金属板料数字化渐进成形工艺研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属板料数字化渐进成形工艺研究

摘要:本文围绕板材数控单点渐进成形技术的工艺规划的一般原则的建立和加工轨迹优化方法。主要内容包括基于理论分析和实践经验的一般性工艺规划和针对解决实际问题的加工轨迹优化处理。

关键词:数字化成形快速成形加工轨迹

1 引言

金属板材数控单点渐进成形技术是一种数字化的柔性加工技术,与传统的塑性成形技术相比,具有不需要设计、制造模具,小批量多品种加工板材零件的优点。其柔性的特点决定了该项技术尤其适合于新产品开发阶段的板料零件成形,如日用品、汽车覆盖件、航天航空产品的研制阶段的工作,利用该技术可以大大缩短产品开发周期,降低开发成本和新产品开发的风险。

本文根据在加工过程中的一些实例,在UG软件进行使用方法的介绍,供同行们参考。

2 金属板料塑性成形技术的概述

2.1 传统板料塑性成形技术

金属板料通过塑性成形方法可以加工成各种零件,它们被应用于国民经济和日常生活的各个领域中。例如汽车行业、航天航空、电机电器、食品包装、建筑等工业用品、家庭用品及家居装饰品、工艺美术品、医疗器械、家用电器等日常用品都大量使用金属板料塑性成形件。

传统的板料塑性成形技术的加工过程通常包括两个阶段。第一阶段是模具的设计与制造阶段;第二阶段是采用模具的生产阶段。这种加工方式的优点是,一旦模具设计制造成功后,可以大批量的生产需要的零件。但是,因为在模具的设计制造过程中,需要反复的对模具进行修改,这样就表现出模具的设计、制造费用高、周期长,使板材零件的应用范围受到限制。

2.2 板料塑性无模成形技术

二十一世纪是以知识经济和信息社会为特征的新时代,制造业正面临着空前严峻的挑战。如何快速、低成本和高质量地开发出新产品,以满足信息社会中瞬息万变的市场对小批量多品种产品的要求,是企业生存和发展的关键。传统的板料塑性成形技术已经不能够满足这种要求,市场经济要求提高成形的柔性。提高塑性加工柔性的方法有两种途径”,一是从机器的运动功能上着手,例如多向多动压力机,快速换模系统及数控系统。二是从成形方法上着手,无模成形便是其中一种。

2.3 快速成形技术

快速成形技术问世于20世纪80年代末,被认为是近20年制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相比。它引进分层制造(Layered Manufacturing)的思想,通过切层得到三维实体的截面轮廓曲线的型值点信息,然后山数控系统和执行单元完成逐点、逐层成形,从而将三维加工变为二维加工,最后得到零件或者零件的原型。

综上所述,对薄板数控单点渐进成形的研究是非常必要的,它将快速成形技术和塑性成形技术有机结合,该技术是综合性的跨学科的课题,它涉及力学、摩擦学、塑性成形技术、数控技术、CAD/CAM等多个学科,该技术的发展可推动相关学科尤其是快速成型技术和塑性加工理论的发展,既有重要的理论意义又有广阔的应用前景。

3 金属板料数控单点渐进成形原理

金属板材数控单点渐进成形法,是一种基于计算机技术、数控技术和塑性成形技术基础上的先进制造技术,其特点是采用快速成型制造技术“分层制造(Layered Manufacturing)”的思想,将复杂的三维模型沿高度方向离散化,分解成一系列二维层,并在二维层上对板材进行局部的塑性加工。加工是在三轴联动的数控成形机上进行的,工作时,在计算机控制下成形工具头先走到

指定位置,并对板材压下设定的压下量,然后根据控制系统的指令,按照第一层截面轮廓的要求,以走等高线的方式.对板材施行渐进塑性加工,并形成所需第一层截面轮廓后,成形工具头再压下设定高度,按第二层截面轮廓要求运动,并形成第二层轮廓。如此重复直到整个工件成形完毕,如图1中所示为板材加工过程原理。

(a)板料成形前(b)板料成形过程中

(c)板料成形三维实体图

图1 金属板科渐进成形原理图

1—导柱 2—夹板 3—板料 4—支架模型 5—工具头 6—支架金属板材数控单点渐进成形方式是一种数控成形方法,在加工中数控编程是其主要内容之一。而在数控编程中,工艺规划和加工轨迹的优化是这种渐进塑性加工技术能否成功加工工件、提高成形精度的重要一环。

4 金属板材零件的数字化建模

对于基于图纸以及型面特征点测量数据的复杂形状零件数控编程,其首要环节是建立被加工零件的数字化模型。

数字化建模(Digital Model)是基于计算机技术,在现代设计方法学的指导下,支持先进制造系统,定义和表达产品全生命周期中的产品资源所必需的产品数据内容、数据关系及活动过程的数字化的信息模型。数字化建模技术正经历着从几何建模技术到特征建模技术的转变。

几何建模仅仅是零件的几何表示。包括零件的几何定义、外形设计和必须满足的约束条件。是用一些基本的几何元素——点、线、曲线、平面、曲面、简单体素等,来描述这些设计对象的几何形态的。几何模型的表达方式有线框模型(Wireframe Modeling)、曲面模型(Surface Modeling)、实体模型(Solid Modeling)和参数化/变量化建模。

特征建模技术是CAD建模方法的一个新的里程碑,它是在CAD/CAM技术的发展和应用达到一定水平,要求进一步提高生产组织的集成化和自动化程度的历史进程中孕育成长起来的。特征兼有形状和功能两种属性,现有的国内外特征技术研究都是基于实体模型的基础上开展的。在实体模

型的基础上,特征设计应能方便地进行设计修改,特征本身是参数化的,它们之间的组装应该实现变量化,即尺寸驱动。Pro /E 、UG 软件都很好的实现了特征建模的功能。

5 钣金零件的渐进成形工序图的生成

金属板料渐进成形方法是对材料进行渐进变薄拉延过程,板料成形区(图1b 中A 部)的板厚将比未成形部分的板厚有明显减薄。材料成形区厚度,跟板料成形面与垂直方向的夹角θ(图lb)有关,它们符合正弦规律,即

θsin 0⨯=t t (1)

式中:t ——板料成形区厚度,mm ;

t 0——板料成形前厚度,mm ;

θ——板料成形面与垂直方向的夹角。

加之扳材与工具头的接触点处处于二向拉应力状态,当上述成形角θ(图la)在0°~5°之间时,材料极易出现失稳而断裂,因此,工件的垂直壁部分一次成形是不可能的。

根据以上的分析,在渐进成形中设计了路径“渐进”成形的方法,如图2所示,这种方法首先是基于塑性变形的体积不变原则,使板材成形过程中尽量多的板材参与变形,从而降低板材减薄,减小失稳的可能;其次,就是使板材已变薄区域尽量少重复参与变形。另外,如果对加工后垂直壁的精度要求不是很高的情况下,从节约加工时间来考虑,可以先将垂直壁部分,在渐进成形中成形为可以一次成形的斜壁,而再后续的工艺中,采用手工或机械的方式将斜壁折成直壁的情况。

图2 直壁的四种成形渐进工序图

a)曲线 b)直线 c)折线并平行 d)直线段+曲线段

图2中a 、b 加工方式,尽管满足了第一个原则,即使尽量多的板材参与变形,但是因为在若干次变形中整个变形段都不断参与了变形,这样该加工段一直在因塑性变形而变薄,这样就会很快使板材产生拉伸失稳,而造成破裂。图2d 也可以成形一定深度的直壁,但是由于其下部的变形段在不断的变薄,从而导致破裂。

从实际的加工实验中,只有图2c 路径取得了较好的结果。而且也能很好的满足上面提出的两个原则,即首先与直接成形直壁比较,参与变形的板材面积扩大;而除了在第一次变形中都参与了变形外,其它道次参与变形的板材只集中与成形为直壁段的部分,下面的直线段则没有参与变形,只是一种平移关系。但是由于加工中的回弹和其它效应,使得该成形路径成形垂直壁的深度仍然有限,目前采用此方法对1mm 厚的08F 进行加工可以达到40mm 以上。但是与直接加工直壁相比已经取得了一一个数量级的提高。所以,图2c 的路径是较优的加工路径。图3为采用渐进工序成形的直壁零件。

相关文档
最新文档