 (49)第6章防雷接地保护设计 (51)6.1 避雷针 (51)6.2 避雷器 (53)6.2.1 额定电压 (53)6.2.2 灭弧电压 (53)6.2.3 工频放电电压 (54)6.2.4 冲击放电电压和残压 (54)6.2.5避雷器的选择 (54)6.2.6避雷器的装置 (54)6.3 防雷接地 (55)6.3.1 接地的一般要求 (55)6.3.2 接地的种类 (55)第7章变电所总平面布置 (55)7.1所区规划 (55)7.2建筑物及构筑物的布置 (57)7.3竖向布置 (59)7.4管沟布置 (60)7.5道路 (60)7.6其他 (61)第8章结论 (62)致谢 (63)参考文献 (64)附表: (66)1 变压器技术参数 (66)2 变压器外观 (68)3 变电所平面布置图 (69)第1章电气主接线的设计发电厂和变电所的电气主接线是保证电网安全可靠﹑经济运行的关键,是电气设备布置﹑选择﹑自动化水平和二次回路设计的原则和基础。
4乘100mw发电厂电气设计
4乘100mw发电厂电气设计
电气设计是指针对发电厂的电气系统进行规划、布置和设计的过程。
具体到4乘100mw发电厂,它意味着有4台发电机组,每台发电机组的装机容量为100兆瓦(mw)。
在电气设计中,需要考虑以下几个方面:
1. 发电机组的接线方式:根据具体需求和发电机组类型,选择适当的发电机组接线方式,如星形接线或三角形接线,以确保电流的平衡和电压的稳定。
2. 功率传输和分配:设计电气系统以传输和分配发电机组产生的电能。
这包括选择合适的变压器来提供所需的电压等级,并确定合适的电缆和导线规格,以确保电能的有效传输和分配。
3. 保护装置和安全措施:为了确保电气系统的安全运行,需要设计适当的保护装置,如过流保护、短路保护和接地保护等。
此外,还需要制定安全措施,如防雷措施和防火措施,以减少事故发生的可能性。
4. 控制系统:设计发电厂的电气控制系统,以监控和控制发电机组的运行。
这包括设计适当的自动化系统、监控系统和远程控制系统,
以确保发电厂的高效运行和故障排除。
5. 感应和测量设备:设计电气系统以安装感应和测量设备,以监测发电机组的运行情况,如电压、电流和频率等。
这些设备可以提供实时数据,帮助运营人员进行优化调整和维护。
总之,4乘100mw发电厂的电气设计需要考虑发电机组接线方式、功率传输和分配、保护装置和安全措施、控制系统以及感应和测量设备等方面,以确保发电厂的安全、高效运行。
2×25MW火力发电厂电气设计(原始资料)
2×25MW火力发电厂电气设计
(一)设计原始资料
1、
图1.总平面布置图
2、电厂规模及机组数据
本电厂属地方小型热电厂,装机容量2×25MW,发电机组采用上海电机厂QF-25-2型汽轮发电机,发电机出口电压6.3kV,厂内设发电机电压配电装置。
距本厂西南侧15km有一220/35kV地区变电所,电厂将发电机电压升高至35kV与电网相连。
已知地区变电所变压器后备保护动作时间为2.5s,其它系统参数见图2。
3、厂用电负荷见表1。
4、自然条件
本厂所在地区的年最高气温为37℃,年平均气温为25℃,年最低气温为-6℃,年最热月平均最高气温为32℃,年最热月平均气温为25℃,年最热月地下0.8m处平均温度为25℃。
年雷暴日数为20。
厂用低压负荷统计
(二)设计的具体任务与要求
1)厂用电负荷计算(要求列表)。
2)电气主接线方案的确定及主变压器台数、容量的选择。
3)厂用电系统设计。
4)三相短路电流计算。
5)主要电气设备的选型。
6)对主要设备的继电保护配置及整定计算。
7)对35kV并网线进行继电保护配置及整定计算*。
8)*直流系统设计。
在完成上述设计计算任务的基础上,要求交出下列资料:1)设计说明书
2)主接线图
3)厂用电接线图(至380/220V低压母线为止)
4)发电机保护回路原理展开图
5)主变压器保护回路原理展开图。
发电厂电气部分课程设计
发电厂电气部分课程设计一、设计概述本课程设计旨在让学生了解发电厂的电气部分的基本原理和运行机制,为学生提供实践操作的机会,培养学生在电气工程领域的技能和能力。
通过本课程设计,学生将深入学习发电厂电气系统的设计、运行和故障排除。
二、设计目标1.理解发电厂的电气系统的组成和工作原理。
2.学习发电厂电气设备的选型、安装和调试。
3.掌握发电厂电气设备的运行维护和故障排除技巧。
4.能够进行发电厂电气系统的设计和改进。
三、设计内容本课程设计主要包括以下几个方面的内容:1. 发电厂电气系统的组成和工作原理•学习发电厂电气系统的组成和各部分设备的功能。
•了解发电厂电气系统的工作原理和工作过程。
•分析发电厂电气系统的运行特点和需求。
2. 发电厂电气设备的选型、安装和调试•学习发电厂电气设备的选型原则和方法。
•掌握发电厂电气设备的安装和调试技术。
•学习电气设备的运行参数调整和优化方法。
3. 发电厂电气设备的运行维护和故障排除•掌握发电厂电气设备的日常运行维护方法。
•学习电气设备的故障检修和故障排除技巧。
•了解电气设备的故障分析和预防措施。
4. 发电厂电气系统的设计和改进•学习发电厂电气系统的设计方法和原则。
•掌握电气系统的改进和升级技术。
•进行实际发电厂电气系统的设计和改进。
四、设计步骤1.学习发电厂电气系统的基本知识和原理。
2.进行发电厂电气设备的选型和配套计算。
3.编制电气系统的设计方案和施工图纸。
4.安装和调试电气设备。
5.进行电气系统的运行和维护。
6.掌握电气设备故障排除和分析方法。
7.对电气系统进行改进和优化。
五、设计要求1.设计文档需要使用Markdown文本格式进行编写。
2.文档字数不少于1200字。
3.图表和表格需要清晰明确,便于理解和演示。
4.设计步骤需要详细说明和解释,确保学生能够按照步骤进行实际操作。
六、评估方式根据学生对课程设计的实际操作和设计文档的质量,教师可以采用以下方式进行评估:1.实际操作评估:根据学生的实际操作表现和操作结果进行评估。
发电厂电气系统设计
发电厂电气系统设计发电厂电气系统设计随着我国经济与社会的快速发展,发电厂电气系统设计成为了不可或缺的重要环节,也是保障国家能源安全和能量供给的重要组成部分。
本文将从以下几个方面探讨发电厂电气系统设计。
一、发电厂电气系统类型发电厂电气系统类型通常分为三种:火力发电、核电发电和可再生能源(如风力、水力、太阳能等)发电。
不同类型发电厂的电气系统设计也会不同,但总体设计目的相同,即确保电气系统具有高效、稳定、安全、可靠和可扩展性的特点。
二、电气系统设计要素1. 输变电系统:传输和配电电缆、变压器、开关设备、断路器等。
2. 馈线系统:发电机、发电机控制系统、控制面板、整流器、交换开关、保护系统等。
3. 电力系统:负荷评估、电力分配和管理、照明和插座、发电机负荷调节、常备电源等。
4. 安全系统:电气设备安全管理、设备维护保养、灭火、防雷、地线安全等。
三、电气系统设计流程1. 初步设计:确定变电站位置、输电线路、配电方案等。
2. 电气系统计算:根据负荷需求和供电方案计算输电线路的电流负载和电压损耗,选择适当的变压器等。
3. 电气系统设计:基于计算结果,设计电气系统拓扑结构、变电站布局、控制系统、保护系统和通信系统等。
4. 电气系统工程实施:根据设计施工完成电气系统安装和调试。
5. 电气系统运营维护:定期检查和维护设备及记录、故障处理、适时更新设备等。
四、电气系统设计技术发展趋势1. 自控化:电气控制系统的自动化程度越来越高。
2. 信息化:工厂设备进行监控的传感器越来越普及,并通过数据传输将运行数据上传云平台,进行大数据分析,改善运营和管理。
3. 节能化:为采用绿色能源,提高能源效率,从而减少环境污染。
四、总结发电厂电气系统设计不仅是发电厂建设过程中的重要环节,也是电力行业科技创新的重要领域。
设计时应将其视为一项系统性工程,考虑到经济、可行性和实现可持续发展的目标。
未来的发展趋势,将会更多的采用现代化、高智能化、绿色化和安全保障的理念。
发电厂电气部分设计
三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。
发电厂电气部分课程设计结果总结
发电厂电气部分课程设计结果总结一、设计概述本次发电厂电气部分课程设计的主要目标是让我们全面了解和掌握发电厂的电气系统设计。
通过本次设计,我们不仅要理解发电厂的电气主接线设计,还要掌握短路电流的计算、主要设备的选择与校验、以及配电装置的布置与优化。
二、设计实施过程1. 电气主接线设计:根据给定的条件,我们设计了发电厂的电气主接线。
在设计中,我们考虑了可靠性、灵活性、经济性以及扩建的可能性等因素。
2. 短路电流计算:利用标么值法,我们对系统进行了短路电流计算。
通过计算,我们确定了短路电流的大小和方向,为设备的选择和校验提供了依据。
3. 主要设备选择与校验:基于短路电流的计算结果,我们对断路器、隔离开关、变压器等主要设备进行了选择和校验。
确保所选设备能够承受短路电流的冲击,且符合技术规范要求。
4. 配电装置的布置与优化:为了提高运行效率和维护便利性,我们对配电装置进行了合理的布置与优化。
考虑到设备的布局、进出线的方式以及操作走廊等因素,进行了综合的规划设计。
三、结果分析1. 电气主接线:通过对比分析,我们发现所设计的电气主接线在可靠性、灵活性和经济性方面均达到了预期目标。
同时,考虑到未来扩建的可能性,主接线设计也预留了扩展的空间。
2. 短路电流计算:通过计算,我们得到了准确的短路电流值。
这为设备的选择和校验提供了重要的参考依据,确保所选设备能够承受短路电流的冲击。
3. 主要设备:基于短路电流的计算结果,我们对断路器、隔离开关、变压器等主要设备进行了选择和校验。
所选设备均符合技术规范要求,能够保证发电厂的安全稳定运行。
4. 配电装置:通过对配电装置的布置与优化,我们提高了运行效率和维护便利性。
设备布局合理,进出线方式得当,操作走廊宽敞,这些都为后续的运行和维护打下了坚实的基础。
四、总结与展望通过本次发电厂电气部分课程设计,我们不仅掌握了发电厂电气系统设计的核心知识,还培养了解决实际问题的能力。
在设计过程中,我们充分考虑了各种因素,力求做到最优化的设计。
发电厂电气部分常规设计
发电厂电气部分常规设计发电厂的电气系统是发电过程中不可或缺的一部分,它主要负责将发电机所产生的电能进行输送,并保障发电设备的安全稳定运行。
下面将介绍一般发电厂电气系统的常规设计。
1.输电与配电系统设计在发电厂内,发电机产生的电能需要通过变压器进行升压,并通过送出变压器输送到主网中。
输电系统一般由高压电缆、断路器等设备组成。
而在发电厂内部,还需要设计配电系统,将电能输送到不同的电气设备上。
2.发电机保护系统设计发电机是发电厂的核心设备之一,其保护系统的设计尤为重要。
一般来说,发电机的保护系统包括了过流保护、过温保护、低电压保护、欠频保护等功能。
这些保护功能旨在保证发电机在运行中的安全性和稳定性。
3.调度自动化系统设计调度自动化系统是发电厂电气系统中的关键部分,它主要用于实时监控和控制发电设备的运行状态。
这些系统一般包括主控室、监控室、操作站等设备,通过监测发电设备的运行参数,实现对发电厂的精确控制和运行管理。
4.防雷与接地系统设计由于发电厂往往位于室外,所以需要设计防雷系统来保护发电设备免受雷击。
这些系统一般包括避雷针、接闪器等设备,用于引导并释放雷电。
同时,发电厂也需要进行合理的接地设计,以保证设备和人员的安全。
5.照明和动力系统设计发电厂的照明系统需要满足高亮度要求,并具备防爆、防水等特殊功能。
此外,动力系统设计也非常重要,需要考虑发电设备的工作电源,以及设备运行中的电能补偿和电能调节等功能。
6.辅助系统设计发电厂还需要设计各种辅助系统,如空调系统、通风系统、消防系统等,以确保设备运行环境的舒适和安全。
综上所述,发电厂电气系统的常规设计主要包括输电与配电系统设计、发电机保护系统设计、调度自动化系统设计、防雷与接地系统设计、照明和动力系统设计以及辅助系统设计。
在设计过程中,需要充分考虑不同设备的特点和运行需求,并采用合适的电气设备和技术手段,以确保发电厂的安全运行和高效发电。
2×600MW发电厂电气部分设计
本科生毕业论文(设计)2³600MW发电厂电气部分设计摘要成都电网是四川电网的重要负荷中心,是一个典型的受端网络。
区内电源很少,目前仅有成都电厂一个中型电站作为成都地区的电源支撑点,规划建设的宝兴河梯级、瓦斯沟梯级,距成都负荷中心较远,输送距离较长。
根据四川电网目标网架的规划工作成果,到2013年成都电网将围绕成都地区形成以龙王、龙泉、华阳、崇州、彭州、德阳为核心的成都地区220kV环网。
该待建电厂位于成都市西北30~40km的金堂县境内,建厂条件优越,且靠近负荷中心和电网中心,送电距离短。
本文针对待建电厂具体情况,阐述了各种设备及接线的设计原则,分析了几种方案,结合电网的实际情况及待建电厂负荷的大小和性质,以及地理位置进行综合分析,对各种导体和主要电器进行了选择校验,从提高电网及待建电厂的供电可靠性出发,使电厂设计既满足初期负荷的适应,又考虑未来10年电网设计规划,以满足不断增长的负荷需要,综合考虑,经过比较,从中选择一种合理的方案。
该电厂的建设,对于提高成都电网的稳定性,提高成都电网运行的安全性和可靠性,会产生积极的作用。
关键词:电网电厂电力系统短路电流绝缘主接线目录前言 (4)第一章电气主接线 (8)第二章短路电流计算 (15)第三章导体及主要设备选择 (17)第四章厂用电接线和布置 (21)第五章电气设备布置 (26)第六章直流系统及交流不停电电源(UPS) (33)第七章二次线、继电保护及自动装置 (36)第八章过电压保护及接地 (44)第九章电缆及电缆设施 (45)第十章照明和检修系统供电 (48)第十一章短路电流计算过程 (53)第十二章导体和电器选择设计部分计算 (60)结束语 (69)前言1 工程概况1.1 工程项目性质待建电厂为某搬迁至金堂,易地新建一座燃煤电厂,也属于“以大代小”易地技术改造工程。
1.2 建设规模及投产进度安排新建工程本期建设规模为2³600MW燃煤发电机组,场地按6x600MW 容量规划。
发电厂电气部分常规设计(1)
大学学生毕业论文论文题目:发电厂电气部分常规设计摘要本篇毕业设计主要是对某水电站电气部分的设计,包括主接线方案的设计,主要设备选择,短路电流计算,电气一次设备的选择计算。
通过对水电站的主接线设计,主接线方案论证,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,较为细致地完成电力系统中水电站设计。
限于毕业设计的具体要求和设计时间的限制,本毕业设计主要完成了对水电站电气主接线设计及论证,短路电流计算,电气一次设备的选择计算,电气设备动、热稳定校验、电气设备型号及参数的确定做了较为详细的理论设计,而对其他方面分析较少,这有待于在今后的学习和工作中继续进行研究。
关键词电气主接线;短路电流;电气一次设备目录摘要 (I)Abstract (II)第1章前言 (1)1.1设计题目 (1)1.2水电站电气部分研究的背景 (1)1.3本课题的研究意义 (2)1.3.1 电站电气主接线的论证意义 (2)1.3.2 电气一次设备和二次设备选择及计算的意义 (2)1.3.3 短路电流计算的意义 (2)1.3.4 本课题研究的现实意义 (3)1.4本课题的来源 (3)1.5论文设计的主要内容 (3)第2章主接线方案确定 (4)2.1电气主接线释名 (4)2.2主接线方案的拟定 (4)2.2.1 方案一 (4)2.2.2 方案二 (4)2.2.3 方案三 (5)2.2.4 方案比较说明 (6)2.3方案确定 (6)第3章主要设备的选择 (8)3.1导线的初步选择 (8)3.1.1 与系统相连导线的选择 (8)3.1.2 连接近区负荷导线的选择(按电压损耗选择) (8)3.1.3 导线的确定 (9)3.2变压器的选择 (10)3.2.1 1T变压器高压侧为38.5KV,低压侧为6.3KV (10)3.2.2 2T变压器选择 (11)3.2.3 3T变压器的选择 (11)3.2.4 4T为厂用变压器 (12)3.2.5 5T为厂用变压器 (12)3.2.6 最终选定变压器 (13)3.3发电机的选择 (13)第4章短路电流计算 (15)4.1短路电流计算目的、规定和步骤 (15)4.1.1 短路电流计算的主要目的 (15)4.1.2 短路电流计算一般规定 (15)4.1.3 计算步骤 (15)4.2短路电流的计算 (16)4.2.1 等值网络的绘制和短路点选择 (16)4.2.2 网络参数的计算 (16)4.2.3 短路电流的计算 (16)4.3短路电流计算成果表 (24)第5章电气一次设备的选择计算 (25)5.1母线的选择 (25)5.1.1 6.3kV母线的选择 (25)5.1.2 10kV母线的选择 (26)5.1.3 35kV母线的选择 (27)5.1.4 最终确定母线 (28)5.2电缆的选择 (28)5.2.1 发电机机端引出线电缆 (29)5.2.2 主变低压侧电缆 (30)5.2.3 主变高压侧电缆 (31)5.2.4 电缆最终确定 (32)5.3断路器的选择 (32)5.3.1 断路器选型 (32)5.3.2 1号,2号,3号,4号断路器的选择 (32)5.3.3 5号,6号断路器的选择 (34)5.3.4 7号断路器的选择 (34)5.3.5 8号,9号,11号断路器的选择 (34)5.3.6 10号,12号,13号,14号,15号断路器的选择 (35)5.3.7 16号,17号断路器的选择 (35)5.3.8 断路器参数表 (36)5.4互感器的选择 (37)5.4.1 主接线中互感器配置 (37)5.4.2 电流互感器的选择 (38)5.4.3 电压互感器的选择 (44)第6章结论 (47)6.1水电站电气部分设计结论 (47)6.2设计要点知识总结 (47)6.3心得与收获 (47)参考文献 (48)附录 (49)致谢 (50)第1章前言1.1设计题目1、装机情况:本水力发电厂装机4台容量2.5Mw水轮发电机组(额定电压6.3KV,功率因数0.8,次暂电抗0.2),有近区负荷4回,距电厂6KM, 10KV,每回1MW, 功率因数0.80。
发电厂电气部分课程设计
❏发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量等 因素有关。发电厂装机容量标志着发电厂的规模和 在电力系统中的地位和作用。在设计时,对发展中 的电力系统,可优先选用较为大型的机组。但是, 最大单机容量不宜大于系统总容量的10%,以保证 在该机检修或事故情况下系统的供电可靠性。
三、主变压器容量的确定原则
29
2.具有发电机电压母线接线的主变压器
容台容数确定原则:量数 ②③为当接在发电压机发对电在保接若确当
机电母电母电压
线压电上有负的2接线母压
台最荷及大供以上电一可主变压器时,或修检组机的台者当靠其供容于最大热发量接中性因负母线退出限需故而动荷运制行
不应,主少时他应其力不器出压厂变本行于2台压器。应器其能应总能输容从送量电除母满剩统述几功点的率送倒余上系足线力7要0求%,
❏方案比较常用的方法有最小费用法、净现值法、 内部收益率法、抵偿年限法。
❏在课程设计中,主要采用抵偿年限法。
四、主接线方案的经济比较
如:发电机容量容50量MW确,定功原率则因:数
量0压.8为负,荷厂最用小电15率MW 1投①有负率在母压主剩系在电最扣后应电剩0,%当入统发荷。发线母要余满压小除能压余,则,发运。电 和主电和线 作功足供负厂将母有主主发电行机剩变机升之用率发电荷用发线功变变电机时电余连电高间是送电的负电上和压,压机全,压功接压电将入,机日荷机的无器并器电部容 功容量送人系
❏主变压器和发电机中性点接地方式是一个综合性 问题。它与电压等级、单相接地短路电流、过电压 水平、保护配置等有关,直接影响电网的绝缘水平、 系统供电的可靠性和连续性、主变压器和发电机的 运行安全以及对通信线路的干扰等。
一、对原始资料分析
火力发电厂电气部分设计
火力发电厂的电气部分设计是确保发电机组和电网之间正常运行的重要环节。
以下是火力发电厂电气部分设计的一般步骤和主要内容:1. 电气系统总体设计:根据发电厂的容量和类型,确定电气系统的总体结构和配置。
包括主变电所、辅助变电所、发电机组、配电系统、控制系统等。
同时,考虑到安全可靠和经济性,确定电气系统的传输和配电电压等级。
2. 发电机组连接:设计发电机组与电网的连接方式和参数。
包括发电机的额定功率、功率因数、电压等级、频率等。
同时,根据电网的要求和稳定性需求,确定发电机组的同步方式和功率控制方式。
3. 变电系统设计:根据总体设计,确定主变电所和辅助变电所的位置、容量和配置。
设计主变电所的主变压器、断路器、隔离开关等设备。
设计辅助变电所的配电变压器、母线、开关设备等。
同时,考虑到电气系统的稳定性和可靠性,设计变电系统的保护装置和自动化控制系统。
4. 配电系统设计:根据电气负荷需求,设计配电系统的布置和容量。
确定配电系统的主配电柜、分配电柜、馈线等设备。
设计配电系统的保护装置、断路器和开关设备。
同时,考虑到电气系统的可靠性和安全性,设计配电系统的接地和绝缘保护措施。
5. 控制系统设计:设计发电厂的自动化控制系统和监控系统。
包括发电机组的自动调节装置、保护装置、控制柜等。
设计电气系统的远程监控和数据采集系统。
同时,确保控制系统与其他系统的通信和互联功能。
6. 电气设备选型:根据设计要求和技术规范,选择合适的电气设备和元器件。
包括发电机、变压器、断路器、开关设备、电缆、电表等。
确保选用的设备符合国家标准和安全规定,能够满足电气系统的要求。
7. 电气系统计算和分析:进行电气系统的负荷计算、短路电流计算、电压降计算等。
通过计算和分析,评估电气系统的稳定性和运行性能,确定电气设备和保护装置的参数和配置。
8. 电气系统布线和安装:根据设计要求,进行电气系统的布线和安装。
包括电缆敷设、接线、连接和固定等。
确保电气系统的布线符合规范,具有良好的绝缘和接地性能。
2×50MW发电厂电气部分设计
引言电力系统由发电厂、变电所、线路及用户组成。
发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。
发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路送出,再经变电所若干次降压后,才能供给用户使用。
直接生产、转换和输配电能的如:开关设备,载流导体称为一次设备。
对一次设备进行监察、测量、控制、保护、调节的辅助设备,称为二次设备,如自动保护及自动装置。
本次设计包括发电厂一次设备及二次设备的部分设计。
发电厂的主接线是根据容量,电压等级负荷等等情况设计,并经过技术经济比较,选出最佳方案,然后通过短路电流计算、回路最大持续工作电流计算,选出设备的型号,了解配电装置布置原则,设计防雷接地,最后对发电机配置保护。
断路器是发电厂中十分重要的设备,本厂选用的为真空断路器.对于真空断路器的技术性能改造还在不断进行,如用带有双重开关或多重开关的断路器代替只带有一个开关的断路器的先进技术,正在被很多发明者改进,存在的问题是真空断路器应为电介质的特性,而在高压范围内限制使用。
本设计基本达到安全可靠,经济合理的要求。
尽量采用新型技术设备。
作为现代化中型发电厂,是建立大型发电厂的基础。
因此意义重大。
第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
1.1.2 基本接线及适用范围1. 35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
4200MW发电厂电气一次部分设计
4200MW发电厂电气一次部分设计一、本文概述Overview of this article本文旨在详细阐述4200MW发电厂电气一次部分的设计方案。
发电厂作为电力系统的核心,其电气设计直接关系到发电效率和运行安全。
因此,本次设计将遵循高效、安全、可靠和环保的原则,确保发电厂在投产后能够稳定、经济地运行,为电力系统提供充足的电能。
This article aims to elaborate in detail on the design scheme of the electrical primary part of a 4200MW power plant. As the core of the power system, the electrical design of power plants is directly related to power generation efficiency and operational safety. Therefore, this design will follow the principles of efficiency, safety, reliability, and environmental protection to ensure that the power plant can operate stably and economically after being put into operation, providing sufficient electricity for the power system.在本文中,我们将首先介绍发电厂的整体电气设计思路,包括电气主接线、发电机组配置、厂用电系统设计等关键内容。
随后,我们将详细阐述电气一次部分的设计要点,包括电气设备的选型、布置和接线方式等。
还将对发电厂的电气保护与自动化系统进行详细规划,以确保发电厂在异常情况下能够迅速响应并恢复正常运行。
发电厂电气课程设计二电气主接线
适用:超高压远距离大容量输电系统 中,对系统稳定性和供电可靠性要求 较高的变电所主接线。
5、单元接线
结构特点:发电机和变压器直接连接, 中间不设置母线。
优点:结构简、便操作、不易误操作,投资省、占地小, 易扩建。
缺点:可靠性和灵活性都较差
➢ 母线和母线隔离开关检修时,全部回路均需停运; ➢ 母线故障时,继电保护会切除所有电源,全部回路均需停运。 ➢ 任一断路器检修时,其所在回路也将停运 ➢ 只有一种运行方式,电源只能并列运行,不能分列运行。
适用:出线回路少(6~10kV出线一般不超过5回,35~60kV出线不
(3)单母线带旁路母线接线
➢
➢
结构特点: 增加了旁路母线、专用旁路断路器 及旁路回路隔离开关。 各出线回路除通过断路器与汇流母 线连接外,还通过旁路隔离开关与 旁路母线相连接。 优点: 检修任一进出线断路器
时,不中断对该回路的供电, 供电可靠,运行灵活,适用于 向重要用户供电,出线回路较 多的变电所尤为适用。 缺点: 旁路断路器在同一时间 只能代替一个线路断路器的工 作。但母线出现故障或检修时, 仍会造成整个主母线停止工作。
缺点: ➢ 当母线故障或检修时,需使用隔离开关进行倒闸操作,容
易造成误操作; ➢ 工作母线故障时,将造成短时(切换母线时间)全部进出
线停电; ➢ 在任一线路断路器检修时,该回路仍需停电或短时停电; ➢ 使用的母线隔离开关数量较大,同时也增加了母线的长度,
使得配电装置结构复杂,投资和占地面积增大。 适用: 这种接线方式适用于供电要求比较高,出线回路较多的 变电站中,一般6~10kV 出线回路为12回及以上,35kV 出线回路超过8回, 110 ~220kV出线为5回及以上。
发电厂电气部分-第四章 电气主接线及设计2
某中型水电厂主接线
1)该电厂有4 台发电机 G1~G4,每两台机与一台 双绕组变压器接成扩大单 元接线; 2)110kV侧只有2回出线, 与两台主变压器接成4角 形接线。
某大型水电厂主接线
1)该电厂有6台发电机,G1~G4与分裂变压器T1、 T2接成扩大单元接线,将电能送到500kV配电装置; 2)G5、G6与双绕组变压器T3、T4接成单元接线, 将电能送到220kV配电装置; 3)500kV配电装置采用一台半断路器接线; 4)220kV配电装置采用有专用旁路断路器的双母线 带旁路接线,只有出线进旁路; 5)220kV与500kV用自耦变压器T5联络,其低压绕 组作为厂用备用电源。
水力发电厂电气主接线的特点:
1)水力发电厂发电机电压侧的接线: 多采用单元接线或扩大单元接线;当有少量地区负荷时, 可采用单母线或单母线分段接线。 2)水力发电厂的升高电压侧的接线: 当出线数不多时,应优先考虑采用多角形接线等类型 的无汇流母线的接线; 当出线数较多时,可根据其重要程度采用单母线分段、 双母线或一台半断路器接线等。
(MVA) 式中 P —发电机电压母线上除最大一台机组外,其他发电机容量 之和,MW;
'
NG
Pmax —发电机电压母线上的最大负荷,MW;
4)对水电厂比重较大的系统,由于经济运行的要求,在丰水期应充分 利用水能,这时有可能停用火电厂的部分或全部机组,以节约燃料, 火电厂的主变压器应能从系统倒送功率,满足发电机电压母线上最大 负荷的需要。即
(2)降压变电站主接线常用接线形式
变电站主接线的高压侧: 1)应尽可能采用断路器数目少的接线,以节省投资,减 少占地面积; 2)随出线数的不同,可采用桥形、单母线、双母线及角 形等接线形式; 3)如果电压较高又是极为重要的枢纽变电站,宜采用带旁 路的双母线分段或一台半断路器接线。 变电站的低压侧: 常采用单母线分段或双母线接线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电厂电气部分课程设计
题目:220KV/35KV黄埠变电站一次系统设计学院:自动化工程学院
专业:电气工程及其自动化
姓名:
指导教师:
2011年9 月14 日
设计题目:220KV/35KV黄埠变电站一次系统设计
原始资料:
(1)220KV进线2回。
分别从主系统220KV双母线接线带旁路上引接;35KV 出线10回供给下级变电站。
(2)工程建设规模:主变压器两台,容量均为63MV A,年最大负荷利用小时数均为6000h,电压等级220KV/35KV。
(3)系统短路容量:两台主变压器分裂运行时,220KV母线三相最大短路容量为6137.35MV A,短路电流16.38KA;35KV母线三相最大短路容量为936.15MV A,短路电流15.44KA。
设计要求
1.为该变电站设计出电气主接线图。
2.选择主变压器型号。
3.选择变压器出口断路器和隔离开关(220KV)。
4.利用经济电流密度选择变压器出口母线。
5.选择35KV出口断路器和隔离开关。
6.选择电压互感器和电流互感器型号。
接线图
各部分设计
(1) 变压器
根据两台主变压器的容量和变比,根据华鹏变压器厂提供的产品样本
选择S (F )(P )Z11-63000,额定电压为220±8×1.25%/35KV ,联结组标号为YNd11的变压器。
(2) 变压器出口断路器和隔离开关
变压器出口(220KV 侧)最大持续电流为
A U S N
N
ax 6.173220
*363000*05.1305.1I m ==
=
根据变压器出口的U NS 、I max ,根据《发电厂电气部分》附表6,可选
SW6-220/1200型户外少油式断路器。
固有分闸时间t in 为0.04s ,少油断路器燃弧时间t a 为0.04s,保护启动和执行机构时间之和t pr1为0.06s 。
短路开断时间 t k ’=t pr1+t in =0.1s ,故用I ’’校验I Nbr 。
冲击电流为
i sh =1.92I ’’=2.69×16.38=44.01KA
下表列出断路器、隔离开关的有关参数,并与计算数据进行比较。
由下表可见SW6-220/1200型断路器、GW6-220D/1000-50型隔离开关合格。
(3) 变压器出口母线
由于T max =6000h>5000好,所以根据经济电流密度选择母线截面。
由《发电厂电气部分》P 205 铝导体的经济电流密度图,选择2类导线,可知J=0.68A/mm 2
A U S N
N
ax 109135
*363000
*05.1305.1I m ==
=
所以导体经济截面S J 为 S J =
mm J ax 4.160468
.01091
Im ==2 所以选择3条63mm ×10mm 型矩形铝导体(S 近=63*10*3=1890>S J ),平放允许电流为2381A 。
(4) 35KV 出线的断路器和隔离开关
变压器出口最大持续电流为
A U S N
N
ax 109135
*363000
*05.1305.1I m ==
=
根据发电机出口的U NS 、I max ,根据《发电厂电气部分》附表6,可选SW2-35/1000。
固有分闸时间为t in =0.06s 。
短路开断时间 t k ’=t pr1+t in =0.12s>0.1s ,故用I ’’校验I Nbr 。
冲击电流为
i sh =1.92I ’’=2.69×15.44=41.49KA
下表列出断路器、隔离开关的有关参数,并与计算数据进行比较。
由下表可见SW2-35/1000型断路器、GN2-35T/1000-70型隔离开关合格。
(5) 电流互感器和电压互感器
根据《发电厂电气部分》附表8,9:
○
1变压器220KV 侧出口选择LCW2-220W 室外电流互感器,变比为(2*200)~(2*600)/5,由于作为一类负荷保护用,采用0.5准确级。
○
2变压器220KV 侧出口选择YDR-220电容式电压互感器,变比为(220/3)/(0.1/3)KV 。
○
3变压器35KV 侧出口选择LCWB-35室外电流互感器,变比为20~1200/5,由于作为一类负荷保护用,采用0.5准确级。
○4变压器35KV侧出口选择JDJJ-35油浸式电压互感器,变比为(35/3)/(0.1/3)KV。
参考书目:《发电厂电气部分》。