北师大版数学七年级上册《期中检测卷》及答案
北师大版七年级上册数学期中试题及答案
北师大版七年级上册数学期中试题2022年一、单选题1.下列计算不正确...的是()A .253-=-B .()()257-+-=-C .()239-=-D .()211-+=-2.把351000用科学记数法表示,正确的是()A .0.351×106B .3.51×105C .3.51×106D .35.1×1043.下列说法正确的是()A .x 不是单项式B .0不是单项式C .-x 的系数是-1D .1x是单项式4.下列各组式子中是同类项的是()A .4x 与4yB .24xy 与4xyC .24xy 与24x yD .24xy 与24y x5.下列计算中结果正确的是()A .459ab ab +=B .22330a b ba -=C .66xy x y-=D .34712517x x x +=6.用算式表示“比3-℃低8℃的温度”正确的是()A .385-+=B .3811--=-C .3811-+=-D .385--=-7.在代数式25x +,1-,232x x -+,π,5x,215x x ++中,多项式有()A .2个B .3个C .4个D .6个8.有理数a 、b 在数轴上的位置如右图所示,则下面的关系式中正确的个数为()①a-b>0②a+b >0③11a b>④b a ->0A .1个B .2个C .3个D .4个9.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+110.单项式3245a b c -的系数和次数分别是()A .﹣5和9B .﹣5和4C .15-和4D .15-和911.计算27--的结果是()A .9-B .9C .5-D .512.数据393000米用科学记数法表示为()A .70.39310⨯米B .63.9310⨯米C .53.9310⨯米D .439.310⨯米13.下列各数−28,15--,0,−(−6.1),−22中,负数的个数有()A .2个B .3个C .4个D .5个14.下面各组数中,相等的一组是()A .﹣22与(﹣2)2B .323与3(23C .﹣|﹣2|与﹣(﹣2)D .(﹣3)3与﹣3315.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③16.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元之后又降低20%,现在售价为n 元,那么该电脑的原售价为()A .(5m+n )元B .(5n+m )元C .(54n m +)元D .(45n m +)元17.下列各题正确的有()个:①()201612016-=;②()011÷-=-;③76233()322⎛⎫-⨯-=- ⎪⎝⎭;④n 棱柱有(2)n +个面,2n 个顶点;⑤平方数是它本身的数是1或0;⑥倒数是它本身的数是±1或0.A .2个B .3个C .4个D .5个18.若a 、b 为实数.2|2|(1)0a b -++=,则2a b -的值为()A .0B .3C .5D .119.一只蚂蚁在数轴上先向右爬3个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则蚂蚁的起始位置所表示的数是()A .5B .-1或5C .1或5D .0或-520.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A .4种B .5种C .6种D .7种二、填空题21.若3a 2bcm 为七次单项式,则m 的值为___.22.()311246⎛⎫-⨯-= ⎪⎝⎭______.23.写出一个在122-和2之间的负整数:______.24.代数式38x -与3互为相反数,则x =______.25.计算:()()2021201920201236⎛⎫-⨯-⨯-= ⎪⎝⎭______.26.现有一列数1x ,2x ,…,2021x ,其中23x =-,75x =,3336x =-,且满足任意相邻三个数的和为相等的常数,则122021x x x +++L 的值为______.27.已知单项式21312m x y --与64n xy +是同类项,则m n ⋅=_______28.已知代数式2a a +的值是1,则代数式2222011a a ++值是____29.用“>”或“=”或“<”填空.①﹣5_____3;②34-_____35-;③﹣|﹣2.25|_____﹣2.530.已知2350x y --=,则6915x y -+=___.31.如图是一个数值转换机,若输入a 的值为-1,则输出的结果应为___.32.已知a ,b ,c 是三个有理数,他们在数轴上的位置如图所示,化简a b c a b c -+--+=___.33.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,⋯⋯,按此规律,图案ⓝ需________________根火柴棒.三、解答题34.计算(1)()()136243-÷-+⨯-(2)()2411333⎡⎤--⨯--⎣⎦35.解方程(1)617x +=(2)3845x x -=-36.画出数轴,在数轴上标出下列各数,并用“<”把这些数连接起来.2, 3.5-,3-,2.5,5-,()22-.37.先化简,再求值:()()22222222322x y y xyx ++---,其中1,2x y =-=.38.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+、4+、7-、5+、8-、6+、3-、6-、4-、10+.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?39.小红做一道数学题“两个多项式A、B,B为2456x x--,试求A+B的值”.小红误将A+B看成A-B,结果答案(计算正确)为271012x x-++.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.40.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)写出x千克这种蔬菜加工后可卖钱数的代数式;(2)如果这种蔬菜1000千克,不加工直接出售,每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?41.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当143<t<172时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.42.请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.材料2:再如在数轴上表示4和﹣2的两点之间的距离为6(如图2)而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离|4﹣(﹣2)|.(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于.(2)试一试,求在数轴上表示的数523与﹣414的两点之间的距离为.(3)已知数轴上表示数a的点M与表示数﹣1的点之间的距离为3,表示数b的点N与表示数2的点之间的距离为4,求M,N两点之间的距离.43.计算(1)-9-5-(-12)+(-3)(2)-3+(-5)-(-6)+|-4|44.计算(1)122(4.5)4⎛⎫-+-⨯- ⎪⎝⎭(2)357(32)1684⎛⎫-⨯-+ ⎪⎝⎭(3)4311(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦45.若a 、b 互为相反数,c 、d 互为倒数,||4m =,求2563a bm cd m m++-+的值.46.如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.47.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?48.如图,新城社区要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:米).(1)求阴影部分的面积(用含x 的代数式表示);(2)当x =20,π取3时,求阴影部分的面积.49.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和1的两点之间的距离是.②数轴上表示-2和-6的两点之间的距离是.③数轴上表示-4和3的两点之间的距离是.归纳:一般的,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)应用:①如果表示数a 和3的两点之间的距离是9,则可记为:|3|9a -=,那么a =.②若数轴上表示数a 的点位于-4与3之间,求|4||3|a a ++-的值.③当a 取何值时,413a a a ++-+-的值最小,最小值是多少?请说明理理由.参考答案1.C 【解析】【分析】根据有理数的加法运算法则,减法运算法则,乘方的运算对各选项计算后选取答案.【详解】解:A、2−5=−3,正确;B、(−2)+(−5)=−(2+5)=−7,正确;C、(−3)2=9,故本选项错误;D、(−2)+1=−2+1=−1,正确.故选:C.【点睛】本题考查有理数的加法、减法和有理数的乘方的运算,熟练掌握运算法则是解题的关键.2.B【解析】【详解】科学记数法是指:a×n10,1≤a<10,n是指这个数的整数位数减1.即原数=3.51×510.故选B3.C【解析】【分析】根据单项式的定义解答即可.【详解】解:x,0是单项式,故A,B项不正确;x 的系数为-1,故C项正确;D项1x不是整式,故不是单项式.故选:C.【点睛】本题考查了单项式的相关知识,解题的关键是掌握单项式的定义. 4.D【解析】【分析】含有相同的字母,且相同字母的指数也分别相等的项是同类项,根据定义解答.【详解】解:A.4x与4y不是同类项,故该项不符合题意;4xy与4xy不是同类项,故该项不符合题意;B.24xy与24x y不是同类项,故该项不符合题意;C.24xy与24y x是同类项,故该项符合题意;D.2故选:D.【点睛】此题考查了同类项定义,熟记定义及正确应用是解题的关键.5.B【解析】【分析】根据同类项的定义及合并同类项法则依次判断.【详解】解:4与5ab不是同类项,不能合并,故选项A不符合题意;22-=,,故选项B符合题意;a b ba3306xy与-x不是同类项不能合并,故选项C不符合题意;12x3与5x4不是同类项,不能合并,故选项D不符合题意;故选:B.【点睛】此题考查了同类项的定义及合并同类项的法则,正确掌握定义及合并的法则是解题的关键.6.B【解析】【分析】-减去8,进而根据有理数的减法进行计算即可根据题意列算式即,用3【详解】-℃低8℃的温度”可得,解:由“比33811--=-故选B【点睛】本题考查了有理数减法的应用,理解题意是解题的关键.7.A 【解析】【分析】根据多项式的定义分析即可.【详解】解:25x +,232x x -+是多项式,1-,π是单项式,5x,215x x ++的分母含字母,不是整式;故选A .【点睛】本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.8.B 【解析】【分析】首先根据数轴可以得到b <−1<0<a <1,以及|a|<|b|,根据有理数的加法法则以及不等式的性质即可作出判断.【详解】根据数轴可以得到:b <−1<0<a <1.∵a >b∴a−b >0,b−a <0故①正确,④错误;∵a >0,b <0,且|a|<|b|∴a +b <0,故②错误;∵a >0,b <0∴ab <0在a >b 两边同时除以ab ,得:1b <1a ,即11a b>,故③正确;故正确的是:①③.故选:B .【点睛】本题主要考查了利用数轴比较数的大小以及不等式的性质,判断③时,两边同时除以ab ,不等号的方向变化是容易出现的错误.9.D【解析】【详解】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .【点睛】本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.10.D【解析】【详解】试题分析:根据单项式系数、次数的定义,单项式3245a b c -的系数和次数分别是15-和9.故选D .考点:单项式系数和次数11.A【解析】【分析】先把减法转化为加法,再按照有理数的加法法则运算即可.【详解】解:()27279.--=-+-=-【点睛】本题考查的是有理数的减法,掌握有理数的减法法则进行运算是解题的关键.12.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将393000用科学记数法表示为:53.9310⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.B【解析】【分析】根据相反数的定义以及绝对值的性质化简相关的数,再根据小于零的数是负数,可得答案.【详解】解:-|-15|=-15,-(-6.1)=6.1,-22=-4,∴负数有−28,-|-15|,-22,共3个.故选:B .【点睛】本题考查了正数和负数,小于零的数是负数,大于零的数是正数,注意零既不是正数也不是负数.14.D【解析】【分析】根据有理数的乘方,绝对值和多重符号化简的运算法则逐一计算可得.A.﹣224=-,(﹣2)24=,故该选项不符合题意;B.328=33,3(238=27,故该选项不符合题意;C.﹣|﹣2|2=-,﹣(﹣2)2=,故该选项不符合题意;D.(﹣3)327=-,﹣3327=-,故该选项符合题意;故选D【点睛】本题考查了有理数的乘方,绝对值和多重符号化简的运算法则,正确的计算是解题的关键.15.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.16.C【解析】【分析】设电脑的原售价为x 元,按原价降低m 元之后又降低20%,价格为(x -m )(1-20%)等于现售价为n 元作为相等关系,列方程解出即可.【详解】设电脑的原售价为x 元,则(x -m )(1-20%)=n ,∴x =54n m +.【点睛】当题中数量关系较为复杂时,利用一元一次方程作为模型解题不失为一种好的方法,思路清晰简单,避免了思维混乱而出现的错误.17.B【解析】【分析】根据幂指数定义可判断①,根据除法的运算法则可判断②,根据乘法法则可判断③,根据棱柱的定义可判断④,根据平方的定义可判断⑤,根据倒数的定义可判断⑥.【详解】解:∵(-1)2016=1,∴①错误,∵0÷(-1)=0×(-1)=0,∴②错误,∵(−23)6×(−32)7=(−23)6×(−32)6×(−32)=−32,∴③正确,∵n棱柱有(n+2)个面,2n个顶点,∴④正确,∵平方数是它本身的数只有1和0,∴⑤正确,∵0没有倒数,∴⑥错误,∴正确的有③④⑤,共3个,故选:B.【点睛】本题主要考查了有理数的运算,关键是要牢记乘除法,乘方等的运算法则,理解平方和倒数的含义.18.C【解析】根据绝对值和偶次方的非负数性质求出a、b的值,再代入所求式子计算即可.【详解】解:∵a、b为实数,且|a-2|+(b+1)2=0,而|a-2|≥0,(b+1)2≥0,∴a-2=0,b+1=0,解得a=2,b=-1,∴a2-b=22-(-1)=4+1=5.故选:C.【点睛】本题考查的是非负数的性质,熟知绝对值以及偶次方具有非负性是解答此题的关键.19.C【解析】【分析】根据数轴的相关知识解题.【详解】解:设蚂蚁的起始位置所表示的数是x,则根据题意知,x+3-6=-2或x+3-6=2,解得,x=1或x=5.故选:C.【点睛】本题考查了数轴,关键是对数轴定义、数轴上点的表示方法等知识应用.20.A【解析】【分析】利用正方体的展开图即可解决问题,共四种.【详解】解:如图所示:共四种.故选A .【点睛】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.21.4.【解析】【分析】单项式3a 2bcm 为七次单项式,即是字母的指数和为7,列方程求m 的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为4.【点睛】本题考查了单项式的次数的概念.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.-7【解析】【分析】根据乘法分配律解答.【详解】解:()()()31311212129274646⎛⎫-⨯-=⨯--⨯-=-+=- ⎪⎝⎭,故答案为:-7.【点睛】此题考查了乘法分配律的计算法则,熟记计算法则并应用是解题的关键.23.-2或者-1【解析】【分析】可以通过画数轴的方法,直观的找出在122-和2之间的负整数.【详解】解:如数轴所示,在122-和2之间的负整数为-2,-1即答案为:-2或-1【点睛】本题主要考查了学生对有理数的认识,解答此题的关键是正确理解负整数的定义.24.53【解析】【分析】根据相反数的定义得到38x -+3=0,通过解一元一次方程计算即可.【详解】解:由题意得38x -+3=0,解得x=53,故答案为:53.【点睛】此题考查了解一元一次方程,相反数的定义:只有符号不同的两个数是互为相反数,熟记定义是解题的关键.25.112【解析】【分析】根据同底数幂相乘的逆运算将()20212020136⎛⎫-⨯- ⎪⎝⎭写成()201920192113(3)()66⎛⎫-⨯-⨯-⨯- ⎪⎝⎭,再根据积的乘方逆运算及乘法法则解答.【详解】解:原式=()()20192019201921123(3)()66⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭=()()201921123(3)()66⎡⎤⎛⎫-⨯-⨯-⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦=11(3)36-⨯-⨯=112.故答案为:112.【点睛】此题考查了有理数的乘法计算,正确掌握同底数幂乘法法则的逆运算及积的乘方逆运算及乘法法则是解题的关键.26.-2690【解析】【分析】先根据任意相邻三个数的和为相等的常数可推出x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,由此可求x 1+x 2+x 3+…+x 2021的值.【详解】解:∵x 1+x 2+x 3=x 2+x 3+x 4,∴x 1=x 4,同理可得:x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,∴x 1+x 2+x 3=-4,∵2021=673×3+2,∴x 1+x 2+x 3+…+x 2021=(-4)×673+(5-3)=-2692+2=-2690.故答案为:-2690.【点睛】本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.27.﹣3【解析】【详解】试题分析:由同类项的定义得n=﹣3,m=1,代入中,结果为﹣3.考点:同类项的定义28.2013【解析】【详解】试题分析:因为=1,所以()2=220112013a a ++=.考点:代数式的求值29.<<>【解析】【分析】根据正数大于零,零大于负数,两个负数比较时绝对值大的反而小可得答案.【详解】解:①﹣5<3;②33153312,44205520-==-==,15122020> 3345∴-<-;③ 2.25 2.25-= 2.5 2.5∴-=2.25 2.5<∴-->-2.25 2.5故答案为:①<;②<;③>.【点睛】本题考查有理数的大小比较,涉及绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.30.30【解析】【分析】由2x-3y-5=0得出2x-3y=5,再把6x-9y+15变形为3(2x-3y)+15即可得出答案.【详解】解:∵2x-3y-5=0,∴2x-3y=5,又∵6x-9y+15=3(2x-3y)+15,∴6x-9y+15=3×5+15=30,故答案为:30.【点睛】本题主要考查了代数式求值问题,关键是要能把6x-9y+15变形为3(2x-3y)+15的形式.31.11【解析】【分析】把a的值代入数值转换机中计算即可确定出结果.【详解】解:把a=-1代入得:[(-1)2-4]×(-3)+2=9+2=11,故答案为:11.【点睛】本题考查了有理数的混合运算,弄清数值转换机中的运算是解本题的关键.32.2a【解析】【分析】由a、b、c在数轴上的位置知a-b>0、c-a<0、b+c<0,再根据绝对值的性质取绝对值符号,然后去括号、合并即可得.【详解】解:由数轴知c<b<0<a,则a-b>0,c-a<0,b+c<0,∴原式=(a-b)-(c-a)+(b+c)=a-b-c+a+b+c=2a.故答案为:2a.【点睛】本题主要考查了数轴,解题的关键是掌握点的数轴上的位置及绝对值的性质.7n1+33.()【解析】【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,8=7+1,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒7n+1根.【详解】图案①需火柴棒:7+1=8根;图案②需火柴棒:7+7+1=15根;图案③需火柴棒:7+7+7+1=22根;…,∴图案n需火柴棒:7n+1根;故答案为:7n+1【点睛】本题是一道规律探究题,仔细观察,根据所给图形找出图形的变化规律是解答本题的关键. 34.(1)4(2)1【解析】【分析】(1)同时计算乘除法,再计算加减法;(2)先计算乘方,再计算括号内的即乘法,最后计算加法.(1)解:()()136243-÷-+⨯-=13+3-12=4;(2)解:()2411333⎡⎤--⨯--⎣⎦=11(39)3--⨯-=-1+2=1.【点睛】此题考查了有理数的混合运算,含乘方的有理数的混合运算,正确掌握运算顺序及法则是解题的关键.35.(1)x=1(2)x=-3【解析】【分析】先移项,再合并同类项,化系数为1即可求解;先移项,再合并同类项,化系数为1即可求解;(1)解:移项,得6x=7-1,合并同类项,得6x=6,系数化为1,得x=1.(2)解:移项,得3x-4x=-5+8,合并同类项,得-x=3,系数化为1,得x=-3.【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.36.数轴见详解,−3.5<−3<2<2.5<(−2)2<|−5|.【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】解:如图所示:用“<”连接为:−3.5<−3<2<2.5<(−2)2<|−5|.【点睛】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.37.7【解析】【分析】先化简,再将x、y的值代入计算即可.【详解】原式=2x2+y2+2y2-3x2-2y2+4x2=3x2+y2当x=-1y=2时,原式=3×(-1)2+22=3 1+4=7.38.(1)出租车离鼓楼出发点6km,在鼓楼东边(2)148.8元【解析】【分析】(1)把记录的数字加起来,看结果是正还是负,就可确定是向东还是西;(2)求出记录数字的绝对值的和,再乘以2.4即可.(1)解:9+4+7-5+8-6+3-6-4-10+=6故出租车最后在鼓楼东边6km 的位置;(2)解:9+4+7+5+8+6+3+6+4+10=6262 2.4148.8⨯=故司机一个下午的营业额是148.8元.【点睛】本题考查了正数和负数的理解,有理数的运算,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量是解题的关键.39.(1)2x ;(2)9.【解析】【分析】(1)因为271012A B x x -=-++,且2456B x x =--,所以可以求出A ,再进一步求出A B +;(2)根据(1)的结论,把3x =代入求值即可.【详解】解:(1)由题意271012A Bx x -=-++,∴2(456)A x x ---271012x x =-++,∴2456A x x =--271012x x -++=2356x x -++.2356A B x x ∴+=-++2456x x +--2.x =(2)把3x =代入2x 得:239.A B +==【点睛】考点:整式的加减.40.(1)1.12xy 元;(2)加工后可卖1680元,比加工前多卖180元【解析】【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式即可.【详解】(1)x 千克这种蔬菜加工后可卖钱为:()120%140% 1.12x y xy -+= ()(元)(2)加工后可卖:1.121000 1.51680⨯⨯=比加工前多卖:1680151000180-⨯=.(元)答:1680元,比加工前多卖180元【点睛】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要掌握销售问题的价格与重量之间的关系.41.(1)﹣24,﹣10,10;(2)t =2s 或5s ;(3)46【解析】【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q 追上P 的时间t 3=2054-=20,推出当143<t <172时,位置如图,利用绝对值的性质即可解决问题.【详解】(1)∵M =(a +24)x 3﹣10x 2+10x +5是关于x 的二次多项式,∴a +24=0,b =﹣10,c =10,∴a =﹣24,故答案为﹣24,﹣10,10.(2)①当点P 在线段AB 上时,14+(34﹣4t )=40,解得t =2.②当点P 在线段BC 上时,34+(4t ﹣14)=40,解得t =5,③当点P 在AC 的延长线上时,4t+(4t-14)+(4t-34)=40,解得t=223,不符合题意,排除,∴t =2s 或5s 时,P 到A 、B 、C 的距离和为40个单位.(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q追上P的时间t3=2054=20,∴当143<t<172时,位置如图,∴2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【点睛】本题考查多项式、绝对值、数轴、一元一次方程的应用等知识,解题的关键是理解题意,学会构建方程解决问题,学会用分类讨论的思想思考问题.42.(1)|a﹣b|;(2)91112;(3)2或4或10.【解析】【分析】(1)根据材料提供的数轴上两点之间距离的计算方法即可得出答案;(2)根据(1)的结论计算即可;(3)根据题意可求出a、b的值,根据a、b的不同值,分别代入计算即可求出结果.【详解】解:(1)在数轴上表示数a和数b两点之间的距离等于|a﹣b|,故答案为|a﹣b|;(2)|523﹣(﹣414)|=91112,故答案为91112.(3)由题意得,|a﹣(﹣1)|=3,|b﹣2|=4,解得,a=2或a=﹣4,b=6或b=﹣2.①当a=2,b=6时,|a﹣b|=|2﹣6|=4,②当a=2,b=﹣2时,|a﹣b|=|2﹣(﹣2)|=4,③当a=﹣4,b=6时,|a﹣b|=|﹣4﹣6|=10,④当a=﹣4,b=﹣2时,|a﹣b|=|﹣4﹣(﹣2)|=2.答:点M、N之间的距离为2或4或10.【点睛】本题考查了数轴上两点之间的距离、绝对值的意义和有理数的加减运算,正确理解数轴上两点之间的距离、全面分类、准确计算是解答的关键.43.(1)-5(2)2【解析】【分析】(1)先将减法转化为加法,再根据加法法则计算可得;(2)先将减法转化为加法,再根据加法法则计算可得.(1)解:-9-5-(-12)+(-3)=-9-5+12-3=(-9-5-3)+12=-17+12=-5;(2)解:-3+(-5)-(-6)+|-4|=−3−5+6+4=(−3−5)+(6+4)=−8+10=2.【点睛】本题主要考查了有理数的加减混合运算,解题的关键是掌握有理数的加减运算法则和运算顺序及其运算律.44.(1)65 8(2)-42(3)-6【解析】【分析】(1)先算乘法,再算加法;(2)根据乘法分配律简便计算计算;(3)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:−2+(−214)×(−4.5)=-2+94×92=-2+81 8=65 8;(2)解:357 (32)1684⎛⎫-⨯-+⎪⎝⎭357(32)(32)(32)1684 =-⨯--⨯-⨯=-6+20-56=-42;(3)解:-14-(1-0.5)×13×[3−(−3)3]=-1-12×13×(3+27)=-1-12×13×30=-1-5=-6.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.45.35或-13.【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【详解】解:根据题意得:a+b=0,cd=1,m=4或-4,当m=4时,2563a b m cd m m++-+=0+16-5+24=35;当m=-4时,2563a b m cd m m ++-+=0+16-5-24=-13.【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.46.见解析.【解析】【分析】根据从正面看到的小正方体个数以及排列方式可得从正面看到的图形,同理可得从左面看到的图形,从上面看到的图形,据此画出即可.【详解】如图所示:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.47.(1)599(2)26(3)该厂工人这一周的工资是84630元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与减产的最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.(1)解:前三天生产的辆数是200×3+(5-2-4)=599(辆).故答案为:599;(2)解:超产的最多是星期六,超产16辆;减产的最少是星期五,减产10辆;则16-(-10)=16+10=26(辆),故答案为:26;(3)解:这一周多生产的总辆数是5-2-4+13-10+16-9=9(辆).(1400+9)×60+9×10=84630(元).答:该厂工人这一周的工资是84630元.【点睛】本题考查了正数和负数以及有理数的混合运算,理解正负数的意义,掌握有理数的运算法则是关键.48.(1)(6x ﹣20﹣4.5π)平方米;(2)86.5平方米【解析】【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把20x =,π取3代入(1)中的结论,即可得出答案.【详解】解:(1)由图可知上面的长方形的面积为4(22)(416)x x ⨯--=-(平方米),下面的长方形的面积为2(2)(24)x x ⨯-=-(平方米),∴两个长方形的面积为620x -(平方米),半圆的半径为(42)23+÷=(米),∴半圆的面积为232 4.5ππ⋅÷=(平方米),∴阴影部分的面积为(620 4.5)x π--平方米;(2)当20x =,π取3时,阴影部分的面积=620 4.5x π--62020 4.53=⨯--⨯1202013.5=--=(平方米),86.5∴阴影部分的面积为86.5平方米.49.(1)①4;②4;③7(2)①12或-6;②7;③a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.【解析】(1)根据两点间的距离公式,可得答案;(2)①根据两点间的距离公式,可得答案;②根据线段上的点到线段两端点的距离的和最小,可得答案;③根据线段上的点到线段两端点的距离的和最小,可得答案.(1)解:①数轴上表示5和1的两点之间的距离是4,②数轴上表示-2和-6的两点之间的距离是4,③数轴上表示-4和3的两点之间的距离是7,故答案为:①4,②4,③7;(2)解:①如果表示数a和3的两点之间的距离是9,则可记为:|a-3|=9,则a-3=9或a-3=-9,那么a=12或-6,故答案为:12或-6;②若数轴上表示数a的点位于-4与3之间,则|a+4|+|a-3|=a+4+3-a=7;③∵|a+4|+|a-1|+|a-3|表示数轴上数a和数-4,1,3之间的距离之和,∴a=1时距离的和最小,∴|a+4|+|a-1|+|a-3|=5+0+2=7.∴a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.31。
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.在式子3n -,2a b ,2m s +≤,x ,ah-,s ab =中代数式的个数有()A .6个B .5个C .4个D .3个2.牛奶盒的包装上印有260±5ml ,下列四盒送去质检,不合格的是()A .265mlB .262mlC .258mlD .250ml3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.下列说法中正确的个数为()(1)4a 一定是偶数;(2)单项式237xy 的系数是37,次数是3;(3)小数都是有理数;(4)多项式325322x xy -+是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A .1个B .2个C .3个D .4个5.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A .①B .②C .③D .④6.已知x y y x -=-,2x =,3y =,则2x y -的值为()A .-1B .1C .-1或7D .1或-77.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是()A .0ab >B .b a >-C .0a b +<D .0b a ->8.已知221a a -=,则2364a a -+的值为()A .-1B .1C .-2D .59.如图所示的几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .10.若实数a 、b 、c 在数轴上对应点的位置如下图所示,则||||||c b a b c -++-等于()A .2a c --B .2a b -+C .a-D .2a b-二、填空题11.数9899万用科学记数法表示为____________.12.某棱柱共有8个面,则它的棱数是___________.13.若42n xy 与25m x y -是同类项,则n m =___________.14.若m ,n 为相反数,则m +(-2021)+n 为______.15.化简:3π4π---=____________.16.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数.则2x y -的值为___________.17.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.18.有一个数值转换器的原理如图所示,若开始输入x 的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.三、解答题19.计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭;(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭;(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)224323(2)2⎡⎤---+-÷⎣⎦;(5)()222233a b ab ab a b -++;(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 20.如图,是由8个大小相同的小立方体块搭建的几何体,请分别画出从这个几何体的三个不同方向看到的形状图.21.先化简,再求值:()()23233a ab b ab b ---+⎡⎤⎣⎦,其中()23310a b ++-=.22.已知关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项.求232m m -+()51m -的值.23.已知:点C 、D 、E 在直线AB 上,且点D 是线段AC 的中点,点E 是线段DB 的中点,若点C 在线段EB 上,且DB =6,CE =1,求线段AB 的长.24.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.25.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.(1)将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?(2)如果每百公里耗油10升,那么小王下午耗油多少升?26.在数轴上,四个不同的点,,,A B C D 分别表示有理数a b c d ,,,,且,a b c d <<.(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为;②求点M 表示的有理数m 的值(用含,a b 的代数式表示);(2)已知ab c d+=+,①若三点,,A B C 的位置如图所示,请在图中标出点D 的位置;②a b c d ,,,的大小关系为(用“<”连接)参考答案1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.A 10.A 11.79.89910⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:9899万=98990000=9.899×107.故答案为:9.899×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.18【详解】某棱柱共有8个面,可知这个棱柱为6棱柱,6棱柱有18条棱.13.16【分析】根据同类项的定义示出m ,n 的值,再代入求解即可.【详解】解:∵42n xy 与25m x y -是同类项,∴m=4,n=2.∴nm =24=16.故答案为:16.14.-2021【分析】根据相反数的意义得出0m n +=,从而可计算m +(-2021)+n 的值.【详解】解:∵m ,n 为相反数,∴0m n +=,∴m +(-2021)+n=0-2021=-2021故答案为:-2021【点睛】本题主要考查互为相反数的概念和性质.只有符号不同的两个数互为相反数,互为相反数的两个数的和为0.15.2π7-【解析】【分析】根据绝对值的定义即可得.【详解】解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.16.12【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“-3”与“23x -”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴()2330x -+-=,0x y +=,解得3x =,3y =-,∴()22339312x y -=--=+=.故答案为:12.17.1cm 或9cm 【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB=10cm ,较短的木条为BC=8cm ,∵M 、N 分别为AB 、BC 的中点,∴BM=5cm ,BN=4cm ,①如图1,BC 不在AB 上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM−BN=5−4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.如图,18.-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.19.(1)1(2)1 5(3)-27(4)3(5)2 6a b(6)2562x x--【分析】(1)根据有理数加法运算法则进行计算;(2)根据乘法分配律进行运算即可;(3)根据有理数加减乘除四则混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可;(5)根据整式加减混合运算法则进行计算即可;(6)先去括号,然后合并同类项进行运算即可.(1)解:110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭110.573(2.75)24⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎝⎭⎝⎭76=-1=(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭112112112253545⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643555=-++15=(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369=-+27=-(4)22323(2)42⎡⎤---+-÷⎣⎦4(92)=---+47=-+3=(5)()222233a b ab ab a b -++222233a b ab ab a b=-++26a b=(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 221234422x x x x -+=-+-2562x x --=20.见解析【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,3,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方形数目分别为1,3,1;据此可画出图形.【详解】解:如图所示:21.233a ab -,30【分析】原式去括号,合并同类项进行化简,然后利用绝对值和偶次幂的非负性确定a 和b 的值,从而代入求值.【详解】解:()()23233a ab b ab b ---+⎡⎤⎣⎦236333a ab b ab b=--++233a ab =-;∵()23310a b ++-=∵30a +≥,()2310b -≥,∴30a +=,310b -=,∴3a =-,13b =,当3a =-,13b =时原式()()227330133333⨯--⨯-⨯==+=;22.3【分析】先根据关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项,求出m 的值,然后化简()23251m m m -+-,最后代入求值即可.【详解】解:222622452x mxy y xy x --+-+()224222x m xy y =+--+∵化简后的结果中不含xy 项,∴420m -=,∴2m =,()23251m m m -+-23255m m m=-+-2375m m =-+当2m =时,原式232725=⨯-⨯+12145=-+3=23.线段AB 的长为10【分析】由题意知AB AD DB =+,116322DE DB ==⨯=,314DC DE EC =+=+=,4AD DC ==,将各值代入AB AD DB =+计算即可.【详解】解:∵点E 是线段DB 的中点,且6DB =∴116322DE DB ==⨯=∵1EC =∴314DC DE EC =+=+=∵点D 是线段AC 的中点∴4AD DC ==∴4610AB AD DB =+=+=.24.见解析【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【详解】解:如图所示:25.(1)小王距出车地点的北边12千米处;(2)小王下午耗油7.4升.【分析】(1)根据题意可直接进行求解即可;(2)先求出每次出车的距离之和,然后再进行求解即可.【详解】解:(1)由题意得:()()()()15413101231712++-++-+-++-=-(千米);答:小王距出车地点的北边12千米处.(2)由题意得:15413101231774++++++=(千米),10747.4100⨯=(升);答:小王下午耗油7.4升.26.(1)①0a b +=,②2a b+;(2)①见解析,②a c d b <<<或者c a b d<<<【分析】(1)①根据相反数的性质即可得出答案②根据数轴上两点间的距离公式结合已知条件即可求得(2)①根据数轴上两点间的距离公式可得出AC=DB ,从而确定点D 的位置②根据数轴上的点所表示的数,右边的总比左边的大即可得出答案【详解】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合∴0a b +=M ②为AB 中点,AM BM ∴=.m a b m ∴-=-.2a bm +∴=(2)①∵a b c d +=+,,a b c d <<.∴c-b-a d =,∴AC=DB∴点D 的位置如图所示②∵a b c d +=+,∴c-b-a d =,∴AC=DB如图或∴a c d b <<<或c a b d<<<故答案为:a c d b <<<或c a b d<<<。
北师大版七年级数学上册期中试卷及答案
北师大版七年级数学上册期中试卷及答案得分一二123三456总分一。
填空题(每空1分,共30分)1.有理数-4,500,-2.67,5中,整数是-4,负整数是-4,正分数是500.2.-1的相反数是1,倒数是-1,绝对值是1.3.观察右图,用“>”或“<”填空。
1) a。
3c (4) a+c < 04.平方为0.81的数是0.9,立方得-64的数是-4.5.在(-6)2x2y中,底数是-6,指数是2x2y,-的系数是1.6.长方体是由6个面围成,圆柱是由3个面围成,圆锥是由2个面围成。
7.八棱柱有8个顶点,18条棱,12个面。
8.表面能展成如图所示的平面图形的几何体是长方体和正方体。
9.一辆货车从XXX出发,向东走了4千米到达XXX家,继续走了2.5千米到达XXX家,又向西走了12.5千米到达XXX家,最后回到XXX。
1) XXX家距小彬家16.5千米;(2) 货车一共行驶了35千米。
10.电表的计数器上先后两次读数之差,就是这段时间内的用电量,某家庭6月1日时电表显示的读数是121度,6月7日24时电表显示的读数是163度。
从电表显示的读数中,估计这个家庭六月份的总用电量是804度。
11.如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数ab,请用一个等式表示,a、b、c、d之间的关系是a+b=c+d。
12.一辆公共汽车有56个座位,空车出发,第一站上2位乘客,第二站上4位乘客,第三站上6位乘客,依次下去,第n站上2n位乘客,第19站以后车上坐满乘客。
二。
选择题:(每小题2分,共20分.每小题只有一个正确的选项符合题意)1.B2.C3.A4.C5.B6.D7.B8.C9.A 10.C1.长方体的截面中,边数最多的多边形是( ) A。
四边形B。
五边形 C。
六边形 D。
七边形。
2.下面平面图形经过折叠不能围成正方体的是( ) A。
B。
C。
D.3.下面各正多面体的每个面是同一种图形的是( ) ①正四面体②正六面体③正八面体④正十二面体⑤正二十面体 A。
北师大版七年级上册数学期中试卷及答案【完整版】
北师大版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β. ①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、40°3、724、-405、±26、1800°三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、x=3或-3是原方程的增根;m=6或12.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、25元超市一共购进1200个魔方。
【北师大版】七年级上册数学《期中考试试卷》(含答案解析)
七年级上册数学期中测试卷一、选择题(每题3分,共36分)1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是( )A. B. C. D.3. 罗湖中学在一次扶贫助残活动中,捐款约112000元,请将数字112000用科学记数法表示为( ) A. 60.11210⨯B. 51.1210⨯C. 411.210⨯D. 311210⨯4. 下面计算正确的是( ) A. 325-+=-B. (2)714-⨯=C. 2(1)1-= D. 23(2)3÷-=-5. 多项式232321x y xy -+的次数和项数分别是( ) A. 5,3B. 5,2C. 8,3D. 3,36. 下列平面图形不能够围成正方体的是( )A B. C. D.7. 已知a =2,b=1-,则代数式2a b -的值是( ) A. 0B. 1C. 3D. 48. 单项式42mx y 与223n x y +-是同类项,则( )A. m =1,n =4B. m =2,n =4C. m =4,n =1D. m =2,n =29. 下列各题运算正确的是( )A. 325x y xy +=B. 27411x x x +=C. 221082x y x y -=D. 220xy xy -=10. 用一个平面分別去截下列几何体,截面不能得到圆的是( )A. B. C. D.11. 下列说法中正确的是( ) A. 零既不是正数,也不是负数 B. 正数和负数互为相反数C. 最小的负数是1-D. 如果两个数的绝对值相等,那么这两个数相等12. 有理数a 、b 在数轴上的位置如图所示,则化简代数式a b a b +--的结果是( )A. 2bB. -2aC. 0D. 2a -2b二、填空题(每题3分,共12分)13 |-3|=_________;14. 一件衣服原价a 元,现在按六折出售,这件衣服现在的售价为_______元. 15. 比较大小: 12-____13- (用“>或=或<”填空).16. 观察下列的“蜂窝图”则第20个图案中的“”的个数是______.三、解答题(共52分)17. 计算:(1)(9)(1)--- (2)2223694-⨯--÷+()18. 化简(1)(23)(43)y z z y +--+ (2)22292(4)a b b a +-+19. 先化简,再求值:22213(2)3(2)3x y x y xy xy x y -++-,其中3x =-,13y =.20. 如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.21. 已知a 与b 互为相反数,c 与d 互为倒数,e 的绝对值为1,求220192020a be cd ++-. 22. 某巡警骑摩托车在一条南北大道上巡逻.某天他从岗亭出发,晚上停留在A 处.规定向北方向为正.例如:他先向北行驶8公里记为+8,再向南行驶10公里记为-10,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣7,+13,﹣11,﹣3,+2. (1)该巡警巡逻时离岗亭最远是 千米; (2)A 在岗亭何方?距岗亭多远?(3)若摩托车每行1千米耗油0.08升,那么该摩托车这天巡逻共耗油多少升?23. 在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”. 【提出问题】三个有理数a 、b 、c 满足abc >0,求++a b c a b c的值.【解决问题】由题意得:a ,b ,c 三个有理数都正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即a >0,b>0,c>0时, 则:++a b c a b c=a b ca b c++=1+1+1=3; ②当a ,b ,c 有一个为正数,另两个为负数时,设a >0,b<0,c<0, 即:++a b c a b c=a b ca b c --++=1+(−1)+(−1)=−1,所以++a b c a b c的值为3或−1. 【探究】请根据上面的解题思路解答下面的问题: (1)已知a <0,b>0,c>0,则a a= ,b b= ,c c= ;(2)三个有理数a ,b ,c 满足abc <0,求++a b c ab c的值;(3)已知|a |=3,|b|=1,且a<b ,求a +b 的值。
北师大版七年级上册数学期中考试试题及答案
北师大版七年级上册数学期中考试试卷一、选择题。
(每小题只有一个答案正确)1.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .12.据世界卫生组织2020年10月21日公布的数据显示,全球累计新冠确诊病例达4066万多例,将数据4066万用科学记数法表示为( )A .4.066×105B .4.066×106C .4.066×107D .4.066×108 3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是( ) A . B . C . D . 4.下列计算正确的是( )A .-2a +5b =3abB .-22+│-3│=7C .3ab 2-5b 2a =-2ab 2D .-5÷3×(-13)=5 5.下列说法中正确的是( )A .有理数就是有限小数和无限小数的统称B .数轴上的点表示的数都是有理数C .一个有理数不是整数就是分数D .正分数、零、负分数统称为分数 6.若a ,b 互为相反数,c ,d 互为倒数,则代数式(a+b ﹣1)(cd+1)的值是( ) A .1 B .0 C .﹣1 D .﹣2 7.已知|a -2|+(b +3)2=0,则a b 的值是( )A .-6B .6C .-9D .98.如果2x a+1y 与x 2y b ﹣1是同类项,那么a b的值是( ) A .12 B .32 C .1 D .39.数a ,b 在数轴上的位置如图所示,下列式子中错误的是( )A .a <bB .-a <bC .a +b <0D .b -a >0 10.计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 11.已知21x y -=,则324x y -+的值为( )A .-1B .0C .1D .212.如果把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .491831=+D .361521=+二、填空题13.如果风车顺时针旋转60°记作+60°,那么逆时针旋转80°记作________.14.如果数轴上点A 表示3,将A 向左移动6个单位长度,再向右移动4个单位长度,那么终点表示的数是________. 15.如果对于任何非零有理数a ,b 定义一种新的运算“★”如下:a ★b =1b a-,则﹣4★2的值为_____.16.计算:(-1)+(-1)2+(-1)3+……+(-1)2020=________.17.冬季某天我国三个城市的最高气温分别是10C ︒-,1℃,7C ︒-,则任意两城市最高气温的最大温差是______.三、解答题18.计算与化简:(1)-9+5-(-12)+(-3) (2)-2÷(-124)×(-4.5) (3)(-32)×(316-58+74) (4)-34×[-32×(-23)2+(-22)]19.化简(1)(﹣2ab+3a )﹣2(2a ﹣b )+2ab ;(2)先化简,再求值:5a 2+3b 2+2(a 2﹣b 2)﹣(5a 2﹣3b 2),其中a =﹣1,b =12.20.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在①上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm,请计算,这个长方体纸盒的体积是___________cm3.21.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组10名女生的成绩记录,其中“+”号表示成绩大于18秒,“-”号表示成绩小于18秒.求这个小组女生的达标率为多少平均成绩为多少?22.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h(单位为:cm).(1)用m,n,h表示所需地毯的面积;(2)若m=160,n=60,h=75,求地毯的面积.23.福田农批市场某商店出售茶杯和茶壶,茶杯每个定价4元,茶壶每个定价20元.该商店的优惠办法是买一个茶壶赠一个茶杯.某顾客欲购买茶壶5个,购买(包括送的)茶杯x 个(x 5).(1)用含x的式子表示这位顾客应付的钱数;(2)当x=12时,该顾客应付多少元?24.“数形结合”是重要的数学思想.请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于│m-n│.如果表示数a和-2的两点之间的距离是3,记作│a-(-2)│=3,那么a=.(2)利用绝对值的几何意义,探索│a+4│+│a-2│的最小值为______,若│a+4│+│a -2│=10,则a的值为________.(3)当a=______时,│a+5│+│a-1│+│a-4│的值最小.(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度.25.小林同学积极参加体育锻炼,天天坚持跑步,他每天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小林跑步情况的记录:(1)星期三小林跑了多少米?(2)小林跑步最少的一天跑了多少米?跑步最多的一天比最少的一天多跑了多少米?m,求本周小林用于跑步的时间.(3)若小林跑步的平均速度为240/min参考答案1.A【分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小, 所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.2.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4066万=40660000将40660000的小数点向左移动7位,所以将40660000用科学记数法表示为4.066×107故选C.【点睛】本题考查了科学记数法,本题的关键是判断小数点向左移动了几位.3.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点逐项判断即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、手的对面是勤,所以本选项不符合题意;B、手的对面是口,所以本选项符合题意;C、手的对面是罩,所以本选项不符合题意;D、手的对面是罩,所以本选项不符合题意.故选:B.【点睛】本题考查了正方体相对面上的文字,属于常考题型,熟知正方体相对两个面的特征是解题的关键.4.C【分析】根据合并同类项,有理数的运算,绝对值的运算法则进行计算即可.【详解】A、-2a+5b=-2a+5b,故A项错误;B、-22+│-3│=-1,故B项错误;C、3ab2-5b2a=-2ab2,故C项正确;D、-5÷3×(-13)=59,故D项错误;故选:C.【点睛】本题考查了合并同类项,有理数的运算,绝对值,掌握运算法则是解题关键.5.C【分析】根据有理数的分类和定义、数轴的特点、分数的定义对每个选项逐一判断即可解答.【详解】A、有理数是整数和分数的统称,即包括有限小数和无限循环小数,故此选项错误;B、数轴上的点与实数具有一一对应关系,包括有理数和无理数,故此选项错误;C、有理数是整数与分数的统称,故此选项正确;D、分数包括正分数和负分数,零是整数,不属于分数,故此选项错误,故选:C.【点睛】本题考查有理数、分数的定义,数轴的特点,熟知这些知识是解答的关键.6.D根据互为相反数的定义可得a+b=0,倒数的定义可得cd=1,然后代入代数式进行计算即可得解.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴(a+b-1)(cd+1)=(0-1)(1+1)=-2.故选:D.【点睛】本题考查了代数式求值,相反数及倒数.互为相反数的数相加得零;互为倒数的两数相乘得1.7.D【分析】根据非负性求出a,b,故可求解.【详解】∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0解得a=2,b=-3∴a b=(-3)2=9故选D.【点睛】此题主要考查非负性的应用,解题的关键是熟知绝对值与乘方的性质及运算法则.8.A【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入ab进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以ab=12,【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键. 9.B【分析】根据a ,b 在数轴上的位置易判断a ,b 的正负性,从而判断各式的正确性.【详解】解:由图易有a <0<b 且|a |>|b |,∴a <b ,a +b <0, b -a >0,-a >b .故选:B【点睛】此题考查了运用数轴比较数的大小以及有理数的运算法则.10.A【详解】原式去括号合并即可得到结果.解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y ,故选A .11.C【分析】根据21x y -=,得到242x y -+=-,代入324x y -+中,计算即可.【详解】解:∵21x y -=,∴21x y -+=-,∴242x y -+=-,∴324321x y -+=-=,故答案为:C .【点睛】本题考查了代数式的求值,正确掌握整体代入思想是解题的关键.12.D【分析】题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),只有D、36=15+21符合,故选:D.【点睛】本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.-80°【分析】为了表示两种相反意义的量,出现了负数,也就是说正数和负数是两种相反意义的量,如果顺时针旋转60°记作+60°,那么逆时针旋转80°记作−80°.【详解】解:顺时针旋转60°记作+60°,那么逆时针旋转80°记作−80°.故答案为:−80°.【点睛】本题重点是考查正数和负数,要明确正、负数是两种相反意义的量.14.1【分析】根据数轴的性质,通过计算即可得到答案.【详解】数轴上点A表示3,将A向左移动6个单位长度,即:3-6=-3;再向右移动4个单位长度,即:-3+4=1;故答案为:1.【点睛】本题考查了数轴的知识;解题的关键是熟练掌握数轴的性质,从而完成求解.15.1 12 -【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.【详解】解:根据题意:-4★2=24--1=112-.故答案为:112 -.【点睛】本题考查了有理数的混合运算及新定义下的运算.有理数的混合运算首先弄清楚运算顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,同级运算从左至右依次计算.弄清题中的新定义是解题的关键.16.0【分析】根据-1的奇次幂等于-1,-1的偶次幂等于1将各式化简,再计算有理数的加减法.【详解】(-1)+(-1)2+(-1)3+……+(-1)2020=-1+1-1++……+1=0,故答案为:0.【点睛】此题考查有理数的乘方运算,有理数的加减运算,正确掌握-1的乘方计算结果是解题的关键.17.11℃【解析】【分析】根据题意列出代数式:1℃-(-10℃)=11℃,1℃-(-7℃)=8℃,-7℃-(-10℃)=3℃,通过比较即可推出任意两城市中最大的温差是11℃.【详解】∵三个城市的最高气温分别是−10℃,1℃,−7℃,∴1℃−(−10℃)=11℃,1℃−(−7℃)=8℃,−7℃−(−10℃)=3℃,∵11℃>8℃>3℃,∴任意两城市中最大的温差是11℃。
北师大版七年级上册数学《期中检测试卷》含答案
北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A. b a a b ->>->B. a a b b >->>-C. b a b a >>->-D. b a a b -<<-<3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯5. 下列图形中是正方体表面展开图的是( )A. B.C. D.6. 单项式25x y-的系数和次数分别是( )A.1 5 -,2 B. -1,3 C.15-,3 D. -1,27. 如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是().A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18. 下列计算正确的是()A. 22232x y yx x y-= B. 532y y-= C. 277a a a+= D. 325a b ab+=9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n个图案中有白色砖()块A. 42n+ B. 64n+ C. 6n D. 24n+10. 下列结论中正确的是()A. 100101(1)(1)1-+-=- B. 若n为正整数,则2(1)1n-=C. 若||||a b=,则a b= D. 15(3)53-÷⨯+=-二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.13. 若m n、满足221|(2)|0m n++-=,则n m=__________.14. 已知x y,互为相反数且均不为0,a b,互为倒数,m是最大的负整数.则代数式2019x y xabm y+-+的值为__________.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯- 16. (1)化简:2222(324)(343)x xy y xy y x +---+.(2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题: (1)用含x 的代数式表示应付的车费; (2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少? 20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a xx b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款. 学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算? (2)若只在一家商店购买,请用含x代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱购买方案并求出最少的花费是多少. 28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ;②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A b a a b ->>-> B. a a b b >->>- C. b a b a >>->- D. b a a b -<<-<【答案】D 【解析】 【分析】根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,进而可得出结论. 【详解】解:∵由图可知,a <0<b ,|a|<|b|=b , ∴b >-a >a >-b . 故选:D .【点睛】本题考查的是有理数的大小比较,数轴上右边的点表示的数总比左边的大是解答此题的关键. 3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米【答案】D 【解析】 【分析】根据正负数的性质,判断最符合标准的即可. 【详解】∵0.20.30.50.6-<<<- ∴-0.2毫米最符合标准 故答案为:D .【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯【答案】B 【解析】 【分析】根据科学记数法的定义以及性质进行表示即可. 【详解】28000万82.810=⨯ 故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键. 5. 下列图形中是正方体表面展开图的是( )A. B.C. D.【答案】C 【解析】【分析】根据正方体表面的十一种展开图的性质进行判断即可. 【详解】A. 不属于正方体表面展开图,错误; B. 不属于正方体表面展开图,错误; C. 属于正方体表面展开图,正确; D. 不属于正方体表面展开图,错误; 故答案为:C .【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2 B. -1,3C. 15-,3D. -1,2【答案】C 【解析】 【分析】根据单项式的定义以及性质来判断系数和次数即可. 【详解】系数和次数分别是15-,3 故答案为:C .【点睛】本题考查了单项式的系数和次数问题,掌握单项式的定义以及性质是解题的关键. 7. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2 B. m =-1,n =2C. m =-2,n =2D. m =2,n =-1【答案】B 【解析】试题分析:本题考查同类项的定义,单项式x 2y m+2与x n y 的和仍然是一个单项式,意思是x 2y m+2与x n y 是同类项,根据同类项中相同字母的指数相同得出. 解:由同类项定义, 可知2=n,m+2=1, 解得m=﹣1,n=2. 故选B .考点:同类项.8. 下列计算正确的是( )A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=【答案】A 【解析】 【分析】根据整式的加减法法则对各项进行运算即可. 【详解】A. 22232x y yx x y -=,正确; B. 532y y y -=,错误; C. 78a a a +=,错误; D. 3232a b a b +=+,错误; 故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +【答案】A 【解析】 【分析】根据图形的规律可得第n 个图案中有白色砖块的数量应是差为4的等差数列,求出代数式即可. 【详解】第1个图案中有白色砖6块 第2个图案中有白色砖10块 第3个图案中有白色砖14块 故第n 个图案中有白色砖24n +块 故答案为:A .【点睛】本题考查了图形的规律题,掌握图形的规律求出代数式是解题的关键.10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=- B. 若n 为正整数,则2(1)1n -= C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-【答案】B 【解析】 【分析】根据幂的运算法则、绝对值的性质、实数的混合运算法则对各项进行计算即可. 【详解】A. ()100101(1)(1)110-+-=+-=,错误;B. 若n 为正整数,则2(1)1n -=,正确;C. 若||||a b =,则a b =±,错误;D. 15(3)453-÷⨯+=-,错误; 故答案为:B .【点睛】本题考查了实数的运算问题,掌握幂的运算法则、绝对值的性质、实数的混合运算法则是解题的关键.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.【答案】 (1). 8- (2). 2- 【解析】 【分析】直接算减法即可;先算乘方,再算除法即可. 【详解】538--=-28(2)2-÷-=-故答案为:8-,2-.【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键. 12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.【答案】38【解析】【分析】根据题意可知,该程序计算是先乘以4,再减去2,若结果大于10,则就是所求,若小于等于10,则重新进行计算.【详解】输入x=3,∴3x-2=3×4-2=10,所以应将10再重新输入计算程序进行计算,即10×4-2=38,故答案为38.【点睛】本题考查了程序运算,代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.13. 若m n 、满足221|(2)|0m n ++-=,则n m =__________. 【答案】14【解析】【分析】根据绝对值和平方的非负性,求出mn 、的值,再代入求解即可. 【详解】∵221|(2)|0m n ++-= ∴21020m n +=⎧⎨-=⎩解得1,22m n =-= 将1,22m n =-=代入n m 中 21124n m ⎛⎫=-= ⎪⎝⎭ 故答案为:14. 【点睛】本题考查了整式的运算,掌握绝对值和平方的非负性是解题的关键.14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y x ab m y+-+的值为__________.【答案】2020-【解析】【分析】 根据相反数和倒数的定义以及性质得0111x x y ab m y +==-==-,,,,再代入求解即可. 【详解】∵x y ,互为相反数且均不为0, ∴0,1x x y y+==- ∵a b ,互为倒数∴1ab =∵m 是最大的负整数∴1m =- 将0111x x y ab m y +==-==-,,,代入2019x y x ab m y+-+中 原式020191=2020---=故答案为:2020-. 【点睛】本题考查了整式的混合运算,掌握相反数和倒数的定义以及性质、最大的负整数是1-是解题的关键.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷- (3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯-【答案】(1)11 (2)28- (3)96.89- (4)12-【解析】【分析】(1)直接算加减法即可.(2)先算乘方,再算乘除法,最后算加法即可.(3)根据乘法分配律计算即可.(4)先算乘方,再算中括号内的乘法,再算中括号内的减法,再算乘法,最后算减法即可,.【详解】(1)20(14)(18)13+----11=(2)2210(2)8()3-⨯--÷- 10412=-⨯+4012=-+28=-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- 36296.89111111⎛⎫=⨯--- ⎪⎝⎭()96.891=⨯-96.89=-(4)2214[102(3)]2--⨯-⨯- 116[1029]2=--⨯-⨯ 116[1018]2=--⨯- 116[8]2=--⨯- 16+4=-12=-【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键.16. (1)化简:2222(324)(343)x xy y xy y x +---+. (2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.【答案】(1)xy - (2)7-【解析】【分析】(1)先去括号,再合并同类项即可.(2)先去小括号,再去中括号,最后算加减法即可化简,再代入求值即可.【详解】(1)2222(324)(343)x xy y xy y x +---+ 2222324343x xy y xy y x =+--+-xy =-.(2)362(31)(7)[]y x y x y --+-+-3662[2]7y x y x y =---++-355[4]y x y =---3+554+y x y =-8+45y x =-将23x y -=代入原式中原式()8+542544357y x x y =-=--+=-⨯+=-.【点睛】本题考查了整式的混合运算,掌握整式混合运算法则、合并同类项的方法是解题的关键. 17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.【答案】作图见解析【解析】【分析】根据几何体的三视图的性质,作出这个几何体的正视图和左视图即可.【详解】如图所示,即为所求.正视图左视图【点睛】本题考查了几何体的三视图问题,掌握几何体的三视图的性质是解题的关键.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?【答案】(1)西方向,2千米(2)180【解析】【分析】(1)把所有行驶记录相加,即可判断最后位置方向和距离.(2)把所有行驶记录的绝对值相加,再除以汽车行驶每千米的耗油量,即可求解.-+--+--++=-.【详解】(1)1098123767642∵约定向东为正,向西为负∴养护小组最后到达的地方在出发点的西方向,距出发点2千米.(2)10+9+8+12+3+7+6+7+6+41800.4=(升) 故这一天养护小组的汽车共耗油180升.【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题:(1)用含x 的代数式表示应付的车费;(2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少?【答案】(1)()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)11 (3)11 【解析】【分析】(1)根据题意,列出代数式即可;(2)将5x =代入方程求解即可;(3)将20y =代入方程求解即可.【详解】(1)设应付的车费为y 元,由题意得()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)∵53x =>∴()8 1.55311y =+⨯-=故他应付的车费为11元.(3)∵208>∴将20y =代入()8 1.53y x =+-中()208 1.53x =+-解得11x =故小明乘坐的路程是11km .【点睛】本题考查了一元一次方程的行程问题,掌握解一元一次方程的方法是解题的关键.20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?【答案】证明见解析【解析】【分析】先化简多项式,然后分别代入2a =-,3b =-和2a =,3b =-求原式的值,即可得证. 【详解】2222215[(31)2(4)]2a b ab a b a b ab -+--++ 222225[3128]a b ab a b a b ab =-+----225[9]a b a b =--2259a b a b =-+249a b =+当2a =-,3b =-时原式()()2423939=⨯-⨯-+=-当2a =,3b =-时原式()2423939=⨯⨯-+=- ∴小明做题时把2a =-错抄成2a =,但他最终求出的值也正确.【点睛】本题考查了多项式的计算问题,掌握化简多项式的方法、代入求值法是解题的关键.四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a x x b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.【答案】9【解析】【分析】根据多项式的定义以及性质求出,a b 的值,再代入求值即可.【详解】∵2324(2)25a x x b x x -+-+-+是关于x 的五次四项式∴2520a b -=⎧⎨+=⎩解得7,2a b ==-将7,2a b ==-代入-a b 中原式()729=--=故答案为:9.【点睛】本题考查了多项式的问题,掌握多项式的定义以及性质是解题的关键.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.【答案】 (1). 14 (2). 10【解析】【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______【答案】2-..【解析】【分析】首先认真分析找出规律,然后再代入数值计算.【详解】在1⊕x 中,1相当于a ,x 相当于b ,∵x=2,∴符合a<b 时的运算公式,∴(1⊕x )x=2.在3⊕x 中,3相当于a ,x 相当于b ,∵x=2,∴符合a ⩾b 时的运算公式,∴3⊕x=4.∴(1⊕x)−(3⊕x)=2−4=−2.【点睛】此题考查有理数的混合运算,掌握运算法则是解题关键24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.【答案】222a b c -+【解析】【分析】根据绝对值的性质以及数轴的性质进行计算即可.【详解】由数轴得0,0,0a c b c b a +>-<-> ∴a c b c b a ++---a c cb b a =++--+222a b c =-+故答案为:222a b c -+.【点睛】本题考查了绝对值的运算问题,掌握绝对值的性质以及数轴的性质是解题的关键.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.【答案】0【解析】【分析】根据绝对值的性质求出m 、n 的值,再代入求值即可.【详解】当0,0,0a b c >>>时,可得最大值=1+1+1+14a b c abc b a cm a c b +++== 当0,0,0a b c <<<时,可得最小值=11114a b c abc a b c a n bc+++----=-= ∴()20202020()440m n +=-=故答案为:0. 【点睛】本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.【答案】-216.【解析】试题分析:先化简()()423A A B A B ⎡⎤+--+⎣⎦可得34A B -,再把2222424,363A x xy y B x xy y =-+=-+代入34A B -可得其值为18xy ,再由23,16,0,x y xy ==<求得x 、y 的值,代入即可求值.试题解析:解:()()423A A B A B ⎡⎤+--+⎣⎦=423334A A B A B A B +---=-, 所以34A B -=22223(424)4(363)x xy y x xy y -+--+=222212612122412x xy y x xy y -+-+-=18xy ∵23,16,x y ==∴3,4,x y =±=±∵0,xy <∴x=3,y=-4或x=-3,y=4把x=3,y=-4代入,原式=183(4)216⨯⨯-=-;把x=-3,y=4代入,原式=18(3)4216⨯-⨯=-.考点:整式的加减混合运算.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款.学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算?(2)若只在一家商店购买,请用含x 的代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱的购买方案并求出最少的花费是多少.【答案】(1)若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【解析】【分析】(1)分别根据题意计算出若只在甲购买和若只在乙购买的花费,比较两个花费的大小,即可判断哪种方案更划算.(2)根据题意列出代数式表示即可.(3)设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元,可得方程y=165760x -+,再根据020x ≤≤,即可确定最省钱的购买方案.【详解】(1)若只在甲购买:()20020+6020405600⨯-⨯=(元)若只在乙购买:2002090+4060905760⨯⨯⨯⨯=%%(元)∵56005760<若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在甲购买: ()20020+2040403200x x ⨯-⨯=+若只在乙购买: 2002090+4090360036x x ⨯⨯⨯=+%%故若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)∵单买领带时,乙商店比甲商店便宜∴要想花费最少,在甲商店购买的西装套数等于领带的条数∴设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元 ()()2002009020409060y x x x =+⨯⨯-+⨯⨯-%%=165760x -+.∵020x ≤≤∴当20x 时,总花费y 有最小值最小值为162057605440-⨯+=故当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质以及最值问题是解题的关键.28. (1)探索材料1(填空): 数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ; ②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .【答案】(1)探索材料1(填空):3,46,3,,4x --,; (2)探索材料2(填空):①点A 和点B 之间;②点B 上;③点B 和点C 之间;(3)结论应用(填空):①7,34x -≤≤;②8,3-;③18,42x -≤≤.【解析】【分析】 (1)探索材料1(填空):根据给出的材料填写即可; (2)探索材料2(填空):分情况讨论点P 的位置,使点P 到其他点的距离之和最小;(3)结论应用(填空):根据探索材料2得出的结论填写即可.【详解】(1)探索材料1(填空):253-=,()314--=,()6363+=--,()44x x +=--故答案:3,46,3,,4x --,. (2)探索材料2(填空):①1)当点P 在点A 左边2PA PB PA AB +=+2)当点P 在点A 之间PA PB AB +=3)当点P 在点B 右边2PA PB PB AB +=+∴当点P 在点A 和点B 之间,才能使P 到A 的距离与P 到B 的距离之和最小②1)当点P 在点A 左边2PA PB PC PA PB AC ++=++2)当点P 在点A 和点B 之间PA PB PC AC BP ++=+3)当点P 在点B 和点C 之间PA PB PC AC BP ++=+4)当点P 在点C 右边2+PA PB PC PC PB AC ++=+∴最小值为AC BP +,当点P 在点B 上时,值最小为AC∴当点P 在点B 上时,才能使P 到A B C ,,三点的距离之和最小③1)当点P 在点A 左边42PA PB PC PD PA AB BC AD +++=+++2)当点P 在点A 和点B 之间2PA PB PC PD PB BC AD +++=++3)当点P 在点B 和点C 之间PA PB PC PD AD BC +++=+4)当点P 在点C 和点D 之间2PA PB PC PD PC BC AD +++=++5)当点P 在点D 右边42PA PB PC PD PD CD BC AD +++=+++∴当点P 在点B 和点C 之间时,才能使P 到A B C D ,,,四点的距离之和最小故答案为:①点A 和点B 之间;②点B 上;③点B 和点C 之间.(3)结论应用(填空):①由探索材料2得,当34x -≤≤时,|3||4|x x ++-有最小值,最小值为|3||4|347x x x x ++-=++-=②由探索材料2得,这是在求点x 到6,3,2--三个点的最小距离,∴当3x =-时,|632x x x ++++-|有最小值,最小值为|3303386325-++++-=+--+=| ③由探索材料2得,这是在求点x 到7,4,2,5--四个点的最小距离,∴当42x -≤≤时,7425||x x x x ++++-+-有最小值,最小值为7425|742|518x x x x x x x x ++++-+-=++++-+-=.故答案为:①7,34x -≤≤;②8,3-;③18,42x -≤≤.【点睛】本题考查了数轴上两点之间的距离最值问题,掌握数轴上两点之间的距离公式、绝对值的性质是解题的关键.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。
北师大版七年级上册数学期中测试卷及答案
班级
1班
2班
3班
4班
实际购数量(本)
_____
33
_____
21
实际购数量与计划购数量的差值(本)
+12
_____
﹣8
﹣9
(1)完成表格;
(2)根据记录的数据可知4个班实际一共购书_____本?
A. B. C. D.【答案】C【解析】【分析】
根据平面图形的折叠以及立体图形的表面展开图的特点解题.
【详解】A、个方格中有“田”字的,不能组成正方体,故A错.
B、出现U字形,不能组成正方体,故B错.
C、可以组成正方体,故C正确.
D、有两个面重合,不能组成正方体,故D错.
故本题选C
【点睛】考查了展开图叠成几何体,空间观念要强。也可以记住正方体展开图的形式:一四一有6种,一三二有3种,二二二和三三各1种.
(3)书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届4个班实际购书最少花费多少元?
30.若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为39.
9.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()
A. B. C. D.
10.若一个多边形的对角线共有14条,则这个多边形的边数是( )
七年级北师大版数学上册期中考试试卷附答案
ab 七年级上册期中考试题一、正确选择(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,把符合题目要求的选项前的字母填写在题后的括号内)1.-3的倒数是( ) A .-3 B .3 C .31 D .31- 2.a-b 的相反数是( ) A .a-b B . b - a C .- a-b D 、不能确定3.小明从观察图1所示的两个物体,看到的是图2中的………………( )4. 冬季某天我国三个城市的最高气温分别是-10°C ,1°C ,-7°C ,把他们从高到低排列正确的是 ( )A. -10°C , -7°C ,1°C ,B. -7°C , -10°C ,1°C ,C. 1°C ,-7°C ,-10°C ,D. 1°C ,-10°C , -7°C5.两个有理数的积为负数,和也为负数,那么这两个数( )A .都是负数,B .互为相反数 CD .绝对值较大的数是负数,另一个是正数(A )(B )(C )7 .右图是一数值转换机,若输入的x 为-5,则输出的结果为( A. 11 B. -9 C. -17 D. 218.在220092008)3(,22,)1(,)1(----这四个数中,最大的数与最小的数的和等于( ) A. -13 B. 8 C. -5 D. 59.下列说法正确的是( )A 、a 是代数式,1不是代数式;B 、表示a 、b 的积的2倍的代数式为ab2;C 、xy 的系数是0.D 、a 、b 两数差的平方与a 、b 两数的积的4倍的和表示为(a-b)2+4ab;10.观察下列算式:,, , , , , , , 656132187372932433813273933387654321======== 根据上述算式中的规律,你认为20083的末位数字是( ).(A )3 (B )9 (C )7 (D )1二、准确填空(每小题3分,共24分)11.单项式33y x -的系数是_____ 。
北师大版数学七年级上册《期中测试题》及答案解析
北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 在0,-1,5,-0.5四个数中,最大的数是( ) A. 0B. -1C. 5D. -0.52. ﹣9的相反数是【 】 A. 9B. ﹣9C.19D. ﹣193. 下列各选项中的两项为同类项的是( ) A. 2x -与223xy B. 2x 与2yC. 2yx 与3xy -D. 3xy 与22x y4. 用代数式表示“比的32大1的数”是( ) A.312a + B. 213a +C.52a D.512a - 5. 下列各式符合代数式书写规范的是( ) A. 8aB.s tC. 1m -元D. 115x6. 下列计算正确的是( ) A. 4216-=B. |2|2--=C. 231-+=D. 13223⎛⎫÷-⨯=- ⎪⎝⎭7. 下列结论中不正确的是( ) A. 最小的正整数为1 B. 最大的负整数为-1 C. 绝对值最小的有理数为0 D. 倒数等于它本身的数为18. 若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是( ) A. 3B. 6C. 8D. 109. 下列各数: 5,13, ,0.1010010001…,0.01-,其中是有理数的有( ) A. 2个B. 3个C. 4个D. 5个10. 根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A. 9B. 7C. ﹣9D. ﹣711. 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A. 56B. 58C. 63D. 72 12. 已知、互为相反数,、互为倒数,且||3m =,则22019242()a m b cd -+-的值是( )A. 2017B. -35C. -36D. -37二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡中对应的横线上.13. 受“网红重庆”的影响,到重庆旅游的人数大幅增加,在刚刚过去的国庆长假,重庆在旅游城市排名中增速32.8%,实现旅游收入187****0000,把数据187****0000用科学计数法表示为______.14. 单项式352x y -系数是______.15. 若规定一种特殊运算:2aa b ab b b⊗=-+,则2(3)⊗-=______. 16. 多项式21(4)72mx m x x --++是关于的四次三项式,则的值是______. 17. 若1x =,24y =,且0xy >,则x y +=______.18. 对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记()33m D m =,若()D m 是完全平方数,则m =______.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19. 先画数轴,然后在数轴上表示下列各数,并按照从小到大顺序用“<”号连接起来.-3,112,122-,1,20. 计算:(1)(3)6(8)-+-+; (2)1115226511⎛⎫⎛⎫÷-+⨯-⎪ ⎪⎝⎭⎝⎭;(3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭. 21.化简:(1)()()225251a a a a ---+; (2)2(21)5(2)32x y x y y +----+. 22. (1)已知、满足:2302|()|y x ++-=,是最大的负整数,先化简再求值:()()222234x y xyz x y xyz x y +---;(2)已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--值.23. 某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)(1)生产量最多的一天比生产量最少的一天多生产多少辆? (2)半年内总生产量是多少?比计划多了还是少了,增加或减少多少?24. 如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试求代数式3232122(3)4a b a b ---的值.25. 小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积:______;用代数式表示窗户能射进阳光的面积:______;(结果保留)(2)小亮又设计了如图2空帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?(用代数式表示)四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26. 如图已知数轴上点、分别表示、,且|6|b +与2(9)a -互为相反数,为原点.(1)a =______,b =______;(2)将数轴沿某个点折叠,使得点与表示-10的点重合,则此时与点重合的点所表示的数为______; (3)若点M 、分别从点、同时出发,点M 以每秒1个单位长度的速度沿数轴向左匀速运动,点以每秒2个单位长度的速度沿数轴向右匀速运动,到点后立刻原速返回,设运动时间为(0)t t >秒. ①点M 表示的数是______(用含的代数式表示); ②求为何值时,2MO MA =;③求为何值时,点M与相距3个单位长度.答案与解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 在0,-1,5,-0.5四个数中,最大的数是( ) A. 0 B. -1C. 5D. -0.5【答案】C 【解析】 【分析】根据有理数的大小比较方法解答即可. 【详解】∵-1<-0.5<0<5, ∴四个数中,最大的数是5, 故选:C.【点睛】此题考查有理数的大小比较,负数正数大于零,零大于负数,两个负数绝对值大的反而小. 2. ﹣9的相反数是【 】 A. 9 B. ﹣9C.19D. ﹣19【答案】A 【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此﹣9的相反数是9.故选A . 3. 下列各选项中的两项为同类项的是( ) A. 2x -与223xy B. 2x 与2yC. 2yx 与3xy -D. 3xy 与22x y【答案】C 【解析】 【分析】所含字母相同,相同字母的指数也分别相同的项是同类项,根据定义解答即可. 【详解】A.所含字母不同,故不是同类项;B. 所含字母不同,故不是同类项;C.符合同类项的特点,故是同类项;D.所含相同字母的指数不相同,故不是同类项,故选:C.【点睛】此题考查同类项的定义,熟记定义并掌握同类项的特点即可正确解答问题.4. 用代数式表示“比的32大1的数”是()A. 312a+ B.213a+ C.52a D.512a-【答案】A 【解析】【分析】根据题意列式312a+,即可选出答案.【详解】∵的32是32a,∴比的32大1的数是312a+,故选:B.【点睛】此题考查列代数式,正确理解题意明确各量之间的关系是解题的关键.5. 下列各式符合代数式书写规范的是()A. 8aB. stC. 1m-元 D.115x【答案】B【解析】【分析】根据代数式书写要求解答即可.【详解】A.应为8a,故不正确;B.书写正确;C.多项式后有单位时,多项式应加括号,故错误;D.系数为带分数时应写成假分数,故错误,故选:B.【点睛】此题考查整式的书写形式,正确掌握整式的书写要求即可解答问题.6. 下列计算正确的是( ) A. 4216-= B. |2|2--=C. 231-+=D. 13223⎛⎫÷-⨯=- ⎪⎝⎭【答案】C 【解析】 【分析】根据有理数的乘方、绝对值、加法、乘除混合运算计算后判断即可得到答案. 【详解】A. 4216-=-,故该项错误; B. |2|2--=-,故该项错误; C.计算正确;D. 132183⎛⎫÷-⨯=- ⎪⎝⎭,故该项错误, 故选:C.【点睛】此题考查有理数的计算,正确掌握有理数的乘方、绝对值、加法、乘除混合运算方法即可正确解答. 7. 下列结论中不正确的是( ) A. 最小的正整数为1 B. 最大的负整数为-1 C. 绝对值最小的有理数为0 D. 倒数等于它本身的数为1【答案】D 【解析】 【分析】依次判断各项即可得到答案. 【详解】A.说法正确; B.说法正确; C.说法正确;D.倒数等于它本身的数为1或-1,故该项错误, 故选:D.【点睛】此题考查正整数、负整数、绝对值、倒数的定义. 8. 若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是( ) A. 3B. 6C. 8D. 10【答案】C 【解析】 【分析】和为单项式即两项是同类项,根据同类项定义列式计算m 、n 的值即可得到答案. 【详解】由题意得:m-1=2,n=2, ∴m=3,328m n ==,故选:C.【点睛】此题考查单项式的定义,熟记单项式的特点即可解答问题. 9. 下列各数: 5,13, ,0.1010010001…,0.01-,其中是有理数的有( ) A. 2个 B. 3个C. 4个D. 5个【答案】B 【解析】 【分析】整数和分数统称为有理数,根据有理数定义解答即可. 【详解】有理数有:5,13,0.01-,共3个, 故选:B.【点睛】此题考查有理数的定义,正确掌握有理数的定义及特点即可解题.10. 根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A. 9B. 7C. ﹣9D. ﹣7【答案】C 【解析】【分析】先求出x=7时y 值,再将x=4、y=-1代入y=2x+b 可得答案. 详解】∵当x=7时,y=6-7=-1, ∴当x=4时,y=2×4+b=-1, 解得:b=-9, 故选C .【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.11. 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A 56 B. 58 C. 63 D. 72【答案】B 【解析】试题分析:第一个图形小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n 个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题12. 已知、互为相反数,、互为倒数,且||3m =,则22019242()a mb cd -+-的值是( )A. 2017B. -35C. -36D. -37【答案】D 【解析】 【分析】根据相反数的定义求出a+b=0,根据倒数的定义得到cd=1,再求出m ,代入代数式计算即可. 【详解】∵、互为相反数, ∴a+b=0, ∵、互为倒数,∴cd=1,∵||3m =,∴3m =±,∴29m =,∴22019242()a m b cd -+-,220192()4()a b m cd =+--,=-36-1,=-37,故选:D.【点睛】此题考查整式的计算,将字母或代数式的值代入求值,题中添加括号是难点.二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡中对应的横线上.13. 受“网红重庆”的影响,到重庆旅游的人数大幅增加,在刚刚过去的国庆长假,重庆在旅游城市排名中增速32.8%,实现旅游收入187****0000,把数据187****0000用科学计数法表示为______.【答案】101.876210⨯【解析】【分析】把一个数表示成10n a ⨯的形式,其中10a ≤<1∣∣,n 是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】10187****0000 1.876210=⨯,故答案为:101.876210⨯ .【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.14. 单项式352x y -的系数是______.【答案】-2【解析】【分析】单项式中的数字因数是单项式的系数,根据定义即可解答.【详解】单项式352x y -的系数是-2,故答案为:-2.【点睛】此题考查单项式的系数定义,熟记定义即可解答问题.15. 若规定一种特殊运算为:2a a b ab b b ⊗=-+,则2(3)⊗-=______. 【答案】-1123 【解析】【分析】根据运算公式列式计算即可.【详解】2(3)⊗-=22(3)2(3)3⨯--+⨯--2663=-+-=-1123, 故答案为:-1123. 【点睛】此题考查有理数的混合运算,先计算乘法,再计算加减法.16. 多项式21(4)72m x m x x --++是关于的四次三项式,则的值是______. 【答案】4【解析】【分析】根据多项式的定义解答即可. 【详解】∵21(4)72m x m x x --++是关于的四次三项式, ∴m=4,当m=4时多项式为42172x x ++,是四次三项式, 故答案为:4.【点睛】此题考查多项式的次数及项数,正确掌握多项式的次数及项数即可解答问题.17. 若1x =,24y =,且0xy >,则x y +=______. 【答案】3或-3【解析】【分析】根据绝对值,乘方计算得出x 、y ,再分情况计算x+y.【详解】∵1x =,∴1x =±,∵24y =,∴2y =±,∵0xy >,∴x=1时y=2,x=-1时y=-2,当x=1、y=2时,x+y=3,当x=-1、y=-2时,x+y=-3,故答案为:3或-3.【点睛】此题考查绝对值的定义,乘方的性质,正确计算出x 、y 的值是解题的关键.18. 对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记()33m D m =,若()D m 是完全平方数,则m =______.【答案】1188或2673或4752或7425【解析】【分析】设四位数m 的个位数字为x ,十位数字为y ,将m 表示出来,根据()33m D m =,()D m 是完全平方数,得到可能的值即可得出结论.【详解】设四位数m 的个位数字为x ,十位数字为y ,(x 是0到9的整数,y 是0到8的整数),∴1000(9)100(9)99(10010)m y x y x y x =-+-++=--, ∵m 是四位数,∴99(10010)y x --是四位数,即100099(10010)y x --<10000, ∵()33m D m ==3(10010)y x --, ∴1030333(10010)y x --<130333, ∵()D m 是完全平方数,∴3(10010)y x --既是3的倍数也是完全平方数,∴3(10010)y x --只有36,81,144,225这四种可能,∴()D m 是完全平方数的所有m 值为1188或2673或4752或7425故答案为:1188或2673或4752或7425.【点睛】此题考查列代数式解决问题,设出m 的代数式后根据题意得到代数式的取值范围是解题的关键,根据取值范围确定可能的值即可解答问题.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19. 先画数轴,然后在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.-3,112,122-,1, 【答案】数轴见解析,-3<122-<1<112< 【解析】【分析】画出数轴,将各数标出,即可从左至右用“<”号连接得到答案.【详解】数轴如图,∴-3<122-<1<112<. 【点睛】此题考查利用数轴比较有理数的大小,正确将各数表示点标在数轴上是解题的关键.20. 计算:(1)(3)6(8)-+-+; (2)1115226511⎛⎫⎛⎫÷-+⨯- ⎪ ⎪⎝⎭⎝⎭; (3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭. 【答案】(1)-5;(2)-15;(3)-9.【解析】【分析】(1)先化为省略括号的形式,再计算加减法;(2)先分别计算除法和乘法,再将结果相加即可;(3)先计算乘方、括号及绝对值,再计算乘除法.【详解】(1)(3)6(8)-+-+,=-3+6-8,=-5;(2)1115226511⎛⎫⎛⎫÷-+⨯- ⎪ ⎪⎝⎭⎝⎭, =-12+(-3),=-15;(3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭, 7379()443=÷-⨯⨯, 4379743=-⨯⨯⨯, =-9.【点睛】此题考查有理数的混合计算,掌握正确的运算顺序是解题的关键.21. 化简:(1)()()225251a a a a ---+; (2)2(21)5(2)32x y x y y +----+.【答案】(1)2431a a +-;(2)-x+9y.【解析】【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】(1)()()225251a a a a ---+,=225251a a a a --+-,=2431a a +-;(2)2(21)5(2)32x y x y y +----+,=4x+2y-2-5x+10y-3y+2,=-x+9y.【点睛】此题考查整式的加减法计算,正确按照去括号法则去括号是解题的关键.22. (1)已知、满足:2302|()|y x ++-=,是最大的负整数,先化简再求值:()()222234x y xyz x y xyz x y +---;(2)已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--的值.【答案】(1)255x y xyz -+,90;(2)5ab+4(a+b ),22【解析】【分析】(1)分别计算出x 、y 、z 的值,代入化简后的多项式进行计算;(2)将多项式化简,再将7a b +=-,10ab =整体代入计算.【详解】(1)()()222234x y xyz x y xyz x y +---, 22222334x y xyz x y xyz x y =+-+-,255x y xyz =-+,∵2302|()|y x ++-=,∴x-2=0,y+3=0,∴x=2,y=-3,∵是最大的负整数,∴z=-1,∴原式252(3)52(3)(1)=-⨯⨯-+⨯⨯-⨯-=90;(2)(364)(22)ab a b a ab ++--=3ab+6a+4b-2a+2ab ,=5ab+4a+4b ,=5ab+4(a+b ),∵7a b +=-,10ab =,∴原式=50-28=22【点睛】此题考查整式的化简求值,将整式正确化简是解题的关键,再将字母的值或代数式的值代入计算即可解答问题.23. 某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)半年内总生产量是多少?比计划多了还是少了,增加或减少多少?【答案】(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.24. 如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试求代数式3232122(3)4a b a b ---的值. 【答案】192-. 【解析】【分析】首先去括号,然后再合并同类项,化简后,把a 、b 的值代入计算即可.【详解】(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1),=2x 2+ax ﹣y +6﹣2bx 2+3x ﹣5y +1,=(2﹣2b )x 2+(a +3)x ﹣6y +7,∵代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,∴2﹣2b =0,a +3=0,解得:b =1,a =﹣3,a 3﹣2b 2﹣2(14a 3﹣3b 2)=a 3﹣2b 2﹣12a 3+6b 2=12a 3+4b 2. 当b =1,a =﹣3, 原式=12×(﹣27)+4×1=192-. 【点睛】此题主要考查了整式的加减﹣﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. 小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积:______;用代数式表示窗户能射进阳光的面积:______;(结果保留)(2)小亮又设计了如图2的空帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?(用代数式表示)【答案】(1)28b π,ab-28b π;(2)能更大,窗户能射进阳光的面积比原来大216b π 【解析】【分析】(1)将两个四分之一的圆面积相加即是装饰物的面积;用矩形的面积减去装饰物的面积即是射进阳光的面积;(2)利用(1)的方法列出代数式进行比较即可【详解】(1)由题意知:四分之一圆的半径为2b , ∴装饰物的面积为=124⨯⨯2()2b ⨯=28b π, ∴窗户能射进阳光的面积为=ab-28b π, 故答案为:28b π,ab-28b π;(2)图2窗户能射进阳光的面积= 22()416bab ab b ππ-=-, ∵28b π>216b π, ∴ab -28b π< 216ab b π-, ∴此时,窗户能射进阳光的面积更大,(216ab b π-)-(ab-28b π)=216ab b π--ab+28b π=216b π, ∴此时,窗户能射进阳光的面积比原来大216b π 【点睛】此题考查列代数式计算,题中装饰物面积的计算是难点,(2)中列式计算注意合并同类项四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26. 如图已知数轴上点、分别表示、,且|6|b +与2(9)a -互为相反数,为原点.(1)a =______,b =______;(2)将数轴沿某个点折叠,使得点与表示-10的点重合,则此时与点重合的点所表示的数为______;(3)若点M 、分别从点、同时出发,点M 以每秒1个单位长度的速度沿数轴向左匀速运动,点以每秒2个单位长度的速度沿数轴向右匀速运动,到点后立刻原速返回,设运动时间为(0)t t >秒.①点M 表示的数是______(用含的代数式表示);②求为何值时,2MO MA =;③求为何值时,点M 与相距3个单位长度.【答案】(1)9,-6;(2)5;(3)①9-t ;②t=6或t=18;③t=4、6或12【解析】【分析】(1)根据|6|b +与2(9)a -互为相反数列式计算得出a 与b ;(2)先计算得出点与表示-10点重合时的折叠点,再根据对称性得到答案;(3)①根据点左右平移的规律即可解答;②分两种情况,点M 在OA 之间,点M 在点O 左侧,根据2MO MA =分别计算得出t 的值即可; ③先计算出点N 表示的数,再分三种情况求出t 的值.【详解】(1)∵|6|b +与2(9)a -互为相反数,∴|6|b ++2(9)a -=0,∴b+6=0,a-9=0,∴b=-6,a=9,故答案为:9,-6;(2)∵点A 表示的数是9,∴当折叠,使得点与表示-10的点重合时的折叠点是1092-+=-0.5, ∴此时与点重合的点所表示的数为-0.5+(-0.5+6)=5,故答案为:5;(3)①点M 从点出发以每秒1个单位长度的速度沿数轴向左匀速运动,∴点M 表示的数是9-t ,故答案为:9-t ;②∵2MO MA =,∴当点M 在OA 之间时,即2(9-t )=t ,解得t=6;当点M 在点O 左侧时,2(t-9)=t ,解得t=18;∴当t=6或t=18时,2MO MA =,③由题意知,AM=t ,BN=2t ,当点N 未到达点A ,且与点M 未相遇时,t+2t+3=15,得t=4;当点N 未到达点A ,且与点M 相遇后,t+2t-3=15,得t=6;当点N 到达点A 后,t-(2t-15)=3,得t=12,2t-15-t=3,得t=18(舍)综上,当t=4、6或12时,点M 与N 相距3个单位长度.【点睛】此题考查绝对值、平方的非负性,两点间的中点,利用线段的数量关系列方程,(3)是难点,注意题中点M与点N的运动条件,分情况解决问题.。
七年级上学期数学期中考试试卷含答案(北师大版)
北京大学附中七年级(上册)期中数学试卷一、选择题(本题共10小题,每小题只有一个选项符合题意,每小题3分,共30分)1.(3分)有理数的相反数是()A.B.3C.﹣3D.﹣2.(3分)在有理数﹣3,﹣2,0,1中最大的一个有理数是()A.﹣3B.﹣2C.0D.13.(3分)下列各式中,去括号正确的是()A.a+(2b﹣3c+d)=a﹣2b+3c﹣dB.a﹣(2b﹣3c+d)=a﹣2b﹣3c+dC.a﹣(2b﹣3c+d)=a﹣2b+3c﹣dD.a﹣(2b﹣3c+d)=a﹣2b+3c+d4.(3分)2017年10月18日25日在北京胜利召开了“中国共产党第十九次代表大会”.截止到2017年10月18日25日晚6时,在百度上搜索关键词“十九大”,显示的搜索结果约为96500000条,将96500000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×1095.(3分)下列各式计算正确的是()A.a2+a2=2a4B.5m2﹣3m2=2C.﹣x2y+yx2=0D.4m2n﹣m2n=2mn6.(3分)单项式﹣的系数和次数分别是()A.﹣3和2B.﹣3和3C.﹣和2D.﹣和37.(3分)在下列各数﹣(+3),﹣22,(﹣2)2,(﹣1)2020,﹣|﹣5|中,负数有()A.2个B.3个C.4个D.5个8.(3分)下列各对数中,数值相等的是()A.(﹣2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)39.(3分)如图,点A和B表示的数分别为a和b,下列式子中,不正确的是()A.a>﹣b B.ab<0C.a﹣b>0D.a+b>010.(3分)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.字母a b c d e f g h i j k l m序号12345678910111213字母n o p q r s t u v w x y z序号14151617181920212223242526按上述规定,将明码“love”译成密码是()A.gawq B.shxc C.sdri D.love二、填空题(本题共8小题,每题2分,共16分)11.(2分)北大附中运动场跑道离底面的高度为3米,记为+3米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为米.12.(2分)﹣1的倒数是,绝对值等于10的数是.13.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为cm.(用含a的代数式表示)14.(2分)多项式3xy2﹣4x2y2z+12是次项式.15.(2分)若单项式﹣x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.16.(2分)数轴上与表示﹣3的点距离4个单位长度的点所表示的数为:.17.(2分)若a﹣2b=3,则2a﹣4b﹣5=.18.(2分)在有理数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=b2;当a<b 时,a⊕b=a.则当x=3时,(1⊕x)•x﹣(4⊕x)的值为.(“•”和“﹣”仍为有理数运算中的乘号和减号).三、解答题(本大题共8个小题,共54分)19.(12分)计算:(详细写出计算步骤).(1)(﹣81)÷×÷(﹣16).(2)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(5.2).(3)﹣32×(﹣)2+(++)×(﹣24).(4)(﹣2)4﹣[(﹣3)2﹣(1﹣25×)÷(﹣2)].20.(6分)解方程:(详细写出解答步骤).(1)﹣3x+5=2x﹣1.(2)4x﹣3(5﹣x)=6.21.(16分)化简(1)2x2y﹣2xy﹣4xy2+xy+4x2y﹣3xy2(2)﹣6ab2﹣[a2b+2(a2b﹣3ab2)](3)若A=x2﹣3x﹣1,B=x2﹣2x+1,求:当x=﹣2时,2A﹣3B的值.(4)已知a2+b2=6,ab=﹣2,求代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值.22.(4分)已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置:(2)在(1)的条件下,化简|a﹣b|﹣|b+c|+|c+a|.23.(4分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的和1+(﹣1)+2=2(﹣3)+(﹣4)+(﹣5)=﹣12积与和的商(﹣2)÷2=﹣1(2)请用你发现的规律求出图④中的数x和图⑤中的数y.24.(4分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?25.(4分)运算:(+3)*(+15)=+18,(﹣14)*(﹣7)=+21,(﹣12)*(+14)=﹣26,(+15)*(﹣17)=﹣32,0*(﹣15)=(﹣15)*0=+15,(+13)*0=0*(+13)=+13.(1)请你认真思考上述运算,归纳*运算的法则:两数进行*运算时,.特别地,0和任何数进行*运算,或任何数和0进行*运算,.(2)计算:(+11)*[0*(﹣12)].(3)是否存在有理数a、b,使得a*b=0?若存在,求出a、b的值;若不存在,说明理由.26.(4分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于按固定顺序的k个数:x1,x2,x3,L,x k,称为数列A K:x1,x2,x3,L,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+L+|x k﹣1﹣x k|.例如,若数列A3:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,﹣5,﹣2,求V(A3).(2)已知数列A5:x1,x2,x3,x k,x5中5个数均为非负数,且x1+x2+x3+x4+x5=1009,直接写出V(A5)的最大值和最小值.(3)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个整数,且x1=3,x4=5,V(A4)=4,直接写出所有可能的数列A4中至少两种.北京大学附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题只有一个选项符合题意,每小题3分,共30分)1.【解答】解:的相反数是﹣,故选:D.2.【解答】解:1>0>﹣2>﹣3,最大的是1,故选:D.3.【解答】解:A、a+(2b﹣3c+d)=a+2b﹣3c+d,错误;B、a﹣(2b﹣3c+d)=a﹣2b+3c﹣d,错误;C、正确;D、a﹣(2b﹣3c+d)=a﹣2b+3c﹣d,错误.故选:C.4.【解答】解:∵a×10n,(1≤|a|<10,n表示整数),∴96500000=9.65×107.故选:B.5.【解答】解:A、a2+a2=2a2,故选项错误;B、5m2﹣3m2=2m2,故选项错误;C、正确;D、4m2n﹣m2n=3m2n,故选项错误.故选:C.6.【解答】解:根据单项式定义得:单项式﹣的系数是﹣,次数是3.故选:D.7.【解答】解:﹣(+3)=﹣3,﹣22=﹣4,(﹣2)2=4,(﹣1)2020=1,﹣|﹣5|=﹣5,则负数有3个,故选:B.8.【解答】解:∵(﹣2)3=﹣8,(﹣3)2=9,故A中的两个数不相等;﹣32=﹣9.(﹣3)2=9,故B中的两个数不相等;﹣33=﹣27,(﹣3)3=﹣27,故C中的两个数相等;(﹣3×2)3=﹣216,﹣3×23=﹣24,故D中的两个数不相等.故选:C.9.【解答】解:如图所示:﹣1<a<0,1<b<2,A、a>﹣b,正确,不合题意;B、ab<0,正确,不合题意;C、a﹣b<0,故此选项错误,符合题意;D、a+b>0,正确,不合题意.故选:C.10.【解答】解:如l对应序号12为偶数,则密码对应序号为+13=19,对应s,以此类推,得“love”译成密码是shxc.故选:B.二、填空题(本题共8小题,每题2分,共16分)11.【解答】解:北大附中运动场跑道离底面的高度为3米,记为+3米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为﹣12米.故答案为:﹣12.12.【解答】解:﹣1=﹣的倒数为:﹣;绝对值等于10的数是:10.故答案为:﹣,±10.13.【解答】解:根据题意得,长方形的宽为(a+4)﹣(a+1)=3,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=(4a+16)cm.故答案为(4a+16).14.【解答】解:∵3xy2﹣4x2y2z+12中,﹣4x2y2z次数为5,∴该多项式为五次三项式.故答案为:五;三.15.【解答】解:∵单项式﹣x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣x2y a﹣2x b y5=﹣x2y5﹣2x2y5=﹣x2y5.故答案是:﹣x2y5.16.【解答】解:设该点表示的数为x,根据题意得:|﹣3﹣x|=4,解得:x=﹣7或x=1.故答案为:﹣7或1.17.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.18.【解答】解:当x=3时,(1⊕x)•x﹣(4⊕x)=1×3﹣32=3﹣9=﹣6.故答案为:﹣6.三、解答题(本大题共8个小题,共54分)19.【解答】解:(1)原式=81×××=1;(2)原式=﹣1.5﹣4.3+1.4+3.6+5.2=﹣5.8+5+5.2=﹣5.8+10.2=4.4;(3)原式=﹣9×﹣6﹣4﹣9=﹣1﹣6﹣4﹣9=﹣20;(4)原式=16﹣[9+(1﹣32×)×]=16﹣9﹣(﹣23)×=.20.【解答】解:(1)移项得:﹣3x﹣2x=﹣1﹣5,合并同类项得:﹣5x=﹣6,系数化为1得:x=,(2)去括号得:4x﹣15+3x=6,移项得:4x+3x=6+15,合并同类项得:7x=21,系数化为1得:x=3.21.【解答】解:(1)原式=6x2y﹣xy﹣7xy2;(2)原式=﹣6ab2﹣a2b﹣2a2b+6ab2=﹣3a2b;(3)∵A=x2﹣3x﹣1,B=x2﹣2x+1,∴2A﹣3B=2x2﹣6x﹣2﹣3x2+6x﹣3=﹣x2﹣5,当x=﹣2时,原式=﹣4﹣5=﹣9;(4)∵a2+b2=6,ab=﹣2,∴原式=4a2+3ab﹣b2﹣7a2+5ab﹣2b2=﹣3(a2+b2)+8ab=﹣18﹣16=﹣34.22.【解答】解:根据ab<0,>0,可知a,b异号,a,c同号.(1)∵|a|=﹣a,∴a<0,∴b>0,c<0,∵|c|>|b|>|a|,所以A、B、C在数轴上的标示如下图:(2)原式=﹣a+b﹣(﹣b﹣c)+(﹣c﹣a)=﹣a+b+b+c﹣c﹣a=2b﹣2a.23.【解答】解:(1)图②:(﹣60)÷(﹣12)=5,图③:(﹣2)×(﹣5)×17=170,(﹣2)+(﹣5)+17=10,170÷10=17.图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60(﹣2)×(﹣5)×17=170三个角上三个数的和1+(﹣1)+2=2(﹣3)+(﹣4)+(﹣5)=﹣12(﹣2)+(﹣5)+17=10积与和的商﹣2÷2=﹣1,(﹣60)÷(﹣12)=5,170÷10=17(2)图④:5×(﹣8)×(﹣9)=360,5+(﹣8)+(﹣9)=﹣12,x=360÷(﹣12)×2=﹣60,图⑤:1×3×(﹣6)=﹣18,1+3+(﹣6)=﹣2,y=﹣18÷(﹣2)×2=18.24.【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).25.【解答】解:(1)两数进行*运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,特别地,0和任何数进行*运算,或任何数和0进行☆运算,等于这个数的绝对值,故答案为:同号两数运算取正号,再把绝对值相加;异号两数运算取负号,再把绝对值相加;等于这个数的绝对值;(2)(+11)*[0*(﹣12)]=(+11)*(+12)=23,故答案为:=23;(3)∵a*b=0,∴0*0=0,∴a=b=0.26.【解答】解:(1)V(A3)=|3﹣(﹣5)|+|(﹣5)﹣(﹣2)|=8+3=11,(2)∵数列A5:x1,x2,x3,x k,x5中5个数均为非负数,∴x1≥|x1﹣x2|,x2≥|x2﹣x3|,x3≥|x3﹣x4|,x4≥|x4﹣x5|,x5≥0,∴0≤|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|≤x1+x2+x3+x4+x5,∴0≤V(A5)≤1009∴最大值为100,最小0.(3)V(A4)=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|=|3﹣x2|+|x2﹣x3|+|x3﹣5|=4,①当x2=2,x3=3时,V(A4)=|3﹣2|+|2﹣3|+|3﹣5|=4,②当x2=4,x3=3时,V(A4)=|3﹣4|+|4﹣3|+|3﹣5|=4,11。
北师大版七年级上学期期中考试数学试卷带答案
北师大版七年级上学期期中考试数学试卷带答案一、单选题(本大题共10小题)1.x 是2的相反数︱y ︱=3,则x -y 的值是( )A .5-B .1C .1-或5D .1或5-2.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b ﹣1)(a +1)>0D .(b ﹣1)(a ﹣1)>03.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是( )A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元 4.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .5.用一个平面去截正方体,截面不可能是( )A .长方形B .五边形C .六边形D .七边形6.代数式222515,1,32,π,,1x x x x x x +--+++中,整式有( ) A .3个 B .4个 C .5个 D .6个7.多项式2112x x ---的各项分别是( ) A .21,,12x x - B .21,,12x x ---C .21,,12x xD .21,,12x x -- 8.一个多项式减去x 2﹣2x +1得多项式3x ﹣2,则这个多项式为( )A .x 2﹣5x +3B .x 2+x ﹣1C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣13 9.当1<a <2时,代数式|a -2|+|1-a |的值是( )A .-1B .1C .3D .-310.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为4B .左视图的面积为2C .俯视图的面积为5D .搭成的几何体的表面积是20 二、填空题(本大题共7小题)11.已知210ab a -+-=,则111(1)(1)(2016)(2016)ab a b a b +++=++++ . 12.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是 .13.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了 . 14.多项式3233525xy x y x y -+-+的次数是 ,最高次项的系数是 ,常数项是 .15.列式表示:x 的3倍与x 的二分之一的差为 .16.若2|2|(1)0m n n -++=,则2m n -+= .17.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是 .三、解答题(本大题共8小题)18.计算:(1)211(78) 1336⎛⎫-+⨯-⎪⎝⎭;(2)2 4412(1)|12|2⎡⎤⎛⎫-⨯---÷-⎢⎥⎪⎝⎭⎢⎥⎣⎦;(3)32118(3)5(15)52⎛⎫-÷-+⨯---÷⎪⎝⎭.19.某检修小组乘汽车检修供电线路,向南记为正,向北记为负.某天自A地出发,所走路程(单位:千米)为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5.问:(1)最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?(2)若每千米耗油0.06升,则今天共耗油多少升?20.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中B→C(,)C→D(,)(2)若甲虫从A 到P 的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P 的位置;(3)若甲虫的行走路线为A →(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S .21.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x 、y 、z 的值.22.如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?23.已知:a b ,互为相反数,c d ,互为倒数,且a 不等于零.求20172016()100a b a c d a b +⎛⎫+-⨯ ⎪⎝⎭的值.24.已知某轮船顺水航行3小时,逆水航行2小时(1)设轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)当轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?25.张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误结果为26xy yz xz -+,试求出正确答案.参考答案1,D2,C3,B4,B5,D6,B7,B8,B9,B10,A 11.2017201812.2或-613.点动成线14. 5 -2 +5 15.132x x -16.017.718.(1)1(2)32(3)3819.(1)他们没有回到出发点,在A 地的南方,距离A 地42千米;(2)4.92升 20.(1)+2,0,+1,﹣2.(2)若甲虫从A 到P 的行走路线依次为:A →E →F →P (3)甲虫走过的总路程为16.21.x =12 y =13z =1.22.这个五棱柱共7个面,侧面的面积之和是300cm 2.23.-224.()5m a +千米;403千米25.12125xy yz xz -+。
北师大版七年级上册数学期中试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.冥王星地表背阴面的温度低至-253℃,向阳面也只有-223℃,则冥王星地表背阴面的温度比向阳面低( )A .-30℃B .30℃C .-476℃D .476℃2.下列各对数中,不是互为相反数的是( )A .()3--与3--B .23-与(-3)²C .100-与(-10)²D .3(2)-与32-3.下列计算正确的是( )A .2233x x -=B .225325a a a +=C .33x x =D .10.2504ab ab -+= 4.一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .5.有理数a ,b 在数轴上的位置如图所示,在﹣a ,b ﹣a ,a +b ,0中,最大的是( )A .﹣aB .0C .a +bD .b ﹣a6.下列说法正确的是( )A .球的截面可能是椭圆。
B .组成长方体的各个面中不能有正方形。
C .五棱柱一共有15条棱。
D .正方体的截面可能是七边形。
7.2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为( )A .0.6×1013元B .60×1011元C .6×1012元D .6×1013元 8.若233m x y -与42n x y 是同类项,那么m n -=( )A .0B .1C .-1D .-29.若长方形长是2a +3b ,宽为a +b ,则其周长是( )A .6a +8bB .12a +16bC .3a +8bD .6a +4b10.已知221a a +=,则代数式2244a a +-的值为( )A .0B .1C .1-D .2-二、填空题11.下列表面展开图的立体图形的名称分别是:______、______、______、______.12.代数式3457613a b ab ab ---+是_____次______项式,二次项是______,常数项是_______.13.在数轴上点A 表示数1,点B 与点A 相距3个单位,点B 表示数是__________.14.如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,则x y z ++=________.15.已知2|3|(4)0a b -++=,则2000()a b +=_______.16.下面由火柴棒拼出的一列图形中,摆第1个图形要4根火柴棒,摆第二个图形需要7根火柴棒,按照这样的方式继续摆下去,摆第n 个图形时,需要_________根火柴棒.三、解答题17.化简:22(212)(1)a a a a -+--+18.计算:423112(3)()2----÷- 19.由5个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.20.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果他们的和为零,求(m﹣2n﹣1)2016的值.21.(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;视图视图(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)22.如图边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为x、y,剪去的小长方形长和宽也分别为x,y.(1)用式子表示“囧”的面积S ;(用含a 、x 、y 的式子表示)(2)当7a =, 3.1x =,2y =时,求S .23.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可知x= ,•= ,°= ;(2)试判断第2016个格子中的数是多少?并给出相应的理由.(3)判断:前n 个格子中所填整数之和是否可能为2016?若能,求出n 的值,若不能,请说明理由.24.“数形结合”是一种重要的数字方法,如在化简||a 时,当a 在数轴上位于原点的右侧时,||a a =;当a 在数轴上位于原点时,||0a =;当a 在数轴上位原点的左侧时,||a a =-.试用这种方法解决下列问题.(1)当 1.5a =, 2.5b =-时,||||a b a b -=______;(2)请根据a 、b 、c 三个数在数轴上的位置①求||||||a b c b a c ++的值.②化简:||2||||a b a b b c --+++.25.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f ,顶点个数为v ,棱数为e ,分别计算第(1)题中两个多面体的f+v ﹣e 的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.参考答案1.B【解析】析:温差就是最高气温与最低气温的差,就是用向阳面的温度减去冥王星的背阴面温度即可.解答:解:根据温差=最高气温-最低气温,即(-223)-(-253)=-223+253=30,故选B.2.D【解析】【分析】分别根据绝对值的性质、有理数的乘方及相反数的定义对各选项进行逐一分析即可.A.∵-(-3)=3,-|-3|=-3,3与-3互为相反数,∴-(-3)与-|-3|互为相反数,故本选项错误;B.∵-32=-9,(-3)2=9,-9与-9互为相反数,∴、-32与(-3)2互为相反数,故本选项错误;C.∵(-10)2=100,100与-100互为相反数,∴100与(-10)2互为相反数,故本选项错误;D.∵(-2)3=-8,-23=-8,∴(-2)3与-23相等,故本选项正确.故选:D.【点睛】本题考查了相反数的定义及绝对值的性质、有理数的乘方法则,解题的关键是掌握只有符号不同的两个数叫做互为相反数.3.D【解析】【分析】根据合并同类项法则合并同类项,进行计算即可.【详解】A选项:22232x x x-=,故选项A错误;B选项:222325a a a+=,故选项B错误;C选项:当x<0时,3x=-3x,故选项C错误;D选项:1110.250444ab ab ab ab-+=-+=,故选项D正确;故选D.本题考查了同类项和合并同类项,掌握合并同类项法则是解题的关键.4.C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.5.D【解析】【分析】根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.【详解】解:由数轴可得:﹣1<a<0,1<b<2,∴0<﹣a<1,b﹣a>2,a+b>1,∴0<﹣a<a+b<b﹣a,故选:D.【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a、b的大小是解题关键.6.C【解析】根据球的截面是圆判断选项A;根据组成长方体的各个面中可能有2个正方形判断选项B;根据五棱柱的特征判断选项C;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形,依此判断选项D.【详解】解:A、球的截面是圆,故选项错误;B、组成长方体的各个面中可能有2个正方形,故选项错误;C、五棱柱一共有15条棱是正确的;D、正方体的截面不可能是七边形,故选项错误.故选:C.【点睛】本题考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.要利用本题中截面的特殊性求解.7.C【解析】【详解】试题分析:6万亿元=6 000 000 000 000元= 6×1012元;故选C.考点:科学记数法.8.C【解析】【分析】根据同类项的定义求出m、n的值,再代入,即可求出答案.【详解】解:∵232nx y是同类项,x y3m-与4∴2m=4,n=3,∴m=2,n=3,∴m-n=2-3=-1,故选:C.【点睛】本题考查同类项的定义,熟记同类项的定义是解题的关键,注意:所含字母相同,并且相同字母的指数也分别相等的项叫同类项.9.A【解析】长方形周长为:2[(2a+3b)+(a+b)]=2(2a+3b+a+b)=2(3a+4b)=6a+8b,故选A .10.D【解析】【分析】把221+=代入代数式2a a+-,求出算式的值为多少即可.244a a解:∵221+=,a a∴2+-a a244()2a a=+-224=⨯-214=-,2故选:D【点睛】本题考查了代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.11.圆柱圆锥四棱锥三棱柱;【解析】【分析】根据图形结合所学的几何体的形状得出即可.【详解】解:第一个图是圆柱,第二个图是圆锥,第三个图是四棱柱,第四个图是三棱柱,故答案为:圆柱,圆锥,四棱锥,三棱柱.【点睛】本题考查了几何体的展开图的应用,主要考查学生的空间想象能力和观察图形的能力.12.五四7ab- 1【分析】根据多项式次数的定义求解.由于多项式的次数是“多项式中次数最高的项的次数”,因此可知该多项式次数,和某些项的系数.【详解】解:依题意得原式是一个五次四项式,二次项是−7ab,常数项是+1;故答案为:五;四;−7ab;+1.【点睛】本题考查了多项式问题,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.13.2 或4【解析】【分析】分类讨论:点B在A点左边,则点B表示的数为1−3;若点B在A 点右边,则点B表示的数为1+3.【详解】解:∵点A表示数1,点B与点A相距3个单位,若点B在A点左边,则点B表示的数为1−3=−2;若点B在A点右边,则点B表示的数为1+3=4,即点B表示的数为:−2或4.故答案为:−2或4.【点睛】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;数轴的三要素:原点,单位长度,正方向;一般来说,数轴上右边的数总比左边的数大.14.4【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和为5,列出方程求出x、y、z的值,从而得到x+y+z的值.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“−2”相对,“x”与面“10”相对.则z+3=5,y+(−2)=5,x+10=5,解得z=2,y=7,x=−5.故x+y+z=4.故答案为:4.【点睛】本题考查了正方体相对两个面.解题的关键是注意正方体的空间图形,从相对面入手,分析及解答问题.15.1【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入所求代数式进行计算即可得解.【详解】解:由题意得:3040a b -=⎧⎨+=⎩, 解得:34a b =⎧⎨=-⎩, ∴()20002000()341a b +=-=,故答案为:1.【点睛】 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(31)n +【解析】【分析】由题意可知:第1个图形中有4根火柴棒;第2个图形中有4+3=7根火柴棒;第3个图形中有4+3×2=10根火柴棒;…由此得出第n 个图形中火柴棒的根数有4+3×(n −1)=(3n +1)根火柴棒;由此得出答案即可.【详解】解:∵第1个图形中有4根火柴棒;第2个图形中有4+3=7根火柴棒;第3个图形中有4+3×2=10根火柴棒;…∴第n个图形中火柴棒的根数有4+3×(n−1)=(3n+1)根火柴棒.故答案为:(3n+1).【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律解决问题.17.2a a+【解析】【分析】原式去括号合并即可得到结果.【详解】解:原式=22-+-+-2121a a a a=2a a+.【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.55【解析】【分析】先算乘方和去绝对值,再算除法,最后算加减.【详解】 解:原式311292⎛⎫=---÷ ⎪⎝⎭117178558=-+÷=-+⨯=. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.答案见解析【解析】【分析】从正面看,得到从左往右3列正方形的个数依次为2,1,1;从左面看得到从左往右2列正方形的个数依次为1,2;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可.【详解】解:根据题意得:【点睛】本题考查了作图−三视图,弄清题意是解本题的关键.20.(1)a =3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.21.(1) 主视图俯视图(2) 207.36(cm2).【解析】试题分析:结合两个视图及几何体的立体图形可看出此几何体由一个圆柱和一个长宽不等的长方体组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 如果收入15元记作+15元,那么支出20元记作( )元. A. +5B. +20C. ﹣5D. ﹣203. 数字177.6用科学记数法表示为 A. 0.1776×103B. 1.776×102C. 1.776×103D. 17.76×1024. 下列是正方体展开图的是A. B. C. D.5. 如图是由7个小正方体组合成的几何体,则其左视图为( )A. B. C. D.6. 用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A. 22(a b)- B. 22a b - C. 2(2a b)-D. 2(a 2b)-7. 下列说法正确的是A. 0不是单项式B. πr 2的系数是1 C. 5a 2b +ab -a 是三次三项式 D .12xy 2的次数是2 8. 在一12,-│-12│,(-1) 3,0,-(一5)中,负整数的个数有( ) A. 1个B. 2个C. 3个D. 4个9. 下列说法正确的是 A. 2 3表示2×3 B. -2 2与(-2) 2互为相反数 C. (-2) 2中-2是底数,2是幂D. a 3=(-a ) 3 10. 下列各数中,最小的数是( ) A. ﹣3B. |﹣2|C. (﹣3)2D. ﹣3211. 在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A. a+b >0B. a ﹣b <0C. ab <0D. |a|>|b|12. 如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A. 20192B.201812 C.201912 D.202012二、填空题(本大题共6个小题,每小题4分,共24分)13.16的倒数是______. 14. -223x y π的次数是_________;15. 若│x │=7,则x =_________;16. 某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是_______C ︒.17. 对于任意有理数a、b,定义一种新运算“⊕”,规则如下:a⊕b=ab+a-b,例如:3⊕2=3×2+3-2,则(-2) ⊕3=_________;18. 如图所示的运算程序中,若开始输入的x值为12,我们发现第1次输出的结果为6,第2次输出的结果为3,……,第2019次输出的结果为_________;三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤机19. 如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.20. 将下列各数表示在数轴上,并用“<”号连接起来.−12,−2,-(-0.5),0,-2.5,+5.21. 计算(1)-5+2-13+4(2)(-2)×(-8)-9÷(-3)(3)(-18)×(-121 936+-)(4)-(-337)+12.5+(-1647)+(-2.5)22. 计算(1)(−3)×(−9)−(−5)(2)(−753964+-)×(−36)(3)[(−3)2−(−5)2]÷(−2)23. 某检修小组从A地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米).第一次第二次第三次第四次第五次第六次第七次-6 +8 -7 +5 +4 -5 -2(1)收工时距A地的距离是多少干米?(2)若每千米耗油0.2升,问这七次共耗油多少升?24. 观察如图图形:它们是按一定规律排列的:(1)依照此规律,第8个图形共有__枚五角星.(2)用代数式表示第n个图形共有___枚五角星(3)第99个图形共有多少枚五角星?25. 列方程解应用题:为了保护环境,节约用水,按照《关于调整市水务(集团)有限公司自来水价格的通知》规定对供水范围内的居民用水实行三级阶梯水价收费如下表:每户每月用水量水费价格(单位:元/立方米)不超过22立方米 2.3超过22立方米且不超过30立方米的部分 a超过30立方米的部分 4.6(1)若小明家去年1月份用水量20立方米,他家应缴费___元.(2)若小明家去年2月份用水量26立方米,缴费64.4元,请求出用水在22-30立方米之间收费标准a元/立方米?(3)在(2)的条件下,若小明家去年8月份用水量增大,共缴费87.4元,请求出他家8月份的用水量多少立方米?26. 如图,已知数轴上的点A 表示的数为6,点B 表示的数为-4,点C 是AB 的中点,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x 秒(x >0).(1)当x=5___秒时,点P 到达点A .(2)运动过程中点P 表示的数是2x-4____(用含x 的代数式表示); (3)当P ,C 之间的距离为2个单位长度时,求x 的值. 27. 乘法公式的探究与应用:(1)如图甲,边长为a 的大正方形中有一个边长为b 的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达) (4)运用你所得到的公式计算:10.3×9.7.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1. -2019的相反数是()A. 2019B. -2019C.12019D.12019【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选A.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 如果收入15元记作+15元,那么支出20元记作()元.A. +5B. +20C. ﹣5D. ﹣20【答案】D【解析】试题解析:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作-20元.3. 数字177.6用科学记数法表示为A. 0.1776×103B. 1.776×102C. 1.776×103D. 17.76×102【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:177.6=1.776×102.故选B.【点睛】此题考查科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4. 下列是正方体展开图的是A. B. C. D.【答案】A【解析】【分析】根据平面图形的折叠及正方体的展开图解题得出即可.【详解】根据正方体的展开图,B和、C、D折在一起会有重叠的情况,对折不能折成正方体;故选A.【点睛】此题考查几何体的展开图,解题关键在于勿忘记四棱柱的特征及正方体展开图的各种情形.5. 如图是由7个小正方体组合成的几何体,则其左视图为( )A. B. C. D.【答案】A【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左主视图中.【详解】解:从左面看易得其左视图为:故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 6. 用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A. 22(a b)- B. 22a b -C. 2(2a b)-D. 2(a 2b)-【答案】C 【解析】 【分析】a 的2倍为2a ,a 的2倍与b 的差为2a-b ,然后再平方即可. 【详解】依题意得:(2a-b)2, 故选C .【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式. 7. 下列说法正确的是 A. 0不是单项式 B. πr 2的系数是1C. 5a 2b +ab -a 是三次三项式D.12xy 2的次数是2【答案】C 【解析】 【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】A 、0是单项式,说法错误; B 、πr 2的系数是1,说法错误;C 、5a 2b+ab-a 是三次三项式,说法正确;D 、12xy 2的次数是2,说法错误; 故选C .【点睛】此题考查单项式和多项式,解题关键是掌握单项式的相关定义. 8. 在一12,-│-12│,(-1) 3,0,-(一5)中,负整数的个数有( ) A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】正整数,0,负整数组成整数,审清题意本题要选的是负整数.【详解】以上数据中只有-│-12│,(-1) 3,是负整数.故选B.【点睛】此题考查负整数的概念,解题关键在于掌握其定义.9. 下列说法正确的是A. 2 3表示2×3B. -2 2与(-2) 2互为相反数C. (-2) 2中-2是底数,2是幂D. a3=(-a) 3【答案】B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-22=-4,(-2)2=4,-4与4互为相反数,故本选项正确;C、(-2)2中-2是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选B.【点睛】此题考查有理数的乘方,是基础题,熟记概念是解题的关键.10. 下列各数中,最小的数是()A. ﹣3B. |﹣2|C. (﹣3)2D. ﹣32【答案】D【解析】因为|-2|=2,(-3)2=9,-32=-9,-9<-3<2<9,所以最小的是-32.故选D.11. 在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A. a+b >0B. a ﹣b <0C. ab <0D. |a|>|b|【答案】C 【解析】 【分析】由数轴可知,a >0,b <0,|a|<|b|,根据有理数加法法则和乘法法则对各选项进行判断即可得答案. 【详解】由数轴可知,a>0,b<0,且|a|<|b|, A.∵b <0<a ,|a|<|b|,∴a+b <0,故该选项错误, B.∵b <0<a ,∴a ﹣b>0,故该选项错误, C.∵a >0,b <0,∴ab<0,故该选项正确, D.∵|a|<|b|,故D 选项错误, 故选C .【点睛】本题考察了数轴、有理数的加减法及乘法,体会数形结合思想,熟练掌握有理数的加减运算和乘法运算的运算法则是解题关键.12. 如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A. 20192B.201812 C.201912 D.202012【答案】C 【解析】 【分析】根据正方形的面积公式,即可推出操作次数与余下面积的关系式.【详解】解:正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,第一次:余下面积112S =, 第二次:余下面积2212S =,第三次:余下面积3312S =,当完成第2019次操作时,余下纸片的面积为201920191S 2=,故选C .【点睛】本题考查数字问题,熟练掌握计算法则是解题关键.二、填空题(本大题共6个小题,每小题4分,共24分)13.16的倒数是______. 【答案】6 【解析】 【分析】根据互为倒数的两个数的积等于1解答. 【详解】∵16×6=1, ∴16的倒数是6. 故答案为6.【点睛】本题考查了倒数的定义,熟记概念是解题的关键. 14. -223x y π的次数是_________;【答案】4 【解析】 【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案. 【详解】-223x y π的次数是2+2=4.故答案为4.【点睛】此题考查单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键. 15. 若│x │=7,则x =_________;【答案】±7.【解析】【分析】根据绝对值的性质,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,即可作出判断.【详解】∵|x|=7, ∴x=±7. 故答案为±7. 【点睛】此题考查绝对值,解题关键在于掌握其性质. 16. 某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是_______C︒.【答案】-3【解析】【分析】根据早晨的气温是2-℃,到中午升高了6℃,可知中午温度为-2+6=4℃,晚上又降低了7℃可知晚上温度为4-7=-3℃.【详解】∵-2+6-7=-3∴答案是-3.【点睛】本题考查了有理数的加减,解题的关键是掌握有理数运算中符号的变化.17. 对于任意有理数a、b,定义一种新运算“⊕”,规则如下:a⊕b=ab+a-b,例如:3⊕2=3×2+3-2,则(-2) ⊕3=_________;【答案】-11.【解析】分析】根据a⊕b=ab+a-b,可以求得题目中所求式子的值,本题得以解决.【详解】∵a⊕b=ab+a-b,∴(-4)⊕5=(-2)×3+(-2)-3=(-6)+(-5)=-11,故答案为-11.【点睛】此题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18. 如图所示的运算程序中,若开始输入的x值为12,我们发现第1次输出的结果为6,第2次输出的结果为3,……,第2019次输出的结果为_________;【答案】8.【解析】【分析】把x=12代入运算程序中计算,以此类推得到第2015次输出的结果即可.【详解】把x=12代入得:12×12=6,把x=6代入得:12×6=3,把x=3代入得:3+5=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,把x=1代入得:1+5=6,以此类推,以6,3,8,4,2,1循环,∵2019÷6=336…3,∴2017次输出的结果为8,故答案为8.【点睛】此题考查代数式求值,弄清题中的运算程序是解本题的关键.三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤机19. 如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.【答案】见解析【解析】 【分析】由几何体可得从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为1,2,1;从上面看有3列,每行小正方形数目分别为2,2,1,进而得出答案. 【详解】如图所示:.【点睛】此题考查三视图.解题关键在于在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉. 20. 将下列各数表示在数轴上,并用“<”号连接起来. −12,−2,-(-0.5),0,-2.5,+5.【答案】-2.5<-2<-12<0<-(-0.5)<+5.数轴见解析 【解析】 【分析】先在数轴上表示各个数,再比较即可. 详解】解:,-2.5<-2<-12<0<-(-0.5)<+5. 【点睛】此题考查数轴、相反数和有理数的大小比较,能正确在数轴上表示数是解此题的关键. 21. 计算 (1)-5+2-13+4(2)(-2)×(-8)-9÷(-3)(3)(-18)×(-121 936+-)(4)-(-337)+12.5+(-1647)+(-2.5)【答案】(1)-12;(2)19;(3)-7;(4)-31 7【解析】【分析】(1)从左向右依次计算即可.(2)首先计算乘除法,然后计算减法即可.(3)应用乘法分配律计算即可.(4)应用加法交换律和加法结合律,求出算式的值是多少即可.【详解】(1)-5+2-13+4=-3-13+4=-12(2)(-2)×(-8)-9÷(-3)=16+3=19(3)(-18)×(-121 936+-)=(-18)×(-19)+(-18)×23+(-18)×(-16)=2-12+3 =-7(4)-(-337)+12.5+(-1647)+(-2.5)=[-(-337)+(-1647)]+[12.5+(-2.5)]=(-1317)+10=-31 7【点睛】此题考查有理数的混合运算,解题关键在于要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22. 计算(1)(−3)×(−9)−(−5)(2)(−753964+-)×(−36)(3)[(−3)2−(−5)2]÷(−2)【答案】(1)32;(2)25;(3)8;【解析】【分析】(1)先算乘法再算减法;(2)直接运用乘法的分配律计算;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】(1)(−3)×(−9)−(−5)=27+5=32;(2)(− 753964+-)×(−36)=79×36−56×36+34×36=28−30+27=25;(3) [(−3)2−(−5)2]÷(−2)=[9−25]÷(−2)=−16÷(−2)=8.【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则.23. 某检修小组从A地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米).(1)收工时距A地的距离是多少干米?(2)若每千米耗油0.2升,问这七次共耗油多少升?【答案】(1)3km;(2)7.4升.【解析】分析】(1)计算出最后一次所处位置即可;(2)将各数的绝对值相加可得路程,再将路程乘以每千米耗油量.【详解】(1)-6+8-7+5+4-5-2=-3,答:收工时距A地的距离是3km,故答案为3km;(2)(6+8+7+5+4+5+2)×0.2=7.4(升).答:共耗油7.4升.【点睛】此题考查正数和负数,掌握正数和负数的实际意义是解题的关键.24. 观察如图图形:它们是按一定规律排列的:(1)依照此规律,第8个图形共有__枚五角星.(2)用代数式表示第n个图形共有___枚五角星(3)第99个图形共有多少枚五角星?【答案】(1)25;(2)3n+1;(3)298;【解析】【分析】(1)根据图形可知,每一副图比前一副图多3粒星,按此规律即可求出答案.(2)根据图形可知,每一副图比前一副图多3粒星,按此规律即可求出答案.(3)根据图形可知,每一副图比前一副图多3粒星,按此规律即可求出答案.【详解】由题意可知:(1)n=1,3×1+1=4;n=2, 3×2+1=7;n=3, 3×3+1=10;n=4, 3×4+1=13;∴第8个图形共有25枚;(2)n=1时,有4枚,n=2时,有4+3枚,n=3时,由4+2×3枚,如此类推,第n个图共有(3n+1)枚;(3)当n=99时,3n+1=3×99+1=298枚.故答案为(1)25;(2)3n+1;(3)298;【点睛】此题考查图形变化规律,注意观察图形的变化特征,这是找出代数式表示的关键.25. 列方程解应用题:为了保护环境,节约用水,按照《关于调整市水务(集团)有限公司自来水价格的通知》规定对供水范围内的居民用水实行三级阶梯水价收费如下表:(1)若小明家去年1月份用水量20立方米,他家应缴费___元.(2)若小明家去年2月份用水量26立方米,缴费64.4元,请求出用水在22-30立方米之间收费标准a元/立方米?(3)在(2)的条件下,若小明家去年8月份用水量增大,共缴费87.4元,请求出他家8月份的用水量多少立方米?【答案】(1)46;(2)3.45元/立方米;(3)32立方米;【解析】【分析】(1)根据题意列式计算即可;(2)根据题意列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】(1)20×2.3=46(元),∴他家应缴费46元;故答案为46;(2)22×2.3+(26-22)a=64.4解得:a=3.45,∴用水在22-30立方米之间收费标准3.45元/立方米;(3)设他家8月份的用水量是x立方米,则当x=30时,水费为22×2.3+(30-22)×3.45=78.2<87.4元,∴用水量超过30立方米,则有22×2.3+(30-22)×3.45+(x-30)×4.6=87.4解得:x=32,答:他家8月份的用水量是32立方米.【点睛】此题考查一元一次方程的应用,正确的理解题意找到等量关系是解题的关键.26. 如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x=5___秒时,点P到达点A.(2)运动过程中点P表示的数是2x-4____(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【答案】(1)5;(2)2x-4;(3)x=1.5或3.5.【解析】【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;(2)根据题意得出P点运动的距离减去4即可得出答案;(3)利用当点P运动到点C左侧2个单位长度时,当点P运动到点C右侧2个单位长度时,分别得出答案.【详解】(1)∵数轴上的点A表示的数为6,点B表示的数为-4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x-4;故答案为2x-4;(3)点C表示的数为:[6+(-4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x-4=1-2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x-4=1+2解得:x=3.5综上所述,x=1.5或3.5.【点睛】此题考查数轴,正确分类讨论得出PC的长是解题关键.27. 乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达)(4)运用你所得到的公式计算:10.3×9.7.【答案】(1)a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)99.91.【解析】试题分析:(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2;故答案为a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.考点:平方差公式的几何背景.。