数学建模实验答案_概率模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验10 概率模型(2学时)
(第9章 概率模型)
1.(验证)报童的诀窍p302~304, 323(习题2)
关于每天报纸购进量的优化模型:
已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。
求每天购进量n 份,使日平均收入,即
1
()[()()()]()()()n
r r n G n a b r b c n r f r a b nf r ∞
==+=----+
-∑∑
达到最大。
视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足
*
()n a b
p r dr a c
-=
-⎰
已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少?
[提示:normpdf, normcdf]
要求:
(1) 在同一图形窗口内绘制10
()()n
y n p r dr =⎰和2()a b
y n a c
-=
-的图形,观察其交点。
[提示] 22
()2()r p r μσ--
=
,0
()()()n n
p r dr p r dr p r dr -∞
-∞
=-⎰⎰
⎰
☆(1) 运行程序并给出结果:
(2) 求方程0()n
a b
p r dr a c
-=
-⎰的根n *(四舍五入取整),并求G (n *)。
mu=500;sigma=50;
a=1; b=0.75; c=0.6;
r=n+1;
while (a-b)*n*normpdf(r,mu,sigma)>1e-6
r=r+1;
end
r=n+1:r;
G=sum((a-b)*n*normpdf(r,mu,sigma));
r=0:n;
G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma))
☆(2) 运行程序并给出结果:
2.(编程)轧钢中的浪费p307~310
设要轧制长l =2.0m的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=0.2m,问这时钢材长度的均值m应调整到多少使浪费最少。
平均每得到一根成品材所需钢材的长度为
()
()
m
J m
P m
=
其中,
2
2
()
2
()(), ()
2
x m
l
P m p x dx p xσ
πσ
-
-
∞
==
⎰
求m使J(m)达到最小。
等价于求方程
()
()
z
z
z
λ
ϕ
Φ
=-
的根z*。
其中:
()z Φ是标准正态变量的分布函数,即 ()()z
z y dy ϕ∞
Φ=⎰
()z ϕ是标准正态变量的概率密度函数,即
22
()z z ϕ-
=
*
,,*z l m m
l
z σσ
μσ
λμλ-=⇒=
=
-=
(1) 绘制J (m )的图形(l =2, σ=0.2),观察其最小值的位置。
★(1) 给出程序和运行结果:
(2) 求使J (m )达到最小值的m *。
由(1)可观察到J(m)达到最小值的区间。分别用求无约束最小值的MATLAB 函数fminbnd, fminsearch, fminunc 求解,并比较结果。
★(2) 给出程序及运行结果(比较[310]):
(3) 在同一图形窗口内绘制1()
()()
z y z z ϕΦ=和2()y z z λ=-的图形,观察它们的交点。(参考题1的(1))
★(3) 给出程序及运行结果(比较[309]图2):
z=-2:0.1:2;
y1=(1-normcdf(z,0,1))./normpdf(z,0,1); l=2; sigma=0.2;
(4)求方程
()
()
z
z
z
λ
ϕ
Φ
=-的根z*,并求m=l-σz*。(参考题1的(2))
提示:由(3)得到的图形可观察到z*的大概位置。
★(4) 给出程序及运行结果(比较[310]):
3.(验证)航空公司的预订票策略p313~316
模型如下:
给定λ, n , p , b /g ,求m 使单位费用获得的平均利润J (m ) 最大。
∑--=---+-=1
1])()/1([1
)(n m k k p n k m g b qm n m J λ
约束条件为 1
()(01)m n j j k k P m p α
α---==
≤<<∑
其中:
m 预订票数量的限额。 λ( < 1 ) 利润调节因子。 n 飞机容量。
p 每位乘客不按时前来登机的概率,q = 1 – p 。 b 每位被挤掉者获得的赔偿金。 g 机票价格。
b /g 赔偿金占机票价格的比例。
不按时前来登机的乘客数K 服从二项分布,其概率为
p q p q p C k K P p k m k k
m k -=≤≤===-1,10,)(
被挤掉的乘客数超过j 人的概率为
∑---==
1
)(j n m k k
j p
m P
(等价于m 位预订票的乘客中不按时前来登机的不超过m – n – j – 1
人)
该模型无法解析地求解,我们设定几组数据,用程序作数值计算。