历届江苏高中数学竞赛试题及答案

合集下载

高中数学联赛江苏赛区初赛试卷及答案

高中数学联赛江苏赛区初赛试卷及答案

2018全国高中数学联赛江苏赛区初赛试卷时间:120分钟 满分:150分 姓名:一、填空题(本题共10小题,每小题107分,满分70分.要求直接将答案写在横线上.)1、函数cos cos2(R)y x x x =-∈的值域为__ __.2、已知2(i)34i a b +=+,其中,R a b ∈,i 是虚数单位,则²²a b +的值为_ ___. 3、圆心在抛物线²2x y =上,并且和该抛物线的准线及y 轴都相切的圆的方程为___ __.4、设函数14()2xx f x x -=-,则不等式2(1)(57)0f x f x -+-<的解集为__ ___. 5、已知等差数列{}n a 的前12项的和为60,则1212a a a +++L 的最小值为__ ___.6、已知正四面体内切球的半径是1,则该四面体的体积为___ __.7、在ABC ∆中,54AB AC ==,,且12=⋅AC AB ,设P 是平面ABC 上的一点,则)(PC PB PA +⋅的最小值为_____.8、设()g n =∑=nk n k 1),(,其中*N n ∈,(,)k n 表示k 与n 的最大公约数,则(100)g 的值为=_____. 9、将1,2,3,4,5,6,7,8,9,这9个数随即填入3⨯3的方格中,每个小方格恰填写一个数,且所填的数各不相同,则使每行、每列所填的数之和都是奇数的概率为__ __.10、在1,2,3,4,,1000L 中, 能写成²²1(N)a b a b -+∈,的形式,且不能被3整除的数有__ ____个.二、解答题(本大题共4小题,每小题20分,共80分)11、如图,在平面直角坐标系xoy 中,已知圆O 的方程为224x y +=,过点(0,1)P 的直线l 与圆O 交于,A B 两点,与x 轴交于点Q ,设PB QB PA QA μλ==,,求证:μλ+为定值.12、已知{}n a 是公差为(0)d d ≠的等差数列,且t a t a t a +=+=+33221,(1)求实数t d ,的值; (2)若正整数满足0222r p =-=-=-r r p p m m t a t a t a m ,<<,求数组(,,)m p r 和相应的通项公式n a . 13、如图,在圆内接四边形ABCD 中,对角线AC 与BD 交于点P ,ABD ∆与ABC ∆的内心分别为1I 和 2I ,直线21I I 分别与AC BD ,交于点,M N ,求证:PM PN =.14、从1,2,3,,2050L 这2050个数中任取2018个数组成集合A ,把A 中的每个数染上红色或蓝色,求证:总存在一种染色方法,是使得有600个红数及600个蓝数满足下列两个条件:①这600个红数的和等于这600个蓝数的和;②这600个红数的平方和等于这600个蓝数的平方和.参考答案:(1)9[0,]8; (2)5; (3)221(1)()12x y ±+-=; (4)(2,3); (5)60; (6)83; (7)658-; (8)520; (9)114; (10)501; (11)83; (12)①12t =-,38d =;②(,,)(1,3,4)m p r =,1(311)8n a n =-; Q AB xy o P。

全国高中数学联赛江苏赛区

全国高中数学联赛江苏赛区

全国高中数学联赛江苏赛区初赛分类一:二项式,复数9.(x3x2)3的展开式中,x5的系数为 27 1. 复数44(1i)(1i)++-= . 答案:-8 二:指数。

对数 2. 函数3log 3xy =的图像大致是(A )(A ) (B )(C ) (D) 8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于4.解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 113a =⎧⎨⎩,222a =-⎧⎨⎩,(舍去)故a b +等于4.4.已知=,则实数x =. 填1.解:即=32x -4×3x +3=03x =1(舍去),3x =3x =1.1.方程9135x x +-=的实数解为.提示与答案:x <0无解; 当0x ≥时,原方程变形为32x+3x -6=0,解得3x=2,x=log32. 2. 设)(x f y =为指数函数xa y =. 在P(1,1),Q(1,2),M(2,3),⎪⎭⎫⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是点 答:[D]A. PB. QC. MD. N 解 取161=a ,把坐标代入检验,4116121=⎪⎭⎫ ⎝⎛ ,而2116141=⎪⎭⎫⎝⎛,∴公共点只可能是点N.选D.三:不等式。

10.已知 ,则x2+y2的最大值是 9 12. 已知平面上两个点集 22{(,)||1|2(),,M x y x y x y x y =++≥+∈R}, {(,)||||1|1,,N x y x a y x y =-+-≤∈R}. 若 M N ≠∅, 则 a 的取值范围是o11 xy o 11x y o 1 1xyo 1 1xy ≥0 ≥0 ≥0 333y x y x y ⎧⎪-⎨⎪+-⎩.12.[1+由题意知M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口 内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 MN =∅ 时,a 的取值范围:令 1y =, 代入方程|1|x y ++=得 2420x x --=,解出得2x = 所以,当211a <= 时,M N =∅. …………③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =±.所以,当3a >+时, MN =∅. …………④因此, 综合 ③与 ④ 可知,当13a -≤≤,即[13a ∈时,M N ≠∅.故填[1+.3.设 0a b >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 53,C 由 0a b >>, 可知22210()()424a ab a b b a <-=--≤ 所以, 222144()a a b a b a+≥+≥-.故选 C .2.关于x 的不等式02022<--a ax x 任意两个解的差不超过9,则a 的最大值与最小值 的和是( C ).(A ) 2 (B ) 1 (C ) 0 (D ) 1-解:方程02022=--a ax x 的两根是14x a =-,25x a =,则由关于x 的不等式22200x ax a --<任意两个解的差不超过9,得9|9|||21≤=-a x x ,即11≤≤-a . 故选(C ).7.集合A={x ∣x=3n ,n ∈N ,0<n<10},B={y ∣y=5m ,m ∈N ,O≤m≤6}, 则集合AUB 的所有元素之和为 2256. 设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则{}3,1-=B A .解 ∵2<x ,[]x 的值可取1,0,1,2--.当[x]=2-,则02=x 无解;当[x]=1-,则12=x ,∴x=1-;当[x]=0,则22=x 无解; 当[x]=1,则32=x ,∴3=x .所以31或-=x .12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .四.三角函数1.函数 ()y f x = 的图像按向量 (,2)4a π= 平移后, 得到的图像的解析式为sin()24y x π=++. 那么 ()y f x = 的解析式为A. sin y x =B. cos y x =C. sin 2y x =+D. cos 4y x =+ 1,B sin[()]44y x ππ=++, 即 cos y x =.故选 B . 9.函数 ∈+=x x x y (|2cos ||cos |R) 的最小值是.9,2令 |cos |[0,1]t x =∈,则 2|21|y t t =+-.当1t ≤≤ 时, 2219212()48y t t t =+-=+-,得2y ≤≤;当 02t ≤<时,2219212()48y t t t =-++=--+,得928y ≤≤又 y 可取到2, 故填2.8.设COS2θ=3,则COS4θ+sin4θ的值是11181.已知函数2sin y x =,则( B ).(A ) 有最小正周期为π2(B ) 有最小正周期为π(C ) 有最小正周期为2π(D ) 无最小正周期 解:)2cos 1(21sin 2x x y -==,则最小正周期π=T . 故选(B ). 1.已知sinαcosβ=1,则cos(α+β)=. 填0.解:由于|sinα|≤1,|cosβ|≤1,现sinαcosβ=1,故sinα=1,cosβ=1或sinα=-1,cosβ=-1, ∴α=2kπ+,β=2lπ或α=2kπ-,β=2lπ+πα+β=2(k +l)π+(k ,l ∈Z). ∴cos(α+β)=0.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,.10103cos ,21tan ==B A 若△ABC 最长的边为1,则最短边的长为( ) A .55B .355C . 455D . 556.解:由10103cos =B 知B 为锐角.31tan =∴B 故1tan tan 1tan tan )tan()tan(tan -=⋅-+-=+-=--=BA BA B A B A C π由(1)知︒=∠135C ,故c 边最长,即c=1,又B A tan tan >,故b 边最短∴==22sin ,1010sin C B 由正弦定理CcB b sin sin =得 55sin sin ==C B c b 即最短边的长为55.11.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为 8362ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C . 23sin sin()sin cos cos sin 36A B C B C B C =+=+=±.故 sin 83622ABC AC ABS A ∆⋅==. 4. 如果111C B A ∆的三个内角的余弦值分别是222C B A ∆的三个内角的正弦值,那么答:[B]A. 111C B A ∆与222C B A ∆都是锐角三角形B. 111C B A ∆是锐角三角形,222C B A ∆是钝角三角形C. 111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D. 111C B A ∆与222C B A ∆都是钝角三角形解 两个三角形的内角不能有直角;111C B A ∆的内角余弦都大于零,所以是锐角三角形;若222C B A ∆是锐角三角形,则不妨设cos 1A =sin 2A =cos ⎪⎭⎫⎝⎛-12A π, cos 1B =sin 2B =cos ⎪⎭⎫ ⎝⎛-22A π, cos 1C =sin 2C =cos ⎪⎭⎫⎝⎛-12C π. 则212A A -=π,212B B -=π,212C C -=π,即)(23222111C B A C B A ++-=++π,矛盾. 选B. 10. 在ABC ∆中,若tanAtanB=tanAtanC+tanctanB ,则222c b a += 3 .解 切割化弦,已知等式即CB CB C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=cC ab . 所以,122222=-+c c b a ,故3222=+c b a . 2.函数sin cos y x x =+(x ∈R )的单调减区间是.提示与答案:与f(x)=y2=1+|sin2x|的单调减区间相同,[,],2422k k k ππππ++∈Z . 4. 已知1cos45θ=,则44sin cos θθ+=.答案:45五:向量 7.设向量 OA 绕点 O 逆时针旋转 2π得向量 OB , 且 2(7,9)OA OB +=, 则 向量 OB =. 7,1123(,)55-设 (,)OA m n =, 则 (,)OB n m =-, 所以 2(2,2)(7,9)OA OB m n n m +=-+=即 27,29.m n m n -=⎧⎨+=⎩ 解得 23,511.5m n ⎧=⎪⎪⎨⎪=⎪⎩因此,23111123(,),(,)5555OA OB ==-. 3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线 的三点是( A ).(A )A 、B 、D (B )A 、B 、C (C )B 、C 、D (D )A 、C 、D 解:2BD BC CD =+=a 4+b 2AB =,所以A 、B 、D 三点共线. 故选(A ). 8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC·→AO =. 填-.解:设|→AO|=|→BO|=|→OC|=R .则→BC·→AO =(→BO +→OC)·→AO =→BO·→AO +→OC·→AO =R2cos(π-2C)+R2cos2B=R2(2sin2C -2sin2B)=(2RsinB)2-(2RsinC)2=(122-132)=-.3.在△ABC 中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB =.提示与答案:216AB AC AB BC AB ⋅-⋅==,得4AB =. 5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段 为邻边的平行四边形的面积为. 答案:六:圆锥曲线1. 如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx+ny的最大值为答:[B]A. 2b a +B. abC. 222b a + D. 222b a +解 由柯西不等式ab y x n m ny mx =++≤+))(()(22222;或三角换元即可得到ab ny mx ≤+,当2a n m ==,2by x ==时,ab ny mx =+. 选B.3. 已知抛物线y2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF是直角三角形,则这样的点P 共有( B ) (A)0个 (B)2个 (C)4个 (D)6个10.圆锥曲线0|3|102622=+--+-++y x y x y x的离心率是2.解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.B3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e =. 填-1+52. 解:由(2b)2=2c×2a a2-c2=ac e2+e -1=0e =-1+52.9. 与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为)0(82>=x x y 或)0(0<=x y .解 由圆锥曲线的定义,圆心可以是以(2,0)为焦点、2-=x 为准线的抛物线上的点;若切点是原点,则圆心在x 轴负半轴上.所以轨迹方程为)0(82>=x x y ,或)0(0<=x y .5.在直角坐标系xOy 中,已知圆心在原点O 、半径为R 的圆与△ABC 的边有公共点,其中()4,0A =、()6,8B =、()2,4C =,则R 的取值范围为.提示与答案:画图观察,R 最小时圆与直线段AC 相切,R 最大时圆过点B .[855,10].2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m =.答案:32-七:函数4.设f (x )是定义在R 上单调递减的奇函数.若x1+x2>O ,x2+x3>O ,x3十x1>O ,则 ( B )(A)f(x1)+f(x2)+f(x3)>0 (B)f(x1)+f(x2)+f(x3)<O (C)f(x1)+f(x2)+f(x3)=0 (D)f(x1)+f(x2)>f(x3)4.函数()()()221f x x x =-+在区间[]0,2上的最大值是,最小值是.提示与答案:极小值-4,端点函数值f(2)=0,f(0)=-2,最小值-4,最大值0. 6.设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.提示与答案:f(2k1)=0,k ∈Z. 又可作一个函数()f x 满足问题中的条件,且()f x 的 一个零点恰为21x k =-,k ∈Z. 所以至少有50个零点. 6.已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ),且2(32)(1),f a a f a -+=- 则a 的值有( D ).(A )2个 (B )3个 (C )4个 (D )无数个 解:由题设知()f x 为偶函数,则考虑在11≤≤-x 时,恒有()2(1232007)20082007f x =⨯++++=⨯.所以当21321a a -≤-+≤,且111a -≤-≤时,恒有2(32)(1)f a a f a -+=-.由于不等式21321a a -≤-+≤a ≤≤ 111≤-≤-a 的解集为20≤≤a .因此当2253≤≤-a 时,恒有 2(32)(1)f a a f a -+=-. 故选(D ).9.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-,.解: 因为 (2lg 6201x x -+>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为[21)x ∈-,. 2.如果二次方程 20(,x px q p q --=∈N*) 的正根小于3, 那么这样的二次方程有A. 5个B. 6个C. 7个D. 8个2,C 由 240,0p q q ∆=+>-<, 知方程的根为一正一负.设 2()f x x px q =--,则 2(3)330f p q =-->, 即39p q +<.由于 ,p q ∈N*, 所以 1,5p q =≤ 或 2,2p q =≤. 于是共有7组 (,)p q 符合题意. 故选 C .7. 设函数2()2f x x =-.若f(a)=f(b),且0<a <b ,则ab 的取值范围是. 答案:(0,2) 八:立几4.设四棱锥 P ABCD - 的底面不是平行四边形, 用平面 α 去截此四棱锥, 使得 截面四边形是平行四边形, 则这样的平面 αA. 不存在B. 只有1个C. 恰有4个D. 有无数多个4,D 设四棱锥的两组不相邻的侧面的交线为 m 、n , 直线 m 、n 确定了一个平面 β作与 β 平行的平面 α, 与四棱锥的各个侧面相截,则截得的四边形必为平行四边形.而这样的平面 α 有无数多个.故选 D .10.在长方体 1111ABCD A B C D - 中, 12,1AB AA AD ===, 点 E 、F 、G 分别是棱 1AA 、11C D 与 BC 的中点, 那么四面体 1B EFG - 的体积是. 10,138B EFG V -=在 11D A 的延长线上取一点 H ,使 114A H =. 易证,1||HEB G , ||HE 平面1B FG . 故 1111B EFG E B FG H B FG G B FH V V V V ----===.而 198B FH S ∆=,G 到平面 1B FH 的距离为 1. 故填 138B EFG V -=. 12.长方体ABCDA1B1C1D1中,已知AB1=4,AD1=3,则对角线AC1 的取值范围为. AC1∈(4,5)5.过空间一定点P 的直线中,与长方体ABCD 一A1B1C1D1的12条棱所在直线成等角的直线共有( C ) (A)0条 (B)1条 (C)4条 (D)无数多条4.设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是( D ). (A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥解:(A )选项缺少条件m α⊂;(B )选项当//αβ,βγ⊥时,//m β;(C )选项当α、β、γ两两垂直(看着你现在所在房间的天花板上的墙角),m βγ=时,m β⊂;(D )选项同时垂直于同一条直线的两个平面平行.本选项为真命题. 故选(D ).5. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β 答: [D]A. 不存在B. 有且只有一对C. 有且只有两对D. 有无数对解 任作a 的平面α,可以作无数个. 在b 上任取一点M ,过M 作α的垂线. b 与 垂线确定的平面β垂直于α. 选D.8. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为5:1. 解 由图,ABC ∆与OCB ∆的底边相同,高是5:1.故面积比是5:1.5.如图,在四面体ABCD 中,P 、Q 分别为棱上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 的距离的比值为.填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =V APQD =×13V APCD =×13×13V ABCD =V ABCD ;又,SBPQ =SBCD -SBDQ -SCPQ =(1-13-23×13)SBCD =49SBCD ,VRBPQ =49VRBCD =×49V ABCD =418V ABCD .∴A 、B 到平面PQR 的距离的比=1∶4.又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点. 由Menelaus 定理知,··=1,而=,=,故=4.BCDAPQ R MNR Q PADCB在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,··=1,而=4,=1,故=14.∴A 、B 到平面PQR 的距离的比=1∶4.6.设f(x)=log3x -4-x ,则满足f(x)≥0的x 的取值范围是. 填[3,4].解:定义域(0,4].在定义域内f(x)单调增,且f(3)=0.故f(x)≥0的x 的取值范围为[3,4].7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水cm3.填78000.解:设净水器的长、高分别为x ,ycm ,则 xy =300,V =30(20+x)(60+y)=30(1200+60x +20y +xy) ≥30(1200+260x×20y +300)=30(1500+1200) =30×2700.∴ 至少可以存水78000cm3.7.从正方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为. 提示与答案:不能有公共端点,最多4条,图上知4条可以. 9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是. 答案:4 39.在三棱锥A BCD -中,已知ACB CBD ∠=∠,ACD ADC BCD BDC ∠=∠=∠=∠θ=,且cos θ=.已知棱AB的长为,则此棱锥的体积为. 提示与答案:4面为全等的等腰三角形,由体积公式可求得三棱锥的体积为 144 . 九:排列。

全国高中数学联赛江苏赛区初赛试卷(含答案)

全国高中数学联赛江苏赛区初赛试卷(含答案)

全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。

)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。

解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。

当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。

解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。

3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。

解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。

4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。

解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。

5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。

江苏省高中数学竞赛预赛试题

江苏省高中数学竞赛预赛试题

江苏省高中数学竞赛预赛试题本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题共36分)一.选择题:本大题共6小题,每小题6分,共36分。

在每小题给出的4个选项中,只有一项是符合题目要求的.1.函数y=f(x) 的图像按a→=(π4,2)平移后,得到的图像的解析式为y=sin(x+π4)+2,那么y=f(x)的解析式为 ( ) A.y=sin x B.y=cos x C.y=sin x+2 D.y=cos x+4解: y=sin[(x+π4)+π4], 即y=cos x.故选B.2.如果二次方程x2-px-q=0 (p,q∈N*)的正根小于3,那么这样的二次方程有( ) A.5个B.6个C.7个D.8个解:由∆=p2+4q>0,-q<0,知方程的根一正一负.设f(x)=x2-px-q,则f(3)= 32-3p-q>0,即3p+q<9.由p,q∈N*,所以p=1,q≤5或p=2,q≤2. 于是共有7组(p,q)符合题意.故选C.3.设a>b>0,那么a2+1b(a-b)的最小值是()A.2 B.3 C.4 D.5解:由a>b>0,可知0<b(a-b)≤14a2.所以,a2+1b(a-b)≥a2+4a2≥4.故选C.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α( ) A.不存在B.只有1个C.恰有4个D.有无数多个解:设四棱锥的两组不相邻的侧面的交线为m,n,直线m、n确定了平面β,作与β平行的平面α与四棱锥侧棱相截,则截得的四边形是平行四边形.这样的平面α有无数多个.故选D.5.设数列{a n}:a0=2, a1=16,a n+2=16 a n+1-63 a n (n∈N),则a2005被64除的余数为( ) A.0 B.2 C.16 D.48解:数列{ a n}模64周期地为2,16,2,-16,又2005被4除余1,故选C.6.一条走廊宽2m、长8m,用6种颜色的1⨯1m2的整块地砖来铺设(每块地砖都是单色的,每种颜色的地砖都足够多),要求相邻的两块地砖颜色不同,那么所有的不同拼色方案种数有( ) A.308B.30⨯257 C.30⨯207 D.30⨯217解:铺第一列(两块地砖)有30种方法;其次铺第二列,设第一列的两格铺了A、B两色(如图),那么,第二列的上格不能铺A色,若铺B色,则有(6-1)种铺法;若不铺B色,则有(6-2)2种方法,于是第二列上共有21种铺法.同理,若前一列铺A B好,则其后一列都有21种铺法. 因此,共有30⨯217种铺法.故选D .二.填空题:本大题共6小题,每小题6分,共36分.7.设向量→OA 绕点O 逆时针旋转2π得→OB ,且2→OA +→OB=(7,9),则向量→OB= . 解:设→OA=(m ,n ),则→OB=(-n ,m ), 所以 2→OA +→OB=(2m -n ,2n +m )=(7,9),即 ⎩⎪⎨⎪⎧2m -n=7,m +2n=9. 得 ⎩⎨⎧m=235,n=115.因此, →OA=(235,115),→OB=(-115,235).故填(-115,235).8.设无穷数列{a n }的各项都是正数,S n 是它的前n 项之和,对于任意正整数n ,a n 与2的等差中项等于S n 与2的等比中项,则该数列的通项公式为 .解:由题意知a n +22=2S n , 即S n =(a n +2)28. ①由①式,a 1+22=2a 1,得a 1=2.又由①式得 S n -1=(a n -1+2)28(n ≥2) ② 则有 a n =S n -S n -1=(a n +2)28-(a n -1+2)28(n ≥2), 整理得 (a n +a n -1)(a n -a n -1-4)=0.又因为a n >0,a n -1>0,所以a n -a n -1=4(n ≥2),a 1=2.因此, 数列{a n }是以2为首项,4为公差的等差数列,其通项公式为a n =2+4(n -1), 故填a n =4n -2 (n ∈N*).9.函数y=|cos x |+|cos2x | (x ∈R ) 的最小值是 .解:令t=|cos x |∈[0,1],则y=t +|2t 2-1|. 当22≤t ≤1时,y=2t 2+t -1=2(t +14)2-98,得 22≤y ≤2.当0≤t <22时,y=-2t 2+t +1=-2(t -14)2+98,得22≤y ≤98.又y 可取到22.故填22.10.在长方体中ABCD -A 1B 1C 1D 1中,AB=2, AA 1=AD=1,点E 、F 、G 分别是棱AA 1、C 1D 1与BC 的中点,那么四面体B 1-EFG 的体积是 .解:在D 1A 1的延长线上取一点H ,使AH=14,易证,HE ∥B 1G ,HE ∥平面B 1FG .故 V B 1-EFG =V E -B 1FG =V H -B 1FG =V G -B 1FH .而S ∆B 1EF =98,G 到平面B 1FH 的距离为1.故填V B 1-EFG =38.11.由三个数字1,2,3组成的5位数中,1,2,3都至少出现1次,这样的5位数共有 个.解:在5位数中,若1只出现1次,有C 51(C 41+C 42+C 43)=70个;若1只出现2次,有C 52(C 31+C 32)=60个;若1只出现3次,有C 53C 21=20个.所以这样的五位数共有150个.故填150.12.已知平面上两个点集:M={(x ,y )| |x +y +1|≥2(x 2+y 2),x ,y ∈R },N={(x ,y )| |x -a |+|y -1|≤1,x ,y ∈R },若M ∩N ≠∅,则a 的取值范围为 .解:由题意知M 是以原点为焦点,直线x +y +1=0为准线的抛物线及其凹口内侧的点集,N 是以(a ,1)为中心的正方形及其内部的点集(如图).考察M ∩N=∅时a 的取值范围: 令y=1, 代入方程 |x +y +1|=2(x 2+y 2) 得x 2-4x -2=0,解得 x=2±6.所以,当a <2-6-1=1-6时M ∩N=∅.令y=2,代入方程|x +y +1|=2(x 2+y 2)得x 2-6x -1=0,解得 x=3±10.所以,当a >3+10时,M ∩M=∅.于是,当1-6≤a ≤3+10,即a ∈[1-6,3+10]时,M ∩N ≠∅.故填[1-6,3+10].三、解答题:13. 已知点M 是∆ABC 的中线AD 上的一点,直线BM 交边AC 于点N ,且AB 是∆NBC的外接圆的切线,设BC BN =λ,试求 BM MN (用λ表示).(15分)证明:在∆BCN 中,由Menelaus 定理得BM MN ·NA AC ·CD DB =1.因为 BD=DC ,所以BM MN =AC AN .………………………6分 由∠ABN=∠ACB ,知∆ABN ∽∆ACB ,则 AB AN =AC AB =CB BN .所以,AB AN ·AC AB =⎝ ⎛⎭⎪⎫CB BN 2,即AC AN =BC 2BN 2.…………………………………………………12分 因此,BM MN =BC 2BN 2.A B C D N M又 BC BN =λ,故 BM MN=λ2.………………………………………………………………15分14.求所有使得下列命题成立的正整数n (n ≥2):对于任意实数x 1,x 2,…,x n ,当i=1∑n x i =0时,总有i=1∑nx i x i +1≤0 (其中x n +1=x 1).(15分)解:当n=2时,由x 1+x 2=0,得x 1x 2+x 2x 1=-2x 12≤0.故n =2时命题成立;……3分当n=3时,由x 1+x 2+x 3=0,得x 1x 2+x 2x 3+x 3x 1=(x 1+x 2+x 3)2-(x 21 +x 22+x 23)2=-(x 21+x 22+x 23)2≤0.故n=3时命题成立. ……………………………………………………………………………………6分当n=4时,由x 1+x 2+x 3+x 4=0,得x 1x 2+x 2x 3+x 3x 4+x 4x 1=(x 1+x 3)(x 2+x 4)=-(x 2+x 4)2≤0.故n=4时,命题成立.………………………………………………………………9分 当n ≥5时,令x 1=x 2=1,x 4=-2,x 3=x 5=…=x n =0,则i=1∑n x i =0,但i=1∑nx i x i +1=1>0,故n ≥5时命题不成立.综上可知,使命题成立的n=2,3,4.……………………………………………15分15.设椭圆的方程x 2a 2+y 2b 2=1(a >b >0),线段PQ 是过左焦点F 且不与x 轴垂直的焦点弦,若在左准线上存在点R ,使△PQR为正三角形,求离心率e 的取值范围,并用e 表示直线PQ 的斜率.(24分)解:如图,设线段PQ 中点M ,过点P 、M 、Q 分别作准线的垂线,垂足分别为点P ',M ',Q ',则|MM '|=12(|PP '|+|QQ '|)=12(|PF |e+|QF |e )=|PQ |2e .…………………………6分假设存在点R ,则|RM |=32|PQ |,且|MM '|<|RM | ,即|PQ |2e <32|PQ |,所以, e >33.………………………………12分于是,cos ∠RMM '=|MM '||RM |=12e ⨯13e ,cot∠RMM'=13e2-1.在图中,|PF| < |QF|,且有k PQ= tan∠QFx= tan∠FMM'=cot∠RMM'=13e2-1.………………………………………………18分当e>33时,过点F作斜率为13e2-1的焦点弦PQ,它的中垂线交左准线于R,由上述过程知,|RM|=32|PQ|.故∆PQR为正三角形.……………………………………………21分根据对称性,当|FP| > |FQ|时,有k PQ=-13e2-1.所以,椭圆x2a2+y2b2=1(a>b>0)的离心率e的范围是(33,1),且直线PQ的斜率为±13e2-1.…………………………………………………………………………………………24分16.⑴若n(n∈N*) 个棱长为正整数的正方体的体积之和等于2005,求n的最小值,并说明理由;( 12分)⑵若n (n∈N*) 个棱长为正整数的正方体的体积之和等于20022005,求n的最小值,并说明理由.( 24分)解:⑴因为2005=1728+125+125+27=123+53+53+33,故n=4存在,n min≤4.………6分103=1000,113=1331,123=1728,133=2169,123<2005<133,则n≠1.若n=2,因103+103<2005,则最大立方体的棱长只能为11或12,2005-113=674,2005-123=277,674与277均不是完全立方数,故n=2不可能;若n=3,设此三个立方体中最大一个的棱长为x,由3x3≥2005>3×83,知最大立方体的棱长只能为9、10、11或12,而2005<3⨯93,2005-93-93=547,2005-93-83-83>0,故x≠9.2005-103-103=5,2005-103-93=276,2005-103-83=493,2005-103-73-73>0.故x≠10;2005-113-93<0,2005-113-83=162,2005-113-73=331,2005-113-63-63>0,故x ≠11;2005-123-73<0,2005-123-63=61,2005-123-53-53>0,故x≠12.所以n=3不可能.综上所述,n min=4.…………………………………………………………………………12分⑵设n个立方体的棱长分别是x1,x2,…,x n,则x31+x32+…+x3n=20022005.①由2002≡4(mod 9),43≡1(mod 9),得20022005≡42005≡4668⨯3+1≡(43)668⨯4≡4(mod 9).②又当x∈N*时,x3≡0,±1(mod 9),所以x31≡∕4(mod 9),x31+x32≡∕4(mod 9),x31+x32+x33≡∕4(mod 9).③①式模9,并由②、③式可知n≥4.…………………………………………………18分而2002=103+103+13+13,则20022005=20022004⨯(103+103+13+13)=(2002668)3⨯(103+103+13+13)=(2002668⨯10)3+(2002668⨯10)3+(2002668)3+(2002668)3.故n=4为所求的最小值.………………………………………………………………24分。

全国高中数学联赛江苏赛区试卷(8)含解析

全国高中数学联赛江苏赛区试卷(8)含解析

江苏赛区初赛试题参考答案及评分标准一、选择题(本题满分30分,每小题6分)1.答:[B] 解 由柯西不等式ab y x n m ny mx =++≤+))(()(22222;或三角换元即可得到ab ny mx ≤+,当2an m ==,2b y x ==时,ab ny mx =+. 选B. 2.答:[D]解 取161=a ,把坐标代入检验,4116121=⎪⎭⎫ ⎝⎛ ,而2116141=⎪⎭⎫ ⎝⎛,∴公共点只可能是 点N . 选D. 3.答:[A]解 第一、二行后两个数分别为2.5,3与1.25,1.5;第三、四、五列中的5.0=x ,165=y ,163=z ,则1=++z y x . 选A. 4. 答:[B] 解 两个三角形的内角不能有直角;111C B A ∆的内角余弦都大于零,所以是锐角三角形;若222C B A ∆是锐角三角形,则不妨设cos 1A =sin 2A =cos ⎪⎭⎫⎝⎛-12A π, cos 1B =sin 2B =cos ⎪⎭⎫ ⎝⎛-22A π,cos 1C =sin 2C =cos ⎪⎭⎫⎝⎛-12C π.则 212A A -=π,212B B -=π,212C C -=π,即 )(23222111C B A C B A ++-=++π,矛盾. 选B.5.答: [D]解 任作a 的平面α,可以作无数个. 在b 上任取一点M ,过M 作α的垂线. b 与垂线确定的平面β垂直于α. 选D.二、填空题(本题满分50分,每小题10分) 6. 解 ∵2<x ,[]x 的值可取1,0,1,2--.当[x ]=2-,则02=x 无解; 当[x ]=1-,则12=x ,∴x =1-; 当[x ]=0,则22=x 无解; 当[x ]=1,则32=x ,∴3=x . 所以31或-=x .7. 解 考虑对立事件,216916513=⎪⎭⎫ ⎝⎛-=P .8. 解 由图,ABC ∆与OCB ∆的底边相同,高是5:1. 故面积比是5:1.9. 解 由圆锥曲线的定义,圆心可以是以(2,0)为焦点、2-=x 为准线的抛物线上的点;若切点是原点,则圆心在x 轴负半轴上.所以轨迹方程为)0(82>=x x y ,或)0(0<=x y .10. 解 切割化弦,已知等式即CB CB C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=c C ab .所以,122222=-+c c b a ,故3222=+cb a . 三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11. 解 由题 1)1(2)(2+--=x x f , ……5分1)(≤∴x f ,11≤∴m,即1≥m ,[]n m x f ,)(在∴上单调减, m m m f 11)1(2)(2=+--=∴且nn n f 11)1(2)(2=+--=. ……10分m ∴,n 是方程xx x f 11)1(2)(2=+--=的两个解,方程即)122)(1(2---x x x =0,解方程,得解为1,231+,231-.n m <≤∴1,1=∴m ,231+=n . ……15分12. 证 (Ⅰ)设点A 的坐标为)sin ,cos (θθr r ,B 的坐标为)sin ,cos (θθ''''r r ,则r =,r ='A 在双曲线上,则19sin 4cos 222=⎪⎪⎭⎫ ⎝⎛-θθr .所以9sin 4cos 1222θθ-=r . …5分 由0=⋅得⊥,所以θθ22sin cos =',θθ'=22sin cos .同理,9cos 4sin 9sin 4cos 122222θθθθ-='-'='r ,3659141'11||||2222=-=+=+r r OB OA . ……10分=,所以==⎪⎭⎫⨯.1365914111=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎪⎭⎫⎝⎛+⨯. 于是,5362=OP . 即P 在以O 为圆心、556为半径的定圆上. ……15分 13.解 在平面M 中,过A 作DA 的垂线,交射线DB 于B 点;在平面N 中,过A 作DA 的垂线,交射线DC 于C 点.设DA=1,则βtan =AB ,βcos 1=DB ,γtan =AC ,γcos 1=DC ,…5分并且ϕ=∠BAC 就是二面角N l M --平面角. ……10分在ABC DBC ∆∆与中,利用余弦定理,可得等式ϕγβγβαγβγβcos tan tan 2tan tan cos cos cos 2cos 1cos 122222-+=-+=BC , 所以,αγβγβγβϕγβcos cos cos 2cos 1cos 1tan tan cos tan tan 22222+--+= =γβγβαcos cos )cos cos (cos 2-,……15分故得到γβγβαϕsin sin cos cos cos cos -=. ……20分14. 解(Ⅰ)不能. ……5分因为若每行的积都相等,则9个数的积是立方数. 但是 2×4×6×8×12×18×24×36×48=21+2+1+3+2+1+3+2+4×3121211+++++=219·38不是立方数,故不能.(Ⅱ)可以. ……15分 如右表表中每行、每列及对角线的积都是26·23. ……20分36 2 248 12 18 6724。

年全国高中数学联赛试题及解析 苏教版

年全国高中数学联赛试题及解析 苏教版

年全国高中数学联合竞赛试卷第一试(10月12日上午8:00-9:40)一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第项是 (A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 163 3 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 12535.已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 1256.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为π3,则四面体ABCD 的体积等于(A)32 (B) 12 (C) 13 (D) 33二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 . 8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00) 一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104+⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).1997年全国高中数学联赛解答 第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第项是 (A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺-1980=23项.由2025+23=2048.知选C .2.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B.C.D.解:曲线方程为x 2a +y2b=1,直线方程为y=ax +b .由直线图形,可知A 、C 中的a <0,A 图的b >0,C 图的b <0,与A 、C 中曲线为椭圆矛盾. 由直线图形,可知B 、D 中的a >0,b <0,则曲线为焦点在x 轴上的双曲线,故选B .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3解:抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163. ∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253解:令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .5.已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 125解:由x ,y ∈(-2,2),xy=-1知,x ∈(-2,-12)∪(12,2),u=44-x 2+9x 29x 2-1=-9x 4+72x 2-4-9x 4+37x 2-4=1+3537-(9x 2+4x2). 当x ∈(-2,-12)∪(12,2)时,x 2∈(14,4),此时,9x 2+4x 2≥12.(当且仅当x 2=23时等号成立).此时函数的最小值为125,故选D .6.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为π3,则四面体ABCD 的体积等于(A)32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sin π3×2=3.而四面体ABCD 的体积=16×平行六面体体积=12.故选B .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .解:即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-1)(|x |+5+1)<0.⇒|x |<-5+12,或5-12<|x |<3.∴ 解为(-3,-5-12)∪(5-12,3). 8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .解:F 1(-5,,F 2(5,0);|F 1F 2|=25.|PF 1|+|PF 2|=6,⇒|PF 1|=4,|PF 2|=2.由于42+22=(25)2.故∆PF 1F 2是直角三角形55. ∴ S=4.9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A ⊆B ,则实数a 的取值范围是 .解:A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x -7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .解:a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则 MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .解:由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.N MD CB AMHGFE D CBA∴ lim n →∞S n T n =12⨯19=118. 三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.解:x +1≥0,2x -3≥0,15-3x ≥0.⇒32≤x ≤5.由平均不等式x +1+x +1+2x -3+15-3x4≤x +1+x +1+2x -3+15-3x4≤14+x4. ∴ 2x +1+2x -3+15-3x=x +1+x +1+2x -3+15-3x ≤214+x .但214+x 在32≤x ≤5时单调增.即214+x ≤214+5=219.故证.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c sin 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1)y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c ≠0,得 4x 2+4x +1=0,此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合. 解:对于⊙O 上任意一点A ',连AA ',作AA '的垂直平分线MN ,连OA '.交MN 于点P .显然OP +PA=OA '=R .由于点A 在⊙O 内,故OA=a <R .从而当点A '取遍圆周上所有点时,点P 的轨迹是以O 、A 为焦点,OA=a 为焦距,R (R >a )为长轴的椭圆C .而MN 上任一异于P 的点Q ,都有OQ +QA=OQ +QA '>OA '.故点Q 在椭圆C 外.即折痕上所有的点都在椭圆C 上及C 外.反之,对于椭圆C 上或外的一点S ,以S 为圆心,SA 为半径作圆,交⊙O 于A ',则S 在AA '的垂直平分线上,从而S 在某条折痕上.最后证明所作⊙S 与⊙O 必相交.1︒ 当S 在⊙O 外时,由于A 在⊙O 内,故⊙S 与⊙O 必相交;2︒ 当S 在⊙O 内时(例如在⊙O 内,但在椭圆C 外或其上的点S '),取过S '的半径OD ,则由点S '在椭圆C 外,故OS '+S 'A ≥R (椭圆的长轴).即S 'A ≥S 'D .于是D 在⊙S '内或上,即⊙S '与⊙O 必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C 上及C 外的所有点的集合.DS'M S Q P A'O A加试题(10月12日上午10:00-12:00) 一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ∽∆DAQ ,只要证BD AD =DQ AQ即可. 证明:连AB .∵ ∆PBC ∽∆PDB , ∴ BD BC =PD PB ,同理,AD AC =PD PA.∵ PA=PB ,∴ BD AD =BCAC.∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ . ∴ ∆ABC ∽∆ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ.∵ ∠DAQ=∠PBC=∠BDQ . ∴ ∆ADQ ∽∆DBQ .∴ ∠DBQ=∠ADQ=∠PAC .证毕.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104+⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.解:当3l 、3m 、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104+⎩⎨⎧⎭⎬⎫3n 104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N *,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501. 取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).证明:设点集为V ={A 0,A 1,…,A n -1},与A i 连线的点集为B i ,且|Bi |=b i .于是1≤b i ≤n -1.又显然有i =0n -1∑b i =2l ≥q (q +1)2+2.若存在一点与其余点都连线,不妨设b 0=n -1. 则B 0中n -1个点的连线数l -b 0≥12q (q +1)2+1-(n -1) (注意:q (q +1)=q 2+q =n -1)=12(q +1)(n -1)-(n -1)+1=12(q -1)(n -1)+1 ≥12(n -1)+1≥[12(n -1)]+1.(由q ≥2) 但若在这n -1个点内,没有任一点同时与其余两点连线,则这n -1个点内至多连线[n -12]条,故在B 0中存在一点A i ,它与两点A j 、A k (i 、j 、k 互不相等,且1≤i ,j ,k )连了线,于是A 0、A j 、A i 、A k 连成四边形.现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i-1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即(n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入)得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.② (nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③ 又(nq -q -n +3-b 0)、(nq -q +2-b 0)、q (n -b 0-1)、(q +1)(n -b 0)均为正整数,从而由②、③得, q (q +1)(n -b 0)(n -b 0-1)<(nq -q +2-b 0)(nq -q -n +3-b 0). ④ 由①、④矛盾,知原命题成立.O Q CDBAP。

2021年全国高中数学联赛江苏赛区初赛及答案(word)

2021年全国高中数学联赛江苏赛区初赛及答案(word)

全国高中数学联赛江苏赛区初赛一、填空题(每小题7分,共70分))1.关于x 的不等式b a x <+的解集为{}42<<x x ,则ab 的值是 -3。

2.从1, 2,3.4.5.6.7.8. 9中任取两个不同的数,则取出的两数之和为偶数的概率。

4/93.已知()x f 是周期为4的奇函数且当()2,0∈x 时()60162+-=x x x f ,则()102f 的值是。

-364.己知直线l 是函数()2ln 2x x x f +=图象的切线,当的斜率最小时l 的方程是。

034=--y x5.在平面直角坐标系XOY 中,如果直线l 将圆04222=--+y x y x 平分,且不经过第四象限,那么l 的斜率的取位范围是。

[]2,06.己知等边△ABC 的边长为2,若()BC AP AQ AC AB AP 21,31+=+=,则△APQ 面积是。

337.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 在棱BC 上,点Q 为棱CC1的中点.若过点A,P .Q的平面截该正方体所得的截面为五边形.则BP 的取值范围为。

⎪⎭⎫⎝⎛1,218.己知数列{}n a 的奇数项依次构成公差为1d 的等差数列,偶数项依次构成公差为2d 的等差数列.且对任意,*∈N n 都有.1+<n n a a 若,2,121==a a 且数列{}n a 的前10项和,7510=S 则=8a119.己知正实数y x ,满足()()162222=+++xy yx 则=+y x。

410.设M 表示满足下列条件的正整数n 的和:n 整除22016,且2016整除2n .那么M 的所有不同正因子几的个数为。

360二、解答题(每小题20分,共80分))11.已知,2,0,1235cos 1sin 1⎪⎪⎭⎫ ⎝⎛∈=+πθθθ求θtan 。

3/4或4/312.如图,点P 在△ABC 的边AB 上且 AB=4AP ,过点P 的直线MN 与△ABC 外接圆交于点M, N ,且点A 是弧M N 的中点.求证: (1)△ABN ≈△ANP 。

高中数学联赛江苏赛区初赛试卷及答案

高中数学联赛江苏赛区初赛试卷及答案

2018全国高中数学联赛江苏赛区初赛试卷时间:120分钟 满分:150分 姓名:一、填空题(本题共10小题,每小题107分,满分70分.要求直接将答案写在横线上.)1、函数cos cos2(R)y x x x =-∈的值域为__ __.2、已知2(i)34i a b +=+,其中,R a b ∈,i 是虚数单位,则²²a b +的值为_ ___.3、圆心在抛物线²2x y =上,并且和该抛物线的准线及y 轴都相切的圆的方程为___ __.4、设函数14()2xx f x x -=-,则不等式2(1)(57)0f x f x -+-<的解集为__ ___.5、已知等差数列{}n a 的前12项的和为60,则1212a a a +++L 的最小值为__ ___.6、已知正四面体内切球的半径是1,则该四面体的体积为___ __.7、在ABC ∆中,54AB AC ==,,且12=⋅AC AB ,设P 是平面ABC 上的一点,则)(PC PB PA +⋅的最小值为_____.8、设()g n =∑=nk n k 1),(,其中*N n ∈,(,)k n 表示k 与n 的最大公约数,则(100)g 的值为=_____.9、将1,2,3,4,5,6,7,8,9,这9个数随即填入3⨯3的方格中,每个小方格恰填写一个数,且所填的数各不相同,则使每行、每列所填的数之和都是奇数的概率为__ __.10、在1,2,3,4,,1000L 中, 能写成²²1(N)a b a b -+∈,的形式,且不能被3整除的数有__ ____个.二、解答题(本大题共4小题,每小题20分,共80分)11、如图,在平面直角坐标系xoy 中,已知圆O 的方程为224x y +=,过点(0,1)P 的直线l 与圆O 交于,A B 两点,与x 轴交于点Q ,设PB QB PA QA μλ==,,求证:μλ+为定值.12、已知{}n a 是公差为(0)d d ≠的等差数列,且t a t a t a +=+=+33221, (1)求实数t d ,的值;(2)若正整数满足0222r p =-=-=-r r p p m m t a t a t a m ,<<,求数组(,,)m p r 和相应的通项公式n a .13、如图,在圆内接四边形ABCD 中,对角线AC 与BD 交于点P ,ABD ∆与ABC ∆的内心分别为1I 和 2I ,直线21I I 分别与AC BD ,交于点,M N ,求证:PM PN =.14、从1,2,3,,2050L 这2050个数中任取2018个数组成集合A ,把A 中的每个数染上红色或蓝色,求证:总存在一种染色方法,是使得有600个红数及600个蓝数满足下列两个条件:①这600个红数的和等于这600个蓝数的和; ②这600个红数的平方和等于这600个蓝数的平方和. 参考答案:(1)9[0,]8; (2)5; (3)221(1)()12x y ±+-=; (4)(2,3); (5)60; (6)83; (7)658-; (8)520; (9)114; (10)501; Q A Bxy oP(11)83; (12)①12t =-,38d =;②(,,)(1,3,4)m p r =,1(311)8n a n =-;。

最新江苏省历届高等数学竞赛试卷(-)

最新江苏省历届高等数学竞赛试卷(-)

最新江苏省历届⾼等数学竞赛试卷(-)江苏省第⼀届(1991年)⾼等数学竞赛本科竞赛试题(有改动)⼀、填空题(每⼩题5分,共50分)1.函数sin sin y x x=(其中2x π≤)的反函数为________________________。

2.当0→x 时,34sin sin cos x x x x -+x 与nx 为同阶⽆穷⼩,则n =____________。

3.在1x =时有极⼤值6,在3x =时有极⼩值2的最低幂次多项式的表达式是 _____________________________________。

4.设(1)()n m nn d x p x dx -=,n m ,是正整数,则(1)p =________________。

5.222[cos()]sin x x xdx ππ-+=_______________________________。

6. 若函数)(t x x =由=--xt dt e t 12所确定的隐函数,则==022t dt xd 。

7.已知微分⽅程()y y y x x ?'=+有特解ln x y x =,则()x ?=________________________。

8.直线21x z绕z 轴旋转,得到的旋转⾯的⽅程为_______________________________。

9.已知a v 为单位向量,b a ??3+垂直于b a ??57-,b a ??4-垂直于b a ??27-,则向量b a ?、的夹⾓为____________。

10.=?????????? ?+ + +∞→nn n n n n 122222212111lim Λ。

⼆、(7分)设数列{}n a 满⾜1,2,21≥+=->+n a a a n n n,求nn a ∞→lim 。

三、(7分)求c的值,使?=++bacxcx0)cos()(,其中ab>。

四、(12分)求由曲⾯x y cz x y a xy b+=-=±=±和0z=所围区域的体积(其中,,a b c为正实数)。

江苏省近四年高中数学竞赛初赛试题及答案讲解

江苏省近四年高中数学竞赛初赛试题及答案讲解

2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .EBCD AB CDAPQ R13.若不等式x+y≤k2x+y对于任意正实数x,y成立,求k的取值范围.14.⑴写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1, ∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52. 4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;BCDAPQ R又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4. 又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点. 由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 . 填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy ) ≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则RRBCA OR M NR Q PA DCB→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 填0,3-12,3-1. 解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12; a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x .二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形.CFy xOBA得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB ⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.EBCDAs (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.解:对于任意n ∈N*,n 2≡0,1(mod 4).设a ,b 是两个不同的自然数,①若a ≡0(mod 4)或b ≡0(mod 4),或a ≡b ≡2(mod 4),均有ab ≡0(mod 4),此时,ab +10≡2(mod 4),故ab +10不是完全平方数;② 若a ≡b ≡1(mod 4),或a ≡b ≡3(mod 4),则ab ≡1(mod 4),此时ab +10≡3(mod 4),故ab +10不是完全平方数.由此知,ab +10是完全平方数的必要不充分条件是a ≡/b (mod 4)且a 与b 均不能被4整除. ⑴ 由上可知,满足要求的三个自然数是可以存在的,例如取a =2,b =3,c =13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵ 由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.2010年全国高中数学联赛江苏赛区·初赛一、填空题(本题满分70分,每小题7分) 1.方程9135x x +-=的实数解为 .2.函数sin cos y x x =+(x ∈R )的单调减区间是 .3.在△ABC 中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB = . 4.函数()()()221f x x x =-+在区间[]0,2上的最大值是 ,最小值是 . 5.在直角坐标系xOy 中,已知圆心在原点O 、半径为R 的圆与△ABC 的边有公共点,其中()4,0A =、()6,8B =、()2,4C =,则R 的取值范围为 . 6.设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.7.从正方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为 .8.圆环形手镯上等距地镶嵌着4颗小珍珠,每颗珍珠镀金、银两色中的一种.其中镀2金2银的概率是 .9.在三棱锥A BCD -中,已知ACB CBD ∠=∠,ACD ADC BCD BDC ∠=∠=∠=∠θ=,且10cos 10θ=.已知棱AB 的长为62,则此棱锥的体积为 . 10.设复数列{}n x 满足1n x a ≠-,0,且11nn n a x x x +=+.若对任意n ∈N * 都有3n n x x +=,则a 的值是 .(第7题)二、解答题(本题满分80分,每小题20分)11.直角坐标系xOy 中,设A 、B 、M 是椭圆22:14x C y +=上的三点.若3455OM OA OB =+,证明:AB 的中点在椭圆22212x y +=上. 12.已知整数列{}n a 满足31a =-,74a =,前6项依次成等差数列,从第5项起依次成等比数列.(1) 求数列{}n a 的通项公式;(2) 求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥,垂足H .过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形.14.求所有正整数x ,y ,使得23x y +与23y x +都是完全平方数.参考答案1、x <0无解; 当0x ≥时,原方程变形为32x +3x -6=0,解得3x =2,x =log 32.2、与f (x )=y 2=1+|sin2x |的单调减区间相同, [,],2422k k k ππππ++∈Z . 3、216AB AC AB BC AB ⋅-⋅==,得4AB =.4、极小值-4,端点函数值f (2)=0,f (0)=-2,最小值-4,最大值0.5、画图观察,R 最小时圆与直线段AC 相切,R 最大时圆过点B .[855,10].6、f (2k -1)=0,k ∈Z . 又可作一个函数()f x 满足问题中的条件,且()f x 的一个零点恰为21x k =-,k ∈Z . 所以至少有50个零点. 7、不能有公共端点,最多4条,图上知4条可以.8、穷举法,注意可翻转,有6种情况,2金2银有两种,概率为 13 .9、4面为全等的等腰三角形,由体积公式可求得三棱锥的体积为 144 .10、由11n n n a x x x +=+,2321n n n a x x x +++==+()21111n n a x a x ++=++()3211n n n a x x a a x =+++ 恒成立,即()()2110n n a a x x a +++-=. 因为1n x a ≠-或0,故210a a ++=,所以1322a i =-±.11、解:设A (x 1,y 1),B (x 2,y 2),则 x 124+y 12=1,x 224+y 22=1.由3455OM OA OB =+,得 M (35x 1+45x 2,35y 1+45y 2). 因为M 是椭圆C 上一点,所以(35x 1+45x 2)24+(35y 1+45y 2)2=1, …………………6分即 (x 124+y 12)(35)2+(x 224+y 22)(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,得 (35)2+(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,故x 1x 24+y 1y 2=0. …………………14分 又线段AB 的中点的坐标为 (x 1+x 22,y 1+y 22),所以 (x 1+x 22)22+2(y 1+y 22)2=12(x 124+y 12)+12(x 224+y 22)+x 1x 24+y 1y 2=1,从而线段AB 的中点(x 1+x 22,y 1+y 22)在椭圆x 22+2y 2=1上. ………………20分12、解:(1) 设数列前6项的公差为d ,则a 5=-1+2d ,a 6=-1+3d ,d 为整数. 又a 5,a 6,a 7成等比数列,所以(3d -1)2=4(2d -1),即 9d 2-14d +5=0,得d =1. …………………6分 当n ≤6时,a n =n -4,由此a 5=1,a 6=2,数列从第5项起构成的等比数列的公比为2, 所以,当n ≥5时,a n =2n -5.故 a n =⎩⎪⎨⎪⎧n -4,n ≤4,2n -5, n ≥5.…………………10分(2) 由(1)知,数列{}n a 为:-3,-2,-1,0,1,2,4,8,16,… 当m =1时等式成立,即 -3-2-1=―6=(-3)(-2)(-1); 当m =3时等式成立,即 -1+0+1=0;当m =2、4时等式不成立; …………………15分 当m ≥5时,a m a m +1a m +2 =23m -12, a m +a m +1+a m +2=2m -5(23-1)=7×2m -5,7×2m -5≠23m -12,所以 a m +a m +1+a m +2≠a m a m +1a m +2 . 故所求 m = 1,或m =3. …………………20分 13、证明:(1) 由HG ∥CE ,得∠BHF =∠BEC , 又同弧的圆周角 ∠BAF =∠BEC , ∴ ∠BAF =∠BHF ,∴ 点 A 、B 、F 、H 共圆;…………………8分(2) 由(1)的结论,得 ∠BHA =∠BFA , ∵ BE ⊥AD , ∴ BF ⊥AC ,又AD 是圆的直径,∴ CG ⊥AC , …………………14分 由A 、B 、C 、D 共圆及A 、B 、F 、H 共圆,∴∠BFG =∠DAB =∠BCG , ∴ B 、G 、C 、F 共圆.ABCDEFH G∴∠BGC=∠AFB=900, ∴BG⊥GC,∴所以四边形BFCG是矩形.…………………20分14、解:若x=y,则x2+3x是完全平方数.∵x2<x2+3x<x2+4x+4= (x+2)2,∴x2+3x= (x+1)2,∴x=y =1. ………………5分若x>y,则x2<x2+3y<x2+3x<x2+4x+4= (x+2)2.∵x2+3y是完全平方数,∴x2+3y= (x+1)2,得3y =2x+1,由此可知y是奇数,设y =2k+1,则x=3k+1,k是正整数.又y2+3x= 4k2+4k+1+9k+3=4k2+13k+4是完全平方数,且(2k+2)2=4k2+8k+4<4k2+13k+4<4k2+16k+16= (2k+4)2,∴y2+3x=4k2+13k+4=(2k+3)2,得k=5,从而求得x=16,y=11. …………………15分若x<y,同x>y情形可求得x=11,y=16.综上所述,(x,y)= (1,1), (11,16), (16,11).…………………20分2011年全国高中数学联赛江苏赛区初赛题一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= .2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示).4. 已知1cos45θ=,则44sin cos θθ+= .5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段 为邻边的平行四边形的面积为 .6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 .7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值是 .二、解答题(本大题共4小题,每小题20分,共80分)11.已知圆221x y +=与抛物线2y x h =+有公共点,求实数h 的取值范围.AB CP12.设2()(,)f x x bx c b c =++∈R .若2x ≥时,()0f x ≥,且()f x 在区间(]2,3上的最大值为1,求22b c +的最大值和最小值.13.如图,P 是ABC 内一点.(1)若P 是ABC 的内心,证明:1902BPC BAC ∠=+∠;(2)若1902BPC BAC ∠=+∠且1902APC ABC ∠=+∠,证明:P 是ABC 的内心.14.已知α是实数,且存在正整数n 0,使得0n α+为正有理数.证明:存在无穷多个正整数n ,使得n α+为有理数.2011年全国高中数学联赛江苏赛区初赛题 答案及点评一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= . 答案:-8基础题,送分题,高考难度2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .答案:32-基础题,送分题,高考难度3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示). 答案:19145基础题,送分题,高考难度,但需要认真审题,否则很容易有错4. 已知1cos45θ=,则44sin cos θθ+= .答案:45计算量挺大的,要注重计算的方法,对于打酱油的同学有一定难度5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段为邻边的平行四边形的面积为 . 答案:103可以用特殊法,把向量放在直角坐标系中,很容易可以得出答案6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 . 答案:1(848)7n +高考难度级别,基础好的同学可以做出来7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 答案:(0,2)这是一道高考题8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .答案:6这也是一道高考题9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 答案:4 3还是一道高考题10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值 是 . 答案:3,14,30这是2011年苏州市一模的第十四题。

全国高中数学联赛江苏赛区试卷(9)含解析

全国高中数学联赛江苏赛区试卷(9)含解析

全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)1. 已知函数2sin y x =,则 答:[ ](A )有最小正周期2π (B )有最小正周期π(C )有最小正周期2π (D )无最小周期 2. 关于x 的不等式22200x ax a --<任意两个解的差不超过9,则a 的最大值与最小值的和是 答:[ ](A ) 2 (B ) 1 (C ) 0 (D ) 1-3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线的三点是 答:[ ](A ) A 、B 、D (B ) A 、B 、C(C ) B 、C 、D (D ) A 、C 、D4. 设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是 答:[ ](A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为 答:[ ](A )60个 (B )70个 (C )90个 (D )120个6. 已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ), 且2(32)(1),f a a f a -+=- 则a 的值有 答:[ ](A )2个 (B )3个 (C )4个 (D )无数个二、填空题(本题满分54分,每小题9分)7. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 .8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则a b +等于 .9. 已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 .10.30x y -+=的离心率是 .11. 在ABC ∆中,已知tan B =,sin 3C =,AC =ABC ∆的面积为 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 .三、解答题(本题满分60分,共4小题,每题各15分)13. 设不等式组 00x y x y +>⎧⎨-<⎩, 表示的平面区域为D . 区域D 内的动点P 到直线0x y += 和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线l 与 曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率.14. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.15. 已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .16. 已知平面上10个圆,任意两个都相交. 是否存在直线l ,与每个圆都有公共点?证明你的结论.江苏省高中数学联赛初赛试题参考答案及评分标准 B 1B A 1C 1 A C一、选择题(本题满分36分,每小题6分)1.已知函数2sin y x =,则( B ).(A ) 有最小正周期为π2 (B ) 有最小正周期为π(C ) 有最小正周期为2π (D ) 无最小正周期 解:)2cos 1(21sin 2x x y -==,则最小正周期π=T . 故选(B ). 2.关于x 的不等式02022<--a ax x 任意两个解的差不超过9,则a 的最大值与最小值 的和是( C ).(A ) 2 (B ) 1 (C ) 0 (D ) 1-解:方程02022=--a ax x 的两根是14x a =-,25x a =,则由关于x 的不等式 22200x ax a --<任意两个解的差不超过9,得9|9|||21≤=-a x x ,即11≤≤-a . 故选(C ).3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线 的三点是( A ).(A )A 、B 、D (B )A 、B 、C (C )B 、C 、D (D )A 、C 、D解:2BD BC CD =+=a 4+b 2AB =,所以A 、B 、D 三点共线. 故选(A ).4.设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是( D ).(A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥解:(A )选项缺少条件m α⊂;(B )选项当//αβ,βγ⊥时,//m β;(C )选项当 α、β、γ两两垂直(看着你现在所在房间的天花板上的墙角),m βγ=时,m β⊂;(D )选项同时垂直于同一条直线的两个平面平行.本选项为真命题. 故选(D ).5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( C )(A )60个 (B )70个 (C )90个 (D )120个解:由6514233=+=+=+及题设知,个位数字的选择有5种. 因为321=+= 7610=+-,故(1) 由321=+知,首位数字的可能选择有2510⨯=种;(2) 由37610=+-及54123=+=+知,首位数字的可能选择有248⨯=种.于是,符合题设的不同点的个数为5(108)90⨯+=种. 故选(C ).6.已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ), 且2(32)(1),f a a f a -+=- 则a 的值有( D ).(A )2个 (B )3个 (C )4个 (D )无数个解:由题设知()f x 为偶函数,则考虑在11≤≤-x 时,恒有()2(1232007)20082007f x =⨯++++=⨯.所以当21321a a -≤-+≤,且111a -≤-≤时,恒有2(32)(1)f a a fa -+=-.由于不等式21321a a -≤-+≤的解集为3322a ≤≤ 111≤-≤-a 的解集为20≤≤a .因此当2253≤≤-a 时,恒有 2(32)(1)f a a f a -+=-. 故选(D ).二、填空题(本题满分54分,每小题9分) 7.设n S 为等差数列{}n a 的前n 项和,若105=S ,510-=S ,则公差为 1-=d . 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d . 8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a ab b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩, 解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4. 9.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以 ()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.10.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即= 2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.11.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=.解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC C AB B⋅==. 因为︒>60322arcsin ,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=±.故sin 2ABC AC AB S A ∆⋅==. 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a . 三、解答题(本题满分60分,每小题15分)13. 设不等式组 00x y x y +>⎧⎨-<⎩, 表示的平面区域为D . 区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线 l 与曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率. 解:由题意可知,平面区域D 如图阴影所示.设动点为(,)P x y2=,即 224x y -=.由P D ∈知0x y +>,x -y <0,即x 2-y 2<0.所以y 2-x 2=4(y >0),即曲线C 的方程为 y 24-x 24=设11(,)A x y ,22(,)B x y ,则以线段AB 为直径的圆的圆心为1212()22x x y y Q ++,. 因为以线段AB 为直径的圆L 与y 轴相切,所以半径 12122x x r AB +==,即 12AB x x =+. ① 因为直线AB 过点F (22,0), 当AB ⊥ x 轴时,不合题意.所以设直线AB 的方程为y =k (x -22). 代入双曲线方程y 24-x 24=1(y >0)得, k 2(x -22)2-x 2=4,即(k 2-1)x 2-42k 2x +(8k 2-4)=0.因为直线与双曲线交于A ,B 两点, 所以k ≠±1.所以x 1+x 2=42k 2k 2-1,x 1x 2=8k 2-4k 2-1. 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)[⎝ ⎛⎭⎪⎫42k 2k 2-12-4⋅8k 2-4k 2-1]=|x 1+x 2|=|42k 2k 2-1|, 化简得:k 4+2k 2-1=0, 解得k 2=2-1(k 2=-2-1不合题意,舍去). 由△=(42k 2)2-4(k 2-1) (8k 2-4) =3k 2-1>0,又由于y >0,所以-1<k <- 33.所以k =-2-114. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.B 1 B A 1C 1A C证:(1)设1AA 中点为D ,连C 、D .因为AB B A =1,所以1AA BD ⊥.因为面C C AA A ABB 1111⊥,所以⊥BD 面C C AA 11.又1ACC ∆为正三角形,111A C AC =,所以 11AA D C ⊥. 从而11AA BC ⊥.(2) 由(1),有1BD C D ⊥,11BC CC ⊥,1CC ⊥面1C DB .设1A 到面ABC 的 距离为h ,则1113ABC B CAC B CDC hS V V ∆--==. 因为11113C C DB C DB V CC S -∆=⨯, 所以1C DBABC S h S ∆∆=.又 1C D BD =,且2211==⨯=∆BD BD D C S DB C 设ABC ∆的高为AE ,则2512312221212=+=+=+=BD CC BC BC , 8325411=⋅-=AE , 41583252=⋅=∆ABC S . 于是有 515153==h ,即1A 到平面ABC 的距离为515. ………………15分 15.已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .解:由题设,22n n a a +≥+,则2007200520031222210032007a a a a ≥+≥+⨯≥≥+⨯=.由22n n a a +≥+,得22n n a a +≤-,则3223231(1)n n n n a a a a n +++≤+≤-+=+≥. 于是 200720062005200219991123123212a a a a a ≤+≤+⨯≤++⨯≤+⨯+⨯136********a ≤≤+⨯+⨯=,所以a 2007=2007. 易知数列11a =,22a =,,n a n = 符合本题要求. 注意:猜得答案n a n =或20072007a =,给2分.16.已知平面上10个圆,任意两个都相交.是否存在直线l ,与每个圆都有公共点?证明你的结论.解:存在直线l ,与每个圆都有公共点.证明如下:如图,先作直线0l ,设第i 个圆在直线0l 上的正投影是线段i i A B ,其中i A 、i B 分别是线段的左(第14题) A 1 A k A 2 B 1B 2 B m右端点.10个圆有10个投影线段,有10个左端点,有10个右端点.因为任意两个圆都相交,所以任意两条投影线段都有重叠的部分,设k A 是最右边的左端点,则所有右端点都在k A 的右边,否则必有两条投影线段无重叠部分,与对应的两个圆相交矛盾.再设m B 是最左边的右端点,同理所有左端点都在m B 的左边. k A 与m B 不重合,线段 k m A B 是任意一条投影线段的一部分,过线段k m A B 上某一点作直线0l 的垂线l ,则l 与10 个圆都相交.。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。

A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。

A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。

A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。

A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。

A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。

A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。

答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。

答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。

全国高中数学联赛江苏赛区初赛试卷

全国高中数学联赛江苏赛区初赛试卷

全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分.1.已知数列{an}的通项公式an =,则{an}的最大项是 ( ) A .a1 B .a2 C .a3 D .a42.函数y =3 |log 3x|的图象是 ( ) A .B .C .D .3.已知抛物线y2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个4.设f(x)是定义在R 上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则() A .f(x1)+f(x2)+f(x3)>0 B .f(x1)+f(x2)+f(x3)<0 C .f(x1)+f(x2)+f(x3)=0 D .f(x1)+f(x2)>f(x3)5.过空间一定点P 的直线中,与长方体ABCD -A1B1C1D1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条6.在△ABC 中,tanA =,cosB =,10).若的最长边为1,则最短边的长为 ( ) A .,5)B .,5)C .,5)D .,5)二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上.7.集合A ={x|x =3n ,n ∈N ,0<n <10},B ={y|y =5m ,m ∈N ,0≤n≤6}则集合A ∪B 的所有元素之和为__________________.8.设cos2θ=,3),则cos4θ+sin4θ的值是__________________. 9.(x -3x2)3的展开式中,x5的系数为__________________.10.已知⎩⎪⎨⎪⎧y≥0,3x -y≥0,x +3y -3≤0,则x2+y2的最大值是__________________.11.等比数列{an}的首项为a1=,公比q =-,设f(n)表示这个数列的前n 项的积,则当n =_________________时,f(n)有最大值.12.长方体ABCD -A1B1C1D1中,已知AB1=4,AD1=3,则对角线AC1的取值范围是______________________________.三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x|log 12(3-x)≥-2},B ={x|≥1},若A∩B =,求实数a 的取值范围.14.椭圆+=1的有焦点为F ,P1,P2,…,P24为24个依逆时针顺序排列在椭圆上的点,其中P1是椭圆的右顶点,并且∠P1FP2=∠P2FP3=∠P3FP4=…=∠P24FP1,x O yx O yx O yx O y若这24个点到右准线的距离的倒数和为S ,求S 的值.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EAC .证明是直角.16.设p 是质数,且p2+71的不同正因数的个数不超过10个,求p . 全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分.1.已知数列{an}的通项公式an =,则{an}的最大项是 ( ) A .a1 B .a2 C .a3 D .a4解:an =1(n -2)2+1,当n =2时,an 取最大值,故选B .2.函数y =3的图象是 ( ) A .B .C .D .解:由于|log3x|≥0,故y≥1,只有A 满足此条件,故选A .3.已知抛物线y2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个解:作垂直于x 轴的焦点弦交抛物线于点P1、P2,则△P1OF 、△P2OF是直角三角形.对于抛物线上异于O 、P1、P2的点Q ,显然∠QFO≠90˚,∠QOF≠90˚,从而若△QOF 为直角三角形,则只能是∠FQO =90˚.设点Q 坐标为(y22p,y)(y≠0,±p),则有y22p (y22p -p2)+y2=0, 由y≠0得,y22p +3p2=0,此方程无实解,从而这样的点P 只能2个,选B .4.设f(x)是定义在R 上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则( )A .f(x1)+f(x2)+f(x3)>0B .f(x1)+f(x2)+f(x3)<0C .f(x1)+f(x2)+f(x3)=0D .f(x1)+f(x2)>f(x3)解:则x1>-x2,知f(x1)<f(-x2)=-f(x2)f(x1)+f(x2)<0; 同理,f(x2)+f(x3)<0,f(x3)+f(x1)<0; 所以,f(x1)+f(x2)+f(x3)<0.选B .5.过空间一定点P 的直线中,与长方体ABCD -A1B1C1D1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条解:首先,过角的顶点与角的两边成等角的直线在角所在平面的射影是角(或其外角)的平分线.故若以长方体的过一个顶点的三个平面为坐标平面建立空间坐标系,则方程|x|=|y|=|z|共有8解,此8解共组成4条直线,故选C .6.在△ABC 中,tanA =,cosB =,10).若的最长边为1,则最短边的长为 ( ) A .,5)B .,5)C .,5)D .,5)解:作辅助图如右:取高CD =a ,则AD =2a ,BD = A B C D Ex O y x O y x O y x O yABDC3a2aa3a ,最短边AC =5a ;由5a =1,得a =,故选D . 二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上.7.集合A ={x|x =3n ,n ∈N ,0<n <10},B ={y|y =5m ,m ∈N ,0≤n≤6}则集合A ∪B 的所有元素之和为__________________.解:A∩B ={15};故所求和=(3+6+…+27)+(0+5+…+30)-15=225. 8.设cos2θ=,3),则cos4θ+sin4θ的值是__________________. 解:已知即cos2θ-sin2θ=,3)cos4θ+sin4θ-2cos2θsin2θ=; ① 又,cos2θ+sin2θ=1cos4θ+sin 4θ+2cos2θsin2θ=1. ② (①+②)÷2: cos4θ+sin4θ=.9.(x -3x2)3的展开式中,x5的系数为__________________. 解:(x -3x2)3=x3-3x2×3x2+3x×9x4-27x6.x5 的系数=27.10.已知⎩⎪⎨⎪⎧y≥0,3x -y≥0,x +3y -3≤0,则x2+y2的最大值是__________________.解:满足条件的点集组成的图形为图中阴影部分及其边界.其中点(3,0)与原点距离最大,故(x2+y2)max =9.11.等比数列{an}的首项为a1=,公比q =-,设f(n)表示这个数列的前n 项的积,则当n =_________________时,f(n)有最大值.解:由于f(4k)>0,f(4k +1)>0,(k ∈N*).f(4k)=a 4k 1 q2k(4k -1);f(4k +1)=a 4k +11q2k(4k +1).故=a1q4k .于是f(12)>f(13),且当k≥3时,f(4k +1)<f(4k);又=a 31q30,有f(9)<f(12);=a 41q2(8k +3), 故f(8)<f(12),且k≥3时,f(4k +4)<f(4k), 从而f(12)最大.12.长方体ABCD -A1B1C1D1中,已知AB1=4,AD1=3,则对角线AC1的取值范围是______________________________.解:设长方体的三度分别为x ,y ,z ,对角线AC =d .则可得x2+z2=16,y2+z2=9.d2=x2+y2+z2=25-z2,但0<z <3,从而16<d2<254<d <5所求取值范围为(4,5).三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x|log 12(3-x)≥-2},B ={x|≥1},若A∩B =,求实数a 的取值范围.解:由log 12(3-x)≥-20<3-x≤4-1≤x <3.由≥1(x -a)(x -3a)≤0.1321Oyx① 当a >0时,解为a <x <3a ; ② 当a =0时,解为;③ 当a <0时,解为3a <x <a .若A∩B≠,则当a <0时,有a >-1-1<a <0;当a >0时,有3a <30<a <1. 所以,a 的取值范围为(-1,0)∪(0,1).14.椭圆+=1的有焦点为F ,P1,P2,…,P24为24个依逆时针顺序排列在椭圆上的点,其中P1是椭圆的右顶点,并且∠P1FP2=∠P2FP3=∠P3FP4=…=∠P24FP1,若这24个点到右准线的距离的倒数和为S ,求S 的值.解法一:已知椭圆的a =3,b =2,c =5,e =53,p =b2c =45. 对于椭圆上任一点P ,|FP|=r ,P 到准线的距离|PH|=d ,FP 与Ox 正向夹角为θ,则有 rcosθ+d =p ,rd=e .于是, d(1+ecosθ)=p ,1d =1p(1+ecosθ).所以, S =i =1∑241di =1p i =1∑24(1+ecosθ)=24p +e p i =1∑24co sθ=24p .故 S2=242p2=180.解法二:设过焦点且斜率为k 的直线交椭圆于A 、B 两点.则有⎩⎨⎧y =k(x -c), ①4x2+9y2=36. ②①代入②: 4x2+9k2(x -5)2-36=0.即, (4+9k2)x2-185xk2+45k2-36=0.所以, x1+x2=185k24+9k2,x1x2=45k2-364+9k2.而点P 到准线距离d =a2c -x =9-5x 51d =59-5x ,故直线①与椭圆的两个交点到准线距离的倒数和为59-5x1+59-5x2=5[18-5(x1+x2)]81-95(x1+x2)+5x1x2=5[18-5·185k24+9k2]81-95·185k24+9k2+545k2-364+9k2=185(4+9k2)-905k281(4+9k2)-810k2+225k2-180=725+725k2144+144k2=52.而过焦点且倾斜角θ=90˚时,两交点到准线的距离=a2c -c =45,故θ=90˚及270˚的pθF P OxyH rd两个点到准线距离倒数和也=52. 所以,S =12×52=65;S2=180.解法三:令⎩⎨⎧x =5+tcosθ,y =tsinθ.代入椭圆方程得,t2(4cos 2θ+9sin2θ)+85tcosθ-16=0.同上.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EAC .证明是直角.证明一:延长AE 到F ,使EF =AE ,延长AD 到K ,使DK =AD .连FK ,FB .因FB ∥AC ∠AFB =∠EAC .又BD 垂直平分AK ,故∠AKB =∠BAD ,因∠BAD =∠EAC ,所以∠AKB =∠AFB .所以A 、F 、K 、B 四点共圆. FK ∥BC ∠FKA =90˚.故AF 为该圆直径.E 为此圆圆心.故EA =EB =EC ,即点C 在此圆上.此圆为△ABC 的外接圆,BC 为圆的直径. 所以∠BAC 为直角.证明二:取△ABC 的外接圆,延长AE 交圆于点F ,连FB ,则∠CBF =∠CAF =∠BAD ,但∠BAD +∠ABD =90˚,从而∠FBC +∠ABC =90˚,即∠ABF =90˚. 从而AF 为圆的直径.若E 不是圆心,则AF ⊥BC ,AB =AC .与已知矛盾.故E 为外心.从而∠BAC =90˚.证明三:作△ABC 的外接圆,作EF ⊥BC ,交外接圆于点F ,连AF .则EF 是BC 的垂直平分线,故F 为⌒BC 的中点,于是AF 是∠BAC的平分线.由∠BAD =∠EAC ,得∠DAF =∠EAF .又,EF ∥AD ,故∠DAF =∠EFA ∠EAF =∠EFA .EA =EF .故AF 的垂直平分线经过点E .由于△ABC 的外接圆圆心应是弦AF 、BC 的垂直平分线的交点,故E 为△ABC 的外心.从而△ABC 为直角三角形,得,∠BAC 为直角.证明四:取AC 中点F ,连DF 、EF , 由EF ∥AB ∠AEF =∠EAB =∠BAD +∠DAE =∠EAC+∠DAE =∠DAC ,由AD 为高,故∠DAC =∠ADF ,所以,∠ADF =∠AEF A 、D 、E 、F 四点共圆.于是有∠EFA =90˚,从而∠BAC =90˚,故证.证明五:以D 为原点,BC 所在直线为x 轴建立坐标系.设点A 、B 、C 的坐标分别为A(0,a),B(b ,0),C(0,c).FE D CB AA B C D E FK FD E C B A设AB 到AD 的角为α,则tanα=-ba .kAC =-a c ,kAE =-2ab +c ,tan ∠EAC =-a c +2a b +c 1+2a2c(b +c)=a(c -b)2a2+bc +c2.由tan ∠EAC =tanα-ba =a(c -b)2a2+bc +c2.化简得a2=-bc .即|AD|2=|DB|·|DC|.故△ABC 为直角三角形.证明六:设BC =a ,BD =p ,AD =h ,则tanB =hp ,tan ∠AEB =h 12a -p =2ha -2p .∠BAE =∠DACtan ∠BAE =tan ∠DAC =a -ph.在△ABE 中,有h p +2ha -2p +a -p h =h p ·2h a -2p ·a -p h =2h(a -p)p(a -2p).即h2(a -2p)+2ph2+p(a -p)(a -2p)=2h2(a -2p).h2=p(a -p).从而|AD|2=|DB|·|DC|.故△ABC 为直角三角形.得证.证明七:设∠BAD =∠EAC =α,则AD =ABcosα=ACsinC , ①∠BAE =∠DAC =90˚-C .而S △BAE =S △CAE AB·AEsin(90˚-C)=AC·AEsinαABcosC =ACsinα.②①×②:sin2α=sin2C α+C =90˚或α=C .若α+C =90˚,则D 、E 重合,与AC >AB 矛盾,α=C .则有∠BAC =90˚,得证. 16.设p 是质数,且p2+71的不同正因数的个数不超过10个,求p . 解 p =2时,p2+71=75=3×52,d(75)=2×3=6<10,故p =2是本题的解; p =3时,p2+71=80=24×5,d(80)=5×2=10≤10,故p =3是本题的解; 若质数p >3,则p2≡1(mod 8)p2+71≡0(mod 8),故23|p2+71; p2≡1(mod 3)p2+71≡0(mod 3),故3|p2+71.所以,p2+71=2α×3β×t .其中α、β∈N*,且α≥3.当α=3,β=1,t 若有大于3的质因子,则d(p2+71)≥4×2×2,故t =1.此时无质数p 满足题意;当α=4,β=1,必有t =1,此时有d(p2+71)≥5×2=10.此时无质数p 满足题意; 当α≥4,β≥1,且等号不同时成立时,d(p2+71)>10. 综上可知,解为p =2,3.xyA (0,a )B (b ,0)C (c ,0)D EahpABCED高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

全国高中数学联赛江苏赛区初赛试题及

全国高中数学联赛江苏赛区初赛试题及

2014 年全国高中数学联赛江苏赛区初赛试题(4月 20 日 8:00 至 10:00 )一.填空题(本大题共10 小题,每题 7 分,共 70 分)1.若x≥2,则函数 f ( x) x1的最小值是.x 12.已知函数 f (x) e x.若f ( a b) 2 ,则 f (3a) f (3b) 的值是.3.已知数列a n是各项均不为0 的等差数列,公差为 d ,Sn为前n 项和,且满足*,则数列a n的通项a n.a n2S2n 1,n N2x23x, x≥ 0,是奇函数,则实数a 的值是.4.若函数 f ( x)2x2ax, x05.已知函数 f ( x)lg | x10| .若关于 x 的方程 f 2 ( x) 5 f ( x) 60 的实根之和为 m ,则3f ( m) 的值是.6.设、都是锐角,且cos5, sin() 3 ,则cos等于.557.周围体ABCD 中,AB3, CD 5 ,异面直线AB 和 CD 之间的距离为4,夹角为60 o,则周围体ABCD 的体积为.8.若满足ABC,AC 3 , BC m 的△ ABC 恰有一解,则实数m 的取值范围3是.9.设会集S1,2, L ,8, A ,B 是 S 的两个非空子集,且 A 中的最大数小于 B 中的最小数,则这样的会集对( A,B) 的个数是.10.若是正整数m可以表示x24y 2(x , y Z ),那么称 m “好数”.1,2, 3,⋯, 2014 中“好数”的个数.二.解答(本大共 4 小,每小20 分,共 80 分)11.已知a,b,c正数,a x b y c z ,1110 ,求abc的.x y zx2y212.已知F1,F2分是双曲 C :a2b21(a 0, b 0) 的左右焦点,点 B 的坐(0, b) ,直 F1B 与双曲C的两条近分交于P ,Q两点,段PQ的垂直平分与 x 交于点M.若 MF 21F1F2,求双曲C的离心率.213.如,已知ABC是角三角形,以AB直径的交AC于点D,交AB上的高 CH 于点E .以 AC 直径的半交 BD 的延于点 G .求: AG AE .14.(1)正六形被3条互不交织(端点可以重合)的角切割成4个三角形.将每个三角形地域涂上、两种色之一,使得有公共的三角形涂的色不同.怎切割并涂色可以使色三角形个数与色三角形个数的差最大?(2)凸2016形被2013条互不交织(端点可以重合)的角切割成2014 个三角形.将每个三角形地域涂上、两种色之一,使得有公共的三角形涂的色不同样.在上述切割并涂色的所有状况中,色三角形个数与色三角形个数之差的最大是多少?明你的.2020-2-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, 与四棱锥的各个侧面
A
A1 D
D1
B1
C1
相截,则截得的四边形必为平行四边形.而这样 的平面 有无数多个.故选 D.
C B
5. 设数列 {an } : a0 2, a1 16, an2 16an1 63an , n N*, 则 a2005 被
64 除的余数为
A. 0
(n∈N*) .
(an 2) 2 an 2 解:由题意知 . 2Sn , 即 Sn 8 2
由 a1 S1 得 又由 ① 式得 ……… ①
a1 2 2a1 , 从而 a1 2 . 2
Sn1 (an1 2)2 (n 2) , 8
(an 2) 2 (an 1 2) 2 (n 2) , 8 8
2 1 2
若 1 只出现 3 次,有 C5 C2 20 个. 则这样的五位数共有 150 个. 故填 150
3 1
个.
12. 已知平面上两个点集 M {( x, y) | | x y 1| 2( x 2 y 2 ), x, y R},
N {( x, y) | | x a | | y 1| 1, x, y R}. 若 M
x 3 10 .所以,
当 a 3 10 时,
M
N .
………… ④
因此, 综合 ③ 与 ④ 可知,当 1 6 a 3 10 ,即 a [1 6, 3 10] 时,
M
N .故填 [1 6,3 10] .
三.解答题 (第一题、第二题各 15 分;第三题、第四题各 24 分) 13. 已知点 M 是 ABC 的中线 AD 上的一点, 直线 BM 交边 AC 于点 BC BM (用 表示). , 试求 N , 且 AB 是 NBC 的外接圆的切线, 设 BN MN 证明:在 BCN 中,由 Menelaus 定理得 A BM NA CD 1. MN AC DB 因为 BD DC ,所以 N BM AC . ……………… 6 分 M MN AN
2
种方法. 于是第二列上共有 21 种铺法. 同理, 若
7
A B
前一列铺好,则其后一列都有 21 种铺法.因此,共有 30 21 种铺法. 故 选 D.
二.填空题 (本题满分 36 分, 每小题 6 分) 7. 设向量 OA 绕点 O 逆时针旋转
得向量 OB , 且 2OA OB (7,9) , 则 2
分别是棱 AA1 、 C1 D1 与 BC 的中点, 那么四面体 B1 EFG 的体积是 VB1-EFG
3 = 8
.
解:在 D1 A1 的延长线上取一点 H ,使 A1 H
B1FG . 故 VB1 EFG VE B1FG VH B1FG
距离为 1 . 故填
1 . 易证, HE || B1G , HE || 平面 4 9 VG B1FH .而 SB1FH ,G 到平面 B1FH 的 8
……… ②
于是有
an Sn Sn1
整理得 (an an1 )(an an1 4) 0 . 因 an 0, an1 0 , 故
an an1 4 (n 2), a1 2 .
所以数列 {an } 是以 2 为首项、 其通项公式为 an 2 4(n 1) , 4 为公差的等差数列, 即 an 4n 2 . 故填
2

所以 n 2 时命题成立. 当 n 3 时,由 x1 x2 x3 0 ,得
…………………… 3 分
x1 x2 x2 x3 x3 x1
2 2 2 2 ( x1 x2 x3 )2 ( x12 x2 x3 ) ( x12 x2 x3 ) 0. 2 2
n
………………
xn 0 , 则
9分
i
x
i 1
n
0.
但是,
x x
n 1
i i 1
1 0 ,故对于 n 5 命题不成立.
综上可知,使命题成立的自然数是 n 2, 3, 4 .
…………… 15 分
15. 设椭圆的方程为
x2 y 2 1 (a b 0) , 线段 PQ 是过左焦点 F 且不与 a 2 b2
所以 n 3 时命题成立. 当 n 4 时,由 x1 x2 x3 x4 0 ,得
………………… 6 分
x1 x2 x2 x3 x3 x4 x4 x1 ( x1 x3 )( x2 x4 ) ( x2 x4 )2 0 .
所以 n 4 时命题成立. 当 n 5 时,令 x1 x2 1 , x4 2 , x3 x5
向量 OB (-
11 23 , ) . 5 5
解:设 OA (m, n) , 则 OB (n, m) , 所以
2OA OB (2m n, 2n m) (7,9) .
2m n 7 , 解得 m 2n 9 .
( 11 23 . , ) 5 5
x 轴垂直的焦点弦. 若在左准线上存在点 R ,
使 PQR 为正三角形, 求椭圆的离心率 e
2005 年全国高中数学联赛江苏赛区初赛 试题参考答案及评分标准
说明:
1. 评阅试卷时, 请依据本评分标准. 选择题、填空题只设 6 分和 0 分两档. 其他各题 的评阅, 请严格按照本评分标准规定的评分档次给分, 不要再增加其他中间档次. 2. 如果考生的解答方法和本解答不同, 只要思路合理, 步骤正确, 在评卷时可参照本 评分标准适当划分评分档次, 3 分为一个档次, 不要再增加其他中间档次.
y
3 2 1
| x y 1| 2( x 2 y 2 ) ,
-3
-2
-1
O
-1
1
2
3
4
5
6
7
x
得 x 4 x 2 0 ,解出得 x 2 6 . 所以,
2
当 a 2 6 1 1 6 时, 令 y 2 ,代入方程
M
N .
………… ③
| x y 1| 2( x 2 y 2 ) , 得 x2 6 x 1 0 . 解出得
A. 308 个
B. 30 257 个
C. 30 207 个
D. 30 217 个
答: [ D ] 解:铺第一列(两块地砖)有 30 种方法;其次铺第二列.设第一列的两格铺了 A 、 B 两色(如图),那么,第二列的上格不能铺 A 色.若铺 B 色,则有 (6 1) 种铺法;若不 铺 B 色, 则有 (6 2)
一.选择题 (本题满分 36 分, 每小题 6 分) 1. 函数 y f ( x) 的图像按向量 a ( , 2) 平移后, 得到的图像的解析式为 4
y sin( x ) 2 . 那么 y f ( x) 的解析式为 4


A. y sin x
B. y cos x
C. y sin x 2
an 4 n 2 (n N*).
2 . 2
9. 函数 y | cos x | | cos 2 x | ( x R) 的最小值是
解:令 t | cos x |[0,1] ,则 y t | 2t 1| .
2

1 9 2 t 1 时, y 2t 2 t 1 2(t ) 2 ,得 4 8 2
N , 则 a 的取值范围是
[1- 6,3+ 10] .
解:由题意知 M 是以原点为焦点、直线 x y 1 0 为准线的抛物线上及其凹口 内侧的点集, N 是以 (a,1) 为中心的正方形及其 内部的点集(如图). 考察 M N 时, a 的取值范围: 令 y 1 , 代入方程
D. y cos x 4
答: [ B ]
解: y sin[( x

4
) ], 即 4

y cos x . 故选 B.
2. 如果二次方程 x2 px q 0 ( p, q N*) 的正根小于 3, 那么这样的二次方程

A. 5 个
2
B. 6 个
C. 7 个
D. 8 个
3 VB1 E F G . 8
11. 由三个数字 1 、 2 、 3 组成的 5 位数中, 1 、 2 、 3 都至少出现 1 次, 这样 的 5 位数共有 150 个.
解:在 5 位数中, 若 1 只出现 1 次,有 C5 (C4 C4 C4 ) 70 个;
1 1 2 3
若 1 只出现 2 次,有 C5 (C3 C3 ) 60 个;
答: [ C ]
解:由 p 4q 0, q 0 , 知方程的根为一正一负. 设 f ( x) x px q ,则 f (3) 3 3 p q 0 , 即 3 p q 9 .
2 2
由于 p, q N*, 所以 p 1, q 5 或 p 2, q 2 . 于是共有 7 组 ( p, q) 符合 题意. 故选 C.
4. 设四棱锥 P ABCD 的底面不是平行四边形, 用平面 去截此四棱锥, 使得
截面四边形是平行四边形, 则这样的平面

A. 不存在
B. 只有 1 个
C. 恰有 4 个
D. 有无数多个
答: [ D ]
P
解:设四棱锥的两组不相邻的侧面的交线 为 m 、 n , 直线 m 、 n 确定了一个平面 . 作与 平行的平面
B. 2
C. 16
D. 48
答: [ C ]
解:数列 {an } 模 64 周期地为 2,16,-2,-16,……. 又 2005 被 4 除余 1, 故 选 C.
相关文档
最新文档