第六章 低速翼型的气动特性

合集下载

翼型及其气动性能参数的基本概念及应用

翼型及其气动性能参数的基本概念及应用

翼型及其气动性能参数的基本概念及应用翼型是指飞机、鸟类等载体所采用的具有特定截面形状的部件,它决定了载体的飞行性能。

在飞行器领域,翼型的气动性能参数是设计和优化翼型的基础。

本文将介绍翼型及其气动性能参数的基本概念及其应用。

1. 翼型翼型是由上、下表面、前缘和后缘构成的一个二维曲面,在飞行器领域有着广泛的应用。

翼型的形状对飞行器的气动性能影响非常大,关系着飞行器的升力、阻力、气动失速特性等。

2. 翼型气动性能参数翼型气动性能参数是指翼型概念设计和优化的基础,常见的翼型气动性能参数有:2.1 升力系数升力系数是指翼型受气动力作用产生的升力与翼展面积之比,记为Cl。

在翼型设计中,通常需要通过改变翼型的几何形状、攻角等因素来达到一定的升力系数。

升力系数可以用来评估翼型的升力性能,并与翼型的阻力系数相结合来评估翼型的性能。

2.2 阻力系数阻力系数是指翼型受气动力作用产生的阻力与翼展面积之比,记为Cd。

阻力系数是评估翼型阻力性能的重要参数,与翼型的升力系数一起可以用来评估翼型的综合气动性能。

2.3 气动中心位置气动中心位置是指翼型在气动力作用下产生的力和力矩中心,它是设计翼型和确定飞行器平衡特性的重要参数。

2.4 失速速度失速速度是指翼型在攻角增加到一定程度时失去升力的速度。

失速速度是评估翼型失速性能的关键参数之一。

3. 应用翼型的气动性能参数对于飞行器的设计、优化和性能评估都有着重要的应用价值。

例如,在飞机设计和优化中,可以通过改变翼型几何形状、攻角等因素来达到一定的升力、阻力和失速性能要求。

在飞行器的性能评估中,可以通过分析翼型的气动性能参数来评估飞行器的升力、阻力、气动稳定性等性能特征。

总之,翼型及其气动性能参数是飞行器设计和优化的基础,深入了解和掌握翼型的基本概念和气动性能参数,对于提高飞行器的性能、减小飞行器的阻力和增加飞行器的升力等都具有重要的意义。

低速翼型的气动特性和方程讲解

低速翼型的气动特性和方程讲解
低速翼型的气动特性和 方程讲解
5.1 翼型的几何参数及表示方法
5.1.1 翼型的几何参数 5.1.2 NACA翼型 5.1.3 NACA五位数 5.1.4 层流翼型 5.1.5 超临界机翼
5.1.1 翼型的几何参数
翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通 常理解为二维机翼,即剖面形状不变的无限翼展机翼。
在上世纪三十年代初期,美国国家航空咨询委员会 ( National Advisory Committee for Aeronautics,NACA, National Aeronautics and Space Administration, NASA ) 对低速翼型进行了系统的实验研究。
将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布 规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为 NACA翼型族的厚度分布。厚度分布函数为:
莱特兄弟所使用的翼 型与利林塔尔的非常 相似,薄而且弯度很 大。这可能是因为早 期的翼型试验都在极 低的雷诺数下进行, 薄翼型的表现要比厚 翼型好。
随后的十多年里,在反复试验的基础上研制出了大量翼型, 如RAF-6, Gottingen 387,Clark Y。这些翼型成为NACA 翼型家族的鼻祖。
例: NACA 2 3 0 1 2
20 3
C
L设
2
C L设
2
3 20
0.3
2 x f 30 % x f 15 %
中弧线 0:简单型 1:有拐点
t 12%
CL设:来流与前缘中弧线平行时的理论升力系数
1939年,发展了NACA1系列层流翼型族。其后又相继发展 了NACA2系列,3系列直到6系列,7系列的层流翼型族。
(12p)2pxx2

翼型与机翼的气动特性ppt课件

翼型与机翼的气动特性ppt课件

平板翼型效率较低,失速迎角很小
将头部弄弯以后的平板翼型, 失速迎角有所增加
6
1884年,H.F.菲利普使用早期的风洞测试了一系列翼型, 后来他为这些翼型申请了专利。
早期的风洞
7
与此同时,德国人奥托·利林塔尔设计并测试了许多曲线翼 的滑翔机,他仔细测量了鸟翼的外形,认为试飞成功的关键 是机翼的曲率或者说是弯度,他还试验了不同的翼尖半径和 厚度分布。
c yc 0.2 (0.29690 x 0.12600x
0.35160x 2 0.28430x 3 0.10150x 4 )
最大厚度为xc 30% c 。
11
中弧线取两段抛物线,在中弧线最高点二者相切。
yf

f xf 2
(2x f
x

x2)
y f
f (1 x f )2
3
翼型的几何参数
Leading edge: 前缘
trailing edge: 后缘
Chord line: 弦线
chord length: 弦长
Thickness: 厚度
camber:
弯度
Mean chamber line: 中弧线
4
翼型的分类
按几何形状,翼型可分为两类: 圆头尖尾的,用于低速、亚声速和跨声速飞行的飞机机翼
小迎角翼型绕流和 压强分布示意图
22
作用在机翼上的力
作用在机翼上的合力用 R 表示,合力矩用 M 表示,
V 表示无限远处的来流速度。如下图
23
如下图,L 为升力,D 为阻力,N 为法向力,A 为轴 向力,攻角 指的是 c 和 V 之间的夹角。
则有
L N cos Asin D N sin Acos

第6章+亚音速翼型和机翼的气动特性(2)

第6章+亚音速翼型和机翼的气动特性(2)

亚音速流中薄翼型的气动特性
比较亚音速流的控制方程
2 2 2 0 2 x y
2
2 1 Ma
和不可压流的控制方程,即拉普拉斯方程
2 2 2 0 2 x y
2 发现两者仅相差一个常数因子
亚音速流中薄翼型的气动特性
因此,数学上可通过适当的坐标变换,将线性方程
代入亚音速翼面边界条件关系式
f v x, 0 V x y y 0

k dy V 2 dx y y0
边界条件的变换
k dy 2 V dx y y0
翼型上对应点压强系数之间的关系
将图
的不可压流翼型的厚度、弯度和迎角,分别放大 也将放大 1 倍,其所引起的扰动速度 u
1
x

倍,随之,相应的压强系数也必将放大 倍。
1
翼型上对应点压强系数之间的关系
即 代入 得到
翼型上对应点压强系数之间的关系
式 表明,流过具有相同厚
及边界条件
f v x, 0 V x y y 0
亚音速流中薄翼型的气动特性
当解得扰动速度位后,代入式
2u 2 φ Cp V V x
就可以算得翼型表面上任一点的压强系 数。通过积分,就可以求得其气动特性, 如升力,俯仰力矩等。
若令
k 2
dy V dx y y0

边界条件的变换
这说明,采用变换
x x, y y, k , v v

k 2
可得到与不可压流相同形式的边界条件。 因此,薄翼型亚音速绕流问题的求解就变成相同形式边 界条件下拉普拉斯方程的求解,而后者正是前面所研究 过的低速翼型的气动特性问题。

飞机翼型设计及其气动特性分析

飞机翼型设计及其气动特性分析

飞机翼型设计及其气动特性分析飞机翼型是飞机气动外形的重要组成部分,其形状和参数对于飞机的性能、燃油经济性、舒适性和安全性等方面都有着重要的影响。

如何设计出优秀的飞机翼型,使其具有良好的气动特性,是飞机设计的重要课题之一。

翼型的选择在飞机设计的初步阶段,需要根据任务需求和技术条件,选择合适的翼型。

现代飞机翼型大致可分为四类:直翼、后掠翼、前缘后掠翼和双曲线翼。

直翼结构简单,制造成本低,但飞行性能一般;后掠翼具有良好的高速性能,但低速性能差;前缘后掠翼的优点是高速和低速性能均较好,但是制造难度较大;双曲线翼兼顾高速和低速性能,但制造复杂。

较新型的翼型是蝶形翼、斜三角翼、翼身一体等,总体来说,选择合适的翼型是需要考虑多方面因素的综合考虑。

翼型气动特性分析飞机翼型的气动特性包括升阻特性、稳定性和操纵性。

其中升阻特性是最重要的,它决定了飞行速度、起飞和着陆距离以及载荷能力等方面的性能。

升力系数是描述翼型升力的重要参数。

在翼型设计中,需要尽可能地提高翼型的最大升力系数,以提高飞机起飞和着陆性能。

同时,升力系数的变化规律对哪些因素敏感,比如攻角、马赫数、气压高度等因素需要深入研究,以更好的处理飞机的飞行特性。

阻力系数是衡量升阻性能的重要参数。

较小的阻力系数有利于提高飞机的速度和燃油经济性,降低噪声和污染等方面。

一般不同攻角情况下的阻力系数变化,另外还需要研究横滚阻力以及迎风面阻力等方面的性能变化情况。

气动稳定性是飞机翼型设计中的关键性问题,翼型的气动稳定性主要表现在其稳定裕度和稳定性边界上。

稳定裕度的大小反映了翼型受扰动时保持稳定的能力,而稳定性边界则是指翼型失去稳定性的临界状态。

操纵性是指飞机在飞行中对操纵输入的响应能力,包括响应速度、控制精度、横向和纵向操纵性等各方面内部和外部的因素。

在设计翼型时,需要确定操纵面的尺寸和位置等参数,以将操纵性最大化并保持良好的稳定性和控制。

总体来说,翼型设计时需要考虑多种因素的综合影响,从而得到最优的气动特性。

低速可变参数翼型气动特性分析

低速可变参数翼型气动特性分析

低速可变参数翼型气动特性分析摘要:为了研究低速翼型参数对气动特性的影响,以NACA3412翼型为参考翼型,改变NACA3412翼型的最大相对弯度、最大弯度位置和相对厚度,模拟改变后的翼型在攻角α范围为-4°~14º的升力系数、阻力系数、升阻比和俯仰力矩系数,分析翼型气动特性变化规律。

通过模拟结果得出升阻比最大的翼型,研究结果为低速翼型的设计提供了参考。

关键词:低速翼型;变参数;气动特性;翼型优化1.序言机翼的形状是由相对弯度、相对厚度、最大弯度位置等几何参数决定的,每个参数的变化都影响着飞行器的气动性能和飞行性能。

考虑到飞行器在飞行过程中可能会遇到许多未知且不可抗的因素导致气动性能突降,所以要结合翼型在多个飞行状态和气流条件下的气动性能,对翼型进行多点优化设计,使得优化后的翼型在低速情况下的气动性能有显著的提升。

参数变化对飞行器气动特性的影响已成为焦点。

国内外对弯度对翼型气动特性的研究有很多,李仁年等[1]利用CFD软件对S827、S902、S903翼型进行数值模拟计算,研究了翼型弯度对翼型的气动特性影响。

岑美等[2]基于FLUENT分析了弯度对翼型性能的影响。

孙振业等[3]选取NACA系列翼型为研究对象,采用经典的翼型分析软件XFOIL计算了翼型的升阻力系数。

杨瑞[4]等采用计算机流体动力学的方法模拟并对比了薄、钝尾缘翼型增大了最大升力系数和升力线斜率,降低了前缘粗糙度对升力特性的影响。

这些研究都对翼型的研究也有很大的推进作用。

为了研究几何参数对低速翼型气动特性的影响,本文选取了NACA四参数翼型为研究对象,NACA四参数翼型的可变参数为最大相对弯度、最大弯度位置和相对厚度。

以NACA3412翼型为参考翼型,先分析了该翼型的气动特性,然后分别改变其三项参数,得到NACA3414、NACA3410、NACA3312、NACA3512、NACA2412、NACA4412六个翼型。

课件:低速翼型的气动特性

课件:低速翼型的气动特性

(6.10, p145)
体轴系(见图6.10,p144)中,速度分量为:
u v
V V
cos sin
u v
1onthewall (6.9.
p145)
(6.9)代入(6.10)得(6.11),忽略其中的二阶及以上的小量,即保留 一阶小量(线性化),有翼面边界条件线化近似结果:
v(x,0)
y
y0
V
• 翼型绕流环量的产生
由于远离翼面处流动不受粘性影响,所以 Γ= 0 。
若设边界层和尾流中的环量为Γ3,则应有, Γ = Γ1+ Γ 2 +Γ3 。
于是 Γ1 = - (Γ 2 +Γ3) 。
此时,如不计粘性影响,绕翼型的速度环量与 起动涡的速度环量大小相等、方向相反,即
Γ1 = - Γ 2 。
位流理论可用之处
(
dyw dxw
)
( yw )u,l y f yc
y
y0 u,l
V
(
dy f dx
dyc dx
)
(6.12, p145) (6.13, p145)
扰动速位 的线性叠加
/ y y0 V
f
/ y
y0
确定了无粘位流理6.4 薄翼型(位流)理论
翼型位流问题的一般提法
2 0
n
0,在翼面上
,在无穷远
B.C
K J条件, 在后缘处
速度位,
来流速度位
,
n
翼面外法线单位矢
.
该问题的解,一般可由数值解法获得,这将在§6.5介绍 。本节要介绍的是,薄翼型绕流的小扰动线性化近似条件下 的解析解法。
2 / x2 2 / y2 0

翼型与机翼的气动特性

翼型与机翼的气动特性
升力系数随来流马赫数的变化
阻力系数随来流马赫数之变化
阻力系数随来流马赫数的变化
俯仰力矩特性随来流马赫数之变化
压力中心随来流马赫数的变化
机翼主要几何参数对跨声速气动特性 的影响
翼型的临界马赫数将随翼型的相对厚度、相对弯度以及升 力系数Cy的增大而降低
翼型临界马赫数与相对厚度的关系
翼型临界马赫数与相对弯度的关系
第六章 翼型与机翼的气动特性
Present theoretical methods for the calculation of airfoil aerodynamic properties
6.1 翼型和机翼的发展简史
翼型(airfoil)与机翼(wing)
平行于机翼的对称面截得的机翼截面,称为翼剖面,即翼 型。机翼是由翼型构成的,是飞行器产生升力的主要部件 ,翼型的几何形状是机翼的基本几何特性之一。
翼型的几何参数
Leading edge: 前缘 Chord line: 弦线 Thickness: 厚度 Mean chamber line:
trailing edge: 后缘
chord length: 弦长
camber:
弯度
中弧线
翼型的分类
按几何形状,翼型可分为两类: 圆头尖尾的,用于低速、亚声速和跨声速飞行的飞机机翼
当粘性考略在流动中时,这种悖论立马消失。 事实上,流动的粘性产生翼型阻力的唯一原因。 阻力产生于两种物理机制:
1、表面摩擦阻力:即作用在表面上的剪切力
2、由于流动分离产生的压差阻力,有时也叫 做形阻力
如图a清晰展示出剪切力产生的阻力。由于流动分离(b )产生的压差阻力相对来说是一个细微的现象
矩形机翼在亚声速气流 中的气动载荷分布

第六章低速机翼

第六章低速机翼

升力系数 纵向力矩系数
Cl
1 2
L 阻V力系2 S数
mz
1 2
Mz
V2SbA
D
Cd
1 2
V2 S
2.2 机翼的空气动力系数,平均气动弦长 1、机翼的空气动力系数
2.2 机翼的空气动力系数,平均气动弦长 2、机翼的平均气动弦长 根据翼型理论,作用在翼型上的纵向气动力可以用作用在翼型焦点的升力与绕该点的零升俯仰力矩来 代表,力矩的参考长度是翼型的弦长。类似地,作用在机翼上的纵向气动力亦可用作用于机翼焦点上的升 力与绕该点的零升俯仰力矩来代表,但作为力矩的参考长度是平均气动弦长bA。
2.3 大展弦比直机翼的气动特性
由于下洗速度远小于来流速度,故可得
i(z)tg 1V vi (z)V vi (z)41 V 2 l2 l d dz d
直匀流+附着涡线+自由涡面 因为低速翼型的升力增量在焦点处,约在1/4弦点,因此附着涡线可放在展向各剖面的1/4弦点的连线上,此 线即为升力线。
2.3 大展弦比直机翼的气动特性
2.3 大展弦比直机翼的气动特性
2.3.3 升力线理论
基于升力线模型建立起来的机翼理论称为升力线理论。
一、剖面假设
有限翼展机翼上的翼剖面与二维翼型特性不同,其差别反映出绕机翼的三维效应。对大展弦直机翼小 迎角下的绕流来说,各剖面上的展向速度分量以及各流动参数沿展向的变化,比起其他两个方向上的速度 分量以及各流动参数变化小得多,因此可近似地把每个剖面上的流动看作是二维的,而在展向不同剖面上 的二维流动,由于自由涡的影响彼此又是不相同的。这种从局部剖面看是二维流动,从整个机翼全体剖面 看又是三维流动,称为剖面假设。
从升力特性看,有限展弦比直机翼与无限展长机翼的主要差别,或者说三维效应是以下两点:首先

第6章亚音速翼型和机翼的气动特性(3)精品PPT课件

第6章亚音速翼型和机翼的气动特性(3)精品PPT课件
推广应用普朗特 -葛劳渥特法则 至三维
亚音速薄机翼的升力和俯仰力矩特性


亚音速薄机翼的升力和俯仰力矩特性
亚音速薄机翼的升力和俯仰力矩特性
亚音速薄机翼的升力和俯仰力矩特性
这样,就可得到一套计算亚音速流中机翼升力线斜率的曲线。 这一特性称为亚音速机翼的升力线斜率相仿律
亚音速薄机翼的升力和俯仰力矩特性
6.5.3 亚音速流时来流马赫数对 机翼气动特性的影响
6.5.3.1 M对机翼升力特性的影响
M对机翼升力特性的影响
M对机翼升力特性的影响
在亚音速范围内,机翼的最大升力系数Cymax与翼型形状 有关,一般随M 的增大而下降。这是由于随M的增大, 翼型表面压强系数的绝对值按同样的比例系数增大,故翼 型上最小压强点的压强降低得最多,使翼型后部的逆压梯 度增大,导致翼型在较小迎角下就分离失速,故机翼升力 系数降低。
这样亚音速流中机翼焦点位置与对应的不可压机翼的焦点位置之间的关系为亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性亚音速机翼的压力中心和焦点也存在相仿律亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性左边为亚声速右边为超声速亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性左边为亚声速右边为超声速亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性左边为亚声速右边为超声速亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性左边为亚声速右边为超声速亚音速薄机翼的升力和俯仰力矩特性亚音速薄机翼的升力和俯仰力矩特性实验表明当迎角继续增大时机翼的压力中心要向后移动
的压力中心距机翼平均气动弦前缘的x向距离为

小展弦比机翼的低速气动特性

小展弦比机翼的低速气动特性

小展弦比机翼的低速气动特性通常把的机翼称为小展弦比机翼。

由于超声速飞行时小展弦比机翼具有低波阻的特性,所以这种机翼常用于战术导弹和超声速歼击机。

其基本形状有:矩形、三角形、切角三角形、双三角形等。

通常用锐缘无弯扭对称薄翼。

1、小展弦比机翼的绕流特点对圆角的薄翼,在小迎角下绕流为附着流,在前缘存在前缘吸力。

对于小展弦比机翼,只有在3-40下,才出现附着绕流而在更大迎角下,下翼面高压气流绕过侧缘流向上表面,必定会在侧缘产生分离,在上翼面形成脱体涡。

如下图所示。

这些脱体涡的出现将对上翼面产生更大的负压,从而造成更大的升力。

这个升力常称为涡升力。

造成小展弦比机翼的升力特性曲线为非线性的。

如图所示。

2、前缘吸力比拟法(Polhamus,1966)小展弦比锐缘三角翼,在较大迎角工作时,由于翼面上存在拖向后方的脱体涡,使升力特性曲线出现明显的非线性特征。

大展弦比附着流的方法不适应,“前缘吸力比法”是专为这种小展弦比机翼提出的。

该方法的基本思路是:将存在拖体涡的翼面中总升力人为分解为:位流升力和涡流升力两部分之和。

对于升力系数而言,有其中,CLp为势流升力系数,CLv为涡流升力系数。

小展弦比锐缘三角翼在较大迎角下的势流升力L与小迎角下线化小扰动势流升力是不同的。

前者气流绕过机翼时未发生分离,存在前缘吸力,其势流升力包括法向力和前缘吸力的贡献;后者气流绕过机翼时出现分离,前缘吸力丧失,但分离流在上表面再附,其势流升力仅有是法向力在垂直于来流方向的投影。

根据适当的理论推导,得到其中K为系数,对于小迎角的情况说明,K为势流升力线斜率。

对于脱体涡产生的涡升力,与涡的位置、形状、强度等有关,理论计算较为困难。

吸力比拟法假定:旋涡在翼面上产生的法向力与绕过圆前缘所产生的吸力大小相等,方向转900向上。

(相当于用前缘吸力比拟了涡升力)从物理上讲,这种比拟实际上是设想当气流在前缘分离并再附于机翼上表面时,为了保持绕分离涡的流动平衡所需要的力与势流中前缘保持附体绕流所产生的吸力相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档