复旦大学 数学分析课后习题解 陈纪修

合集下载

陈纪修《数学分析》配套题库【课后习题】(数列极限)

陈纪修《数学分析》配套题库【课后习题】(数列极限)

第2章数列极限§1 实数系的连续性1.(1)证明不是有理数;(2)是不是有理数?证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在:解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有,所以min B不存在.max C与min C都不存在,因为,所以max C与min C都不存在.3.A,B是两个有界集,证明:(1)A∪B是有界集;(2)也是有界集.证明:(1)设,有,有,则,有.(2)设,有,有,则,有.4.设数集S有上界,则数集有下界.且.证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即.5.证明有界数集的上、下确界惟一.证明:设sup S既等于A,又等于B,且A<B.取,因为B为集合S的上确界,所以,使得,这与A为集合S的上确界矛盾,所以A=B,即有界数集的上确界惟一.同理可证有界数集的下确界惟一.6.对任何非空数集S,必有.当时,数集S有什么特点?解:对于,有,所以.当时,数集S 是由一个实数构成的集合.7.证明非空有下界的数集必有下确界.证:参考定理2.1.1的证明.具体过程略.8.设并且,证明:(1)S没有最大数与最小数;(2)S在Q内没有上确界与下确界.证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数.(2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能:(i),由(1)可知存在充分小的有理数r>0,使得,这说明,与矛盾;(ii),取有理数r>0充分小,使得,于是,这说明也是S的上界,与矛盾.所以S没有上确界.同理可证S没有下确界.§2 数列极限1.按定义证明下列数列是无穷小量:(1);(2);(3);(4);(5);(6);(7)(8).证明:(1),取,当n>N时,成立.(2),取,当时,成立.(3),取,当时,成立;取,当时,成立,则当时,成立.(4),取,当n>N时,成立.(5)当n>11时,有.于是,取,当n>N时,成立.(6)当n>5,有.于是,取,当n>N时,成立.(7),取,当n>N时,成立(8)首先有不等式,取,当n>N时,成立.2.按定义证明下述极限:证明:(1),取,当时,成立(2),取,当时,成立(3),取,当n>N时,成立(4)令,则.当n>3时,有所以,取,当时,成立.(5),取,当n>N时,若n是偶数,则成立;若z是奇数,则成立.3.举例说明下列关于无穷小量的定义是不正确的:(1)对任意给定的,存在正整数N,使当n>N时,成立;(2)对任意给定的,存在无穷多个,使.解:(1)例如,则满足条件,但不是无穷小量.(2)例如则满足条件,但不是无穷小量.4.设k是一正整数,证明:的充分必要条件是.证明:设,则,成立,于是也成立,所以;设,则,成立,取,则,成立,所以.5.设,证明:.证明:由可知,成立,成立.于是,成立.6.设.且,证明:.证明:首先有不等式.由,可知,成立,于是.7.是无穷小量,是有界数列,证明也是无穷小量.证明:设对一切.因为是无穷小量,所以,,成立.于是,成立,所以也是无穷小量.。

数学分析课后习题答案--高教第二版(陈纪修)--5章

数学分析课后习题答案--高教第二版(陈纪修)--5章

.k
hd
π π
4
(3) 令 f ( x) = 2 arctan x + arcsin
2x ,注意到 x 2 − 1 > 0, ∀x > 1 ,所以 2 1+ x
由于 f ( x) 在 [1, +∞ ) 连续,所以 f ( x) ≡ f (1) = 2 +
案 网
至多有限个点有 f ′( x ) = 0 之外,都有 f ′( x ) > 0 ,则 f ( x ) 在 [ a , b ] 上严格 单调增加;同时举例说明,其逆命题不成立。 证 设 a = x0 < x1 < " < xn −1 < xn = b ,其中 x1 , x2 ," , xn −1 是 f '( x) 全部的零点。 则 f ( x) 在 [ xi , xi +1 ] (i = 0,1," , n − 1) 上严格单调增加。 从而,f ( x) 在 [a, b] 上 严格单调增加。 构造函数
(ξ , f (ξ )) 不在 ( a, f ( a )), (b, f (b)) 的连线上。
假设 (ξ , f (ξ )) 在 (a, f (a )), (b, f (b)) 的连线的上方,则
f (ξ ) − f (a ) f (b) − f (a ) f (b) − f (ξ ) > > , ξ −a b−a b −ξ
的两倍。
5. 设函数 f ( x ) 和 g ( x ) 在 [ a , b ] 上连续, 在 ( a , b ) 上可导, 证明 ( a , b ) 内存

在一点 ξ ,使得
后 答
案 网
针排列,则ψ ( x) 就是三角形面积的两倍,否则-ψ ( x) 就是三角形面积

数学分析课后习题答案--高教第二版(陈纪修)--10章

数学分析课后习题答案--高教第二版(陈纪修)--10章

第十章 函数项级数习 题 10. 1 函数项级数的一致收敛性1. 讨论下列函数序列在指定区间上的一致收敛性。

⑴ S n (x ) = , (i) x nx −e ∈)1,0(, (ii) x ∈; ),1(+∞ ⑵ S n (x ) = x , x nx −e ∈),0(+∞;⑶ S n (x ) = sin nx , (i)x ∈),(+∞−∞, (ii) x ∈],[A A −(); 0>A ⑷ S n (x ) = arctan nx , (i)x ∈)1,0(, (ii) x ∈; ),1(+∞ ⑸ S n (x ) =221nx +, x ∈),(+∞−∞; ⑹ S n (x ) = nx (1 - x )n , x ∈]1,0[;⑺ S n (x ) =n x ln n x, (i) x ∈)1,0(, (ii) x ∈);),1(+∞ ⑻ S n (x ) = nnx x +1, (i) x ∈)1,0(, (ii) x ∈;),1(+∞ ⑼ S n (x ) = (sin x )n , x ∈],0[π;⑽ S n (x ) = (sin x )n1, (i) x ∈[0,]π, (ii) x ∈],[(0>δ);δπδ− ⑾ S n (x ) = nn x ⎟⎠⎞⎜⎝⎛+1, (i) x ∈),0(+∞, (ii)x ∈],0(A (); 0>A ⑿ S n (x ) = ⎟⎟⎠⎞⎜⎜⎝⎛−+x n x n 1, (i) x ∈),0(+∞, (ii)[)0,,>+∞∈δδx 。

解 (1)(i) ,0)(=x S )()(sup ),()1,0(x S x S S S d n x n −=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在上非一致收敛。

(0,1) (ii) ,0)(=x S )()(sup ),(),1(x S x S S S d n x n −=+∞∈n e −=)(0∞→→n ,所以{}()n S x 在上一致收敛。

数学分析 第二版 上下册 课后答案 陈纪修

数学分析 第二版 上下册 课后答案 陈纪修

7
但在[ 0, 1 ] 的任一子区间上都不是单调函数。

f
(
x)
=
⎧x
⎨ ⎩1

x
x为有理数 。
x为无理数
8
第二章 数列极限
习 题 2.1 实数系的连续性
1. (1) 证明 6 不是有理数;
(2) 3 + 2 是不是有理数? 证(1)反证法。若 6 是有理数,则可写成既约分数 6 = m 。由 m2 = 6n2 ,
3
习 题 1.2 映射与函数
1. 设 S = {α , β ,γ }, T = {a,b,c} ,问有多少种可能的映射 f :S → T ? 其中
哪些是双射?
解 有 33 = 27 种可能的映射,其中有 3!= 6 种是双射,它们是
⎧α a
⎧α a
⎧α b
⎧α b
⎧α c
⎧α c
f : ⎪⎨β b , f : ⎪⎨β c , f : ⎪⎨β c , f : ⎪⎨β a , f : ⎪⎨β a , f : ⎪⎨β b 。
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)

f
⎜⎛ ⎝
x
x −
(4)
y = f (u) =
u
,u
=
g(x)
=
x x
−1。
+1
( ) ( ) 解(1) y = loga (x2 − 3) ,定义域: − ∞,− 3 ∪ 3,+∞ ,值域: (−∞,+∞) ;

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex


⎧1
⎨ ⎩
n
−1+ n +1
1 n+2

+ (−1)n
1
⎫ ⎬

2n ⎭

(1) ∀ε
(0 < ε
< 2) ,取 N
=
⎡2⎤ ⎢⎣ε ⎥⎦
,当
n
>
N
时,成立
0
<
n +1 n2 +1
<
2 n
<
ε

(2)
∀ε
(0
<
ε
<
1)
,取
N
=
⎡ lg ε ⎤
⎢ ⎣
lg
0.99
⎥ ⎦
,当
n
>
N
时,成立
lg ε
(−1)n (0.99)n < (0.99)lg0.99 = ε 。
n
(2) 3 + 2 不是有理数。若 3 + 2 是有理数,则可写成既约分数
3 + 2 = m ,于是 3 + 2 6 + 2 = m2 , 6 = m2 − 5 ,即 6 是有理数,与
n
n2
2n2 2
(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在:
A = {x|x ≥ 0};
>
N
,成立
xn
−a
<
ε
,所以 lim n→∞
xn
=
a

5.
设 lim n→∞
x2n
= lim n→∞
x2n+1

数学分析课后习题答案--高教第二版(陈纪修)--5章

数学分析课后习题答案--高教第二版(陈纪修)--5章

hd
aw .c om
8. 用 Lagrange 公式证明不等式: ⑴ ⑵ ⑶ ⑷ 证 ⑴ ⑵
|sin x − sin y | ≤ | x − y | ;
ny n −1 ( x − y ) < x n − y n < nx n −1 ( x − y ) (n > 1, x > y > 0) ;
b−a b b−a < ln < b a a (b >− f (−1) = 0 ,但 ∀ξ ∈ ( −1,1), ξ ≠ 0, f '(ξ ) = ±1 ≠ 0 。 1 − (−1)
设函数 f ( x ) 在 [ a , b ] 上连续,在 ( a , b ) 上可微。利用辅助函数
x ψ( x ) = a b f (x) 1 f (a ) 1 f ( b) 1
案 网
几何意义:在 [ a , b ] 上连续、在 ( a , b ) 上可导的非线性函数,必定在


由 Lagrange 中值定理,
a
1
arctan
与 n 之间。当 n → ∞ 时, 1 + ξ 2 趋于 1,所以
a a ⎞ ⎛ arctan − arctan ⎜ ⎟ a a ⎞ na ⎝ n n +1⎠ ⎛ = ⋅ lim n 2 ⎜ arctan − arctan lim ⎟ n →∞ a a n n + 1 ⎠ n→∞ n + 1 ⎝ − n n +1
的两倍。
5. 设函数 f ( x ) 和 g ( x ) 在 [ a , b ] 上连续, 在 ( a , b ) 上可导, 证明 ( a , b ) 内存

在一点 ξ ,使得

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

一解 a = 0 舍去),因此
lim
n→∞
xn
=
2。
(3)首先有 x1 =
2 > −1,设 xk > −1,则 xk+1 =
−1 > −1 ,由数学
2 + xk
25
归纳法可知 ∀n ,xn
> −1。由 xn+1
− xn
=
−1 2 + xn
− xn
=

(xn + 1)2 2 + xn
< 0 ,可知{xn}
)n
= 0。
证(1)设
lim
n→∞
an
=
+∞ ,则 ∀G
>
0, ∃N1
>
0, ∀n
>
N1
: an
>
3G
。对固定的
N1 ,
∃N > 2N1,∀n > N :
a1 + a2 + " + aN1 n
< G ,于是
2
a1 + a2 + " + an ≥ aN1+1 + aN1+2 + " + an − a1 + a2 + " + aN1 > 3G − G = G 。
n→∞ ⎝ n ⎠
⑴ lim ⎜⎛1 − 1 ⎟⎞n ;
n→∞ ⎝ n ⎠
⑵ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ n + 1⎠
⑶ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ 2n ⎠

陈纪修《数学分析》(第2版)(下册)课后习题-含参变量积分(圣才出品)

陈纪修《数学分析》(第2版)(下册)课后习题-含参变量积分(圣才出品)

7.设函数 具有二阶导数, 是可导的,证明函数
满足弦振动方程
以及初始条件

证明:直接计算,可得
所以
且显然成立

8.利用积分号下求导法计算下列积分:
5 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

解:(1)设
于是


所以
(2)设
作变换
得到




。设 由于
。研究函数
的连续性。
解:设
由于

在 处连续。


。由于 在 上连续,且
上的最小值
当 时,成立
于是
上连续,可知 所以 在
由 连续。
可知


处不
§2 含参变量的反常积分
9 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

1.证明下列含参变量反常积分在指定区间上一致收敛:


上一致收敛。所以

上一致收敛。
( ii ) 当
对于


则当 充分大时,
由 Cauchy 收敛准则,

上不一致收敛,同理

上也不一致收敛,所以

上不一致收敛。
(3)(i)当

收敛,由 Weierstrass
判别法

上一致收敛。
(ii)当 取
由于
由 Cauchy 收敛准则,可知

( 4 )( i ) 当

关于
一致有界,以及 单调,当
时 关于
致趋于零,由 Dirichlet 判别

数学分析课后习题答案--高教第二版(陈纪修)--13章

数学分析课后习题答案--高教第二版(陈纪修)--13章

F (x, y) = f (x) , (x, y) ∈ D 。
证明 F (x, y) 在 D 上可积。
证 将[a,b] 、[c, d ] 分别作划分:
a = x0 < x1 < x2 < < xn−1 < xn = b

m c = y0 < y1 < y2 < < ym−1 < ym = d , o 则 D 分成了 nm 个小矩形 ∆Dij (i = 1,2, , n, j = 1,2, , m) 。
2π 3

∫∫∫

1
+
dxdxdz x2 + y2 +
z
2

4π 3

m 4.计算下列重积分:
co (1) ∫∫(x3 + 3x2 y + y3 )dxdy ,其中 D 为闭矩形[0,1] × [0,1] ;
. D
aw (2) ∫∫ xy ex2+y2 dxdy ,其中 D 为闭矩形[a,b] × [c,d ];
课 证明
H ( x, y) = max{ f ( x, y), g( x, y)}

h( x, y) = min{ f ( x, y), g( x, y)}
也在 D 上可积。
证 首先我们有
H (x, y) = 1 ( f (x, y) + g(x, y) + f (x, y) − g(x, y) ), 2
D
khd (3)
∫∫∫ Ω
dxdydz (x + y + z)3
,其中

为长方体 [1,2]
×
[1,2]

数学分析课后习题答案--高教第二版(陈纪修)--9章

数学分析课后习题答案--高教第二版(陈纪修)--9章
第九章


数项级数
数项级数的收敛性


9.1
1. 讨论下列级数的收敛性。收敛的话,试求出级数之和。
1 ; ⑴ ∑ n =1 n ( n + 2) ∞ 1 ; ⑶ ∑ n =1 n ( n + 1)( n + 2) ∞ 1
⑵ ⑷
∑ 3n + 1 ; ∑⎜ ⎝2
n =1 ∞
2n
⑸ ⑺ ⑼

n =1 ∞ n =1 ∞
2n − 1 , 3n
;
co m
(3)当 x = 1 时显然级数收敛;当 x ≠ 1 时 ∑ x n (1 − x) = (1 − x) ∑ x n ,收敛
n =1


n =1
范围是 x ∈ (−1,1) ;所以当 x ∈ (− 1,1] 时级数收敛。 3. 求八进制无限循环小数 (36.0736073607 … )8 的值。 解 (36.0736073607 … )8
n→∞ n→∞
3. 证明: (1) lim ( x n + y n ) ≥ lim x n + lim y n ;
n→∞ n→∞ n→∞
(2) 若 lim x n 存在,则
n →∞
lim ( x n + y n )= lim x n + lim y n 。
n→∞
n→∞
n→∞
证 (1)记 lim x n = h1 , lim y n = h2 ,则对任意给定的 ε > 0 ,存在正整
h − ε < yn < H + ε 。
min{( x − ε )( H + ε ), ( x + ε )( H + ε )} < x n y n < max{( x − ε )(h − ε ), ( x + ε )(h − ε )},

数学分析课后习题答案--高教第二版(陈纪修)--15章

数学分析课后习题答案--高教第二版(陈纪修)--15章
n →∞
f (ξ , y K ) − φ (ξ ) <
ww
成立
w. kh d

2
ε0

( f ( xn , y K ) − φ ( xn ) ) − ( f (ξ , y K ) − φ (ξ )) <
aw .
2 注意 lim y n = y 0 ,取足够大的 K 使得 −δ < yK − y0 < 0 ,从而
(2) ∫02 ln
π
a a 1 + a sin x dx dy dx 2 = 2∫ 2 dx ∫ = 2 dy , ∫ ∫ 0 0 1 − y 2 sin 2 x 0 0 1 − y 2 sin 2 x 1 − a sin x sin x
π
π

2 0
=
π
2 1− y
2

所以
4.
求下列函数的导数: (1) I ( y ) = ∫ y e − x y dx ;

这与 f ( xn , y n ) − φ ( xn ) ≥ ε 0 , (n = 1,2,") 矛盾。 3. 用交换积分顺序的方法计算下列积分:
1 1 ⎞ xb − xa ln dx (b > a > 0) ; (1) ∫0 sin⎛ ⎟ ⎜
⎝ x ⎠ ln x 1 + a sin x dx (2) ∫02 ln (1 > a > 0) 。 1 − a sin x sin x b a 1 1 b b 1 ⎛ 1⎞ x − x ⎛ 1⎞ ⎛ 1⎞ dx = ∫ sin ⎜ ln ⎟dx ∫ x y dy = ∫ dy ∫ x y sin ⎜ ln ⎟dx , 解(1) ∫0 sin⎜ ln ⎟ 0 a a 0 ⎝ x ⎠ ln x ⎝ x⎠ ⎝ x⎠ 1 y 1 1 1 y ⎛ 1⎞ ⎛ 1⎞1 ⎛ 1⎞ y +1 = + sin ln x x cos⎜ ln ⎟dx sin ln x dx ⎜ ⎟ ⎜ ⎟ ∫ ∫0 0 y +1 ⎝ x⎠ ⎝ x ⎠ 0 y +1 ⎝ x⎠

数学分析课后习题答案--高教第二版(陈纪修)--14章

数学分析课后习题答案--高教第二版(陈纪修)--14章
0
a
ww
2
2π ( (1 + a 4 ) 3 − 1) 。 3a 2
w. kh d
= 2b ∫ sin t a 2 + (b 2 − a 2 ) cos 2 t dt
0
πHale Waihona Puke aw .解质量 m = ∫ ρds = b ∫0 sin t a 2 sin 2 t + b 2 cos 2 t dt

co m
Σ
∫∫ ( x
Σ
2
+ y + z )dS = ∫∫ a dS = 4πa 4 ,
2 2 2 Σ
所以
⎛ x2 y2 z2 ⎞ 13 13 4 2 ⎜ ∫∫ ⎜ 2 + 3 + 4⎟ ⎟dS = 12 ∫∫ x dS = 9 πa 。 ⎠ Σ ⎝ Σ 1 (6)由对称性,有 ∫∫ x 3 dS = 0 , ∫∫ y 2 dS = ∫∫ ( x 2 + y 2 )dS ,再由 2 Σ Σ Σ 1 zdS = ∫∫ ( x 2 + y 2 )dS ,得到 ∫∫ 2 Σ Σ
⎧ x = (b + a cos φ ) cos ϕ , ⎪ (6) 环面 ⎨ y = (b + a cos φ ) sin ϕ , 0 ≤ φ ≤ 2π , 0 ≤ ϕ ≤ 2π , 其中 0 < a < b 。 ⎪ z = a sin φ , ⎩
解(1) A = ∫∫ 1 + a 2 ( x 2 + y 2 )dxdy
4. 求下列第一类曲面积分: (1) ∫∫ ( x + y + z )dS ,其中∑是左半球面 x 2 + y 2 + z 2 = a 2 , y ≤ 0 ;

数学分析课后习题答案--高教第二版(陈纪修)--12章

数学分析课后习题答案--高教第二版(陈纪修)--12章

5
aw .
⎛ x2 y2 + 2 2 b ⎝a
co m

在 ( x, y ) ≠ (0,0) 点, 函数值增长最快的方向为 grad f = ( y, x) ; 在 (0,0) 点, 由于梯度为零向量,不能直接从梯度得出函数值增长
最快的方向。设沿方向 v = (cos α , sin α ) 自变量的改变量为
⎛ x2 ∂z 2 x = sec 2 ⎜ ⎜ y ∂x y ⎝
2 ⎞ ∂z x2 2⎛ x ⎞ ⎜ ⎟。 ⎟, = − sec ⎜ y ⎟ ⎟ ∂y y2 ⎝ ⎠ ⎠
∂z 1 x y y x y x y x x y 1 ∂z = cos cos + 2 sin sin , = − 2 cos cos − sin sin 。 ∂x y y x x y x y x ∂y y x x y


n ∂u = ∑ aij xi , ∂y j i =1
∂u = ai , i = 1,2, " , n 。 ∂xi
n
∑ aij y j , i = 1,2,", n ,
ww
x
z z z ∂u ∂u ∂u = zy z −1 x y ln x , = y z x y −1 , = y z x y ln x ln y 。 ∂x ∂y ∂z
(6) u = ln( x 2 + y 2 + z 2 ) 。
co m
5. 求下列函数在指定点的全微分: (1) f ( x, y ) = 3 x 2 y − xy 2 ,在点 (1,2) ; (2) f ( x, y ) = ln(1 + x 2 + y 2 ) ,在点 (2,4) ;

数学分析课后习题答案--高教第二版(陈纪修)--16章

数学分析课后习题答案--高教第二版(陈纪修)--16章
bn =
f ( x ) sin nxdx = π ∫π

1
π
2(1 − cos(nπ )) ,( n = 1, 2,3, nπ sin( 2k − 1) x 。 π k =1 2k − 1 4
)。
f ( x) ∼


(2) f ( x) 为偶函数,所以 bn = 0 , ( n = 1, 2,3, ) ,
(a)

an =
f ( x ) cos nxdx = − π ∫π π (n
− 1
1
π
2A ( n = 2, 4, 6, 2 − 1)
w. kh d
解 (1) a0 =
f ( x) dx = π ∫π
1
1
π
2A
π ,
π
1

1

1
bn =
后 答
f ( x ) sin nxdx = 0 ,( n = 2,3, 4, π ∫π
(a − b)(1 − (−1) n ) ,( n = 1, 2,3, π n2
(a + b) cos(nπ ) ,( n = 1, 2,3, n
), )。
f ( x) sin nxdx = − π ∫π

π
∞ ( −1) n +1 (a − b)π 2(a − b) ∞ cos(2k + 1) x + + ( a + b) ∑ sin nx 。 f ( x) ∼ − ∑ 2 n π 4 n =1 k =0 (2k + 1)


n 1 − (−1) n e −2π sin nx 。 ∑ π n=1 n2 + 4 2

陈纪修《数学分析》配套题库【课后习题】(集合与映射)

陈纪修《数学分析》配套题库【课后习题】(集合与映射)
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 1 章 集合与映射
§1 集 合
1.证明由 n 个元素组成的集合 证明:由 k 个元素组成的子集的个数可列式为
有 个子集.
2.证明:
(1)任意无限集必包含一个可列子集;
(2)设 A 不 B 都是可列集,证明 A U B 也是可列集.
6.举例说明集合运算丌满足消去律: (1) (2) 其中符号 表示左边的命题丌能推出右边的命题. 解:(1)设 A={a,b,c},B={b,c,d},C={c,d},则 (2)设 A={a,b,c},B={c,d,e},C={c,d},则
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?丌正确的话,请改正.
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,丌是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为

(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故

或{a,b}∈{a,b,{a,b}},但{a,b,{a,b}}≠{a,b}.
4.用集合符号表示下列数集:
(1)满足
的实数全体;
(2)平面上第一象限的点的全体;
(3)大于 0 并且小于 1 的有理数全体;
(4)方程 sinxcot x=0 的实数解全体.
解:(1){x|-2<x≤3}.
(2){(x,y)|x>0 且 y>0}.
(3){x|0<x<1 且 x∈Q}|.
(4)

5.证明下列集合等式: (1) (2)

数学分析课后习题答案--高教第二版(陈纪修)--11章

数学分析课后习题答案--高教第二版(陈纪修)--11章
a显然有而且于是当时成立由于是任意正数所以成立等式于是当时成立邻域中任取一点x为有限集于是inf中的每个点x一定是它的内点所以x的任意邻域都有u中的无限个点所以x一定是u只有一个点所以无聚点即闭集中的点不一定是它的聚点
第十一章 Euclid 空间上的极限和连续
习题 11.1 Euclid 空间上的基本定理
{
z 。 x + y2
2
}

因为
所以


x3 1 ⎛ y⎞ , = f ⎜ ⎟= 2 3 2 3/ 2 ⎝ x ⎠ (x + y ) 2 2 ⎡ ⎛ y⎞ ⎤ ⎢1 + ⎜ ⎟ ⎥ ⎢ ⎝x⎠ ⎦ ⎥ ⎣
f ( x) = (1 +
3.
若函数
后 答
且当 y = 4 时 z = x + 1 ,求 f ( x) 和 z ( x, y ) 。 解 由 z ( x, 4) = 4 + f ( x − 1) = x + 1 ,可得
(1)S = ⎨(−1) k

解 (1) S' = {± 1} 。 (2) S' = ∅ 。
以x为极限,产生矛盾。 7. 设 U 是 R 2 上的开集,是否 U 的每个点都是它的聚点。对于 R 2 中 的闭集又如何呢? 解 开集 U 中的每个点 x 一定是它的内点,所以 x 的任意邻域都有 U 中的无限个点,所以 x 一定是 U 的聚点。 由于 S = {(0, 0)} 是 R 2 上的闭集,而 S 只有一个点,所以无聚点, 即闭集中的点不一定是它的聚点。 8. 证明 S ⊂ R n 的所有内点组成的点集 S 必是开集。 证 假 设 x ∈ S , 则 ∃δ > 0 , O ( x , δ ) ⊂ S 。 而 ∀y ∈ O ( x , δ ) , 由 于

数学分析课后习题答案--高教第二版(陈纪修)--7章

数学分析课后习题答案--高教第二版(陈纪修)--7章

1 n

4
ε
,则 f ( x) 在 [
1 ,1] 上只有有限个不连续点, m
所以 f ( x) 在 [
n 1 1 ε ,1] 上可积,即存在 [ ,1] 的划分 P ,使得 ∑ ω i ∆xi < 。 2 m m i =1
将 P 的分点与 0 合在一起作为[0,1]的划分 P ' ,则
∑ ωi′∆xi′ = ∑ ωi ∆xi + ω1′∆x1′ <
ω i ≥ε
207
区间的长度之和可以任意小) 。 证 充分性: 设 f ( x) ≤ M 。 ∀ε = σ > 0 , 存在划分 P , 使得振幅 ω i ≥ ε
从而
0 ≤ S ( P ′′) − S ( P ) < ( p − 1)( M − m)δ ≤
ε
2

综合上面的结论,就有
0 ≤ l − S ( P) = [l − S ( P ′)] + [ S ( P ′) − S ( P ′′)] + [ S ( P ′′) − S ( P)] <
ε
2
+0+
ε

后 答
下面来估计 S ( P′′) − S ( P) :
案 网
ww w
204
P : a = x0 < x1 < x 2 < " < x n = b ,
.k
hd
对任意一个满足 λ = max (∆xi ) < δ 的划分
aw .c om
′ < x2 ′ < " < x ′p = b , M , m 是 f ( x ) 的上、下确界,取 ′ < x1 设划分 P ′ : a = x 0

陈纪修《数学分析》(第2版)(上册)课后习题(第1~4章)【圣才出品】

陈纪修《数学分析》(第2版)(上册)课后习题(第1~4章)【圣才出品】
图 1-2 解:取重力加速度 g=980cm/s2.
13.试求定义在[0,1]上的函数,它是[0,1]与[0,1]之间的一一对应,但在[0,1]的 任一子区间上都不是单调函数.
解:
8 / 96
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 2 章 数列极限
§1 实数系的连续性
(2)

十万种考研考证电子书、题库视频学习平台
(3){a,b}∈{a,b,c};
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,不是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为

(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故
=(1,-1),C=(3,2),D=(4,0).
解:
11.设 f(x)表示图 1-1 中阴影部分面积,写出函数 y=f(x),x∈[0,2]的表达式.
解:
图 1-1
7 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台

12.一玻璃杯装有汞、水、煤油三种液体,密度分别为 13.6g/cm3,1g/cm3,0.8g /cm3,如图 1-2,上层煤油液体高度为 5cm,中层水液体高度为 4cm,下层汞液体高度 为 2cm,试求压强 P 与液体深度 x 之间的函数关系.
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?不正确的话,请改正.
3 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)
并且 x∈B;
(2)

数学分析课后习题答案--高教第二版(陈纪修)--4章

数学分析课后习题答案--高教第二版(陈纪修)--4章

ww w
59
.k
4. 证明:从椭圆的一个焦点发出的任一束光线,经椭圆反射后,反
tan θ1 − tan θ 。 利 用 c2 = a2 − b2 和 1 + tan θ1 tan θ
hd
aw .c om
y0 b2 x + 2 0 2 2 x + c a y0 a 2 y0 a 2b 2 + cx0b 2 + b 2 x0 + cx0b 2 b2 。 = k= 0 = = y0 b 2 x0 (a 2 − b 2 ) x0 y0 + a 2 cy0 c 2 x0 y0 + a 2 cy0 cy0 1− ⋅ x0 + c a 2 y0
上任意一点,当 y 0 = 0 时结论显然成立。现设 y 0 ≠ 0 ,则过此点的切线
y b 2 x0 斜率为 tan θ = − 2 , ( x0 , y 0 ) 与焦点 (−c,0) 连线的斜率为 tan θ 1 = 0 , x0 + c a y0

后 答
案 网
此连线与切线夹角的正切为 k =
2 2 x0 y0 + = 1 代入计算,得到 a2 b2
.k
hd
aw .c om
f ( x0 − ∆x) − f ( x0 ) f ( x0 + (−∆x)) − f ( x0 ) = − lim = − f ' ( x0 ) 。 0 ∆ x → ∆x (−∆x)
知不存在 x ,使得 f ' ( x) = ∞ ,所以这样的点 ( a, b) 不存在。 3.设 f ( x) 为 (−∞,+∞ ) 上的可导函数,且在 x = 0 的某个邻域上成立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档