固定床层结构
化工原理:3.5-固定床
3.5.1 固定床的床层简化模型
流体通过固定床的阻力:
清液
滤饼
过滤介质
数值上等于床层中所有颗粒所受曳力的总和。
确定流体通过床层阻力的方法--实验方法
流动情况:流体在床层的空隙中流动; 复杂性:孔道的形状、数目、流动状态随机 孔道中流动属层流,但局部出现湍流 处理方法:简化床层→管外流问题为管内流问题 优点:用简化的模型来代替床层内的真实流动,便 于用数学方法来处理,然后再通过实验加以校正 。
简化模型条件
3.5.1 固定床的床层简化模型
( 1 )颗粒床层由许多平行的细管组成,孔道长度与 床层高度成正比;
l ' cL
c 1
u —— 空床流速
u’—— 孔道内流速
s0—— 床层自由截面积分率 l’ ——细管长度
u u u' S0
(2) 孔道内表面积之和 等于全部颗粒的表面积
--------------------
p f
(1 ) 2 u u 2 (1 ) 150 1.75 3 2 3 L da da
称为欧根(Ergun)方程。
3.5.3 欧根方程的其它形式
p f (1 ) 2 u u 2 (1 ) 150 1.75 3 2 L da da 3
fF与ReP/(1-ε定床层的阻力
模型:流体通过固定床层的流动可看作是直管内的流动问题。 (1) 流体层流流动 用哈根 — 泊谡叶( Hagen—Poiseuille )方程计算
床层的阻力:
结合实验结果
32 cLu p f d e2
p f
l ' cL
(1 ) 2 u 150 L 3 d a2
第六章 固定床
水力半径
• 湿周---在总流的有效截面上,流体与固体壁面的接 触长度称为湿周,用字母L表示。
• 水力半径---总流的有效截面积A和湿周L之比。用字
母RH表示
RH = A / L
44
• 对于圆形截面的管道,其几何直径用水力半径表示 时可表示为
• A=(1/4)×πd2 • L=πd • 则 R=A/L=(1/4)×d → d = 4 R
当ReM>1000 湍流, 局部阻力损失为主, f≈1.75 , 略去第一项
结论: 对ΔP影响最大的是ε和u
49
Pf L
'(duSm 2 )(1B3B)
f ' 1501.75 ReM
一般床压不宜超过床内压力的15%,所以颗粒不 能太细,应做成圆球状。
50
➢ 压降的计算 ΔP=ΔP1+ ΔP2
= 15fu 0 OG L 0(1)21.75fuO 2 G L 0(1)
dS 2
3
dS
3
Pa
式中混合物的粘度
1
yi
fi M
2 i
f
1
yiM
2 i
kg/m.s
51
6.3 固定床中的传热
传热包括: 粒内传热,颗粒与流体间的传热,床层与器壁的传热
给热系数 αP 给热系数αW ,λer 总给热系数α t
当单纯作为换热装置时,以床层的平均温度tm与 管壁温差为推动力-----总给热系数αt
n
算术平均直径: d xWidi i1
调和平均直径:
1 n xWi
d
d i1 i
几何平均直径:
di
didi
30
6.2.3 床层空隙率及分布
绝热式固定床反应器
小结
固定床反应器的分类;
固定床反应器的结构; 固定床催化反应器的特点 。
作业布置
1. 固定床反应器可分为哪几种?
2. 简述不同类型固定床反应器的结构及 特点。
3. 简述固定床催化反应器的优缺点。
1.单段绝热式固定床反应器
反应器外壳包裹绝热保温层,使催化剂床层
与外界没有热量交换。中空圆筒的底部放置
搁板,上面堆放固体催化剂。气体从上而下
通过催化剂床层。
结构简单,床层横截面温度均匀。单位体积 内催化剂量大,即生产能力大。但只适用于 热效应不大的反应。
原料气
绝热式
催化剂 固定床 反应器
产物
固定床反应器
固体催化剂颗粒堆积起来所形 成的固定床层静止不动,气体反应 物自上而下流过床层,进行反应的 装置称作固定床反应器。
固定床反应器的结构
固定床催化反应器
传热方 式不同
绝 热 式
换 热 式
自 热 式
(一)绝热式固定床反应器
绝热式反应器又分为单段和多段绝热式 两类,反应时不与外界进行任何热量交换。 放热反应,反应中多放出的热量完全用来加 热物料本身,物料的温度将升高,称之为 “绝热温升”。反之,为吸热反应时,物料 的温度将降低,称为“绝热温降”
结构简单、催化剂机械磨损小,适合于贵 金属催化剂; 反应器的操作方便、操作弹性较大。
固定床反应器缺点
催化剂颗粒较大,有效系数较低; 催化剂床层的传热系数较小,容易产生局
部过热;
催化剂颗粒的更换费事,不适于容易失活
的催化剂。
练一练
1.固定床反应器内的催化剂可以长 期使用的原因。 2.分析为什么列管内催化剂颗粒不 宜过大,也不宜过小?
固定床反应器的设计—固定床反应器特点与结构
间接换热式催化剂床层绝热操作方程
A-B 反应 x↑
B-C 换热 x不变
C-D 反应 x↑
D-E 换热 x不变
E-F 反应 x↑
F-G 换热 x不变
绝热操作线方程式: 表达温度与转化率的 关系。
反应热效应、绝热温 升、热熔、密度一定 时,反应段斜率相同
1.绝热式固定床反应器
(3)多段式催化床层温度的分布:间接换热式催化剂床层温度分布 和冷激(直接换热)式催化剂床层温度分布
1.绝热式固定床反应器
(2)多段式:有多段催化剂床层,反应和冷却间隔进行。 适应场合:反应热效应较大,反应速率慢的反应。 中间间接换热式:床层间加换热器(),调节温度。如:水煤气转换、二氧化硫的
氧化反应
1.绝热式固定床反应器
(2)多段式:有多段催化剂床层,反应和冷却间隔进行。 适应场合:反应热效应较大,反应速率慢的反应。
中间间接换热式:床层间加换热器(换热盘管),调节温度。如:环己醇脱氢制环己酮 及丁二醇脱水制丁二烯 。
换热盘管
1.绝热式固定床反应器
(2)多段式:有多段催化剂床层,反应和冷却间隔进行。适应反应 热效应较大,反应速率慢的反应。
冷激式:用冷流体直接与上一段出口气体混合来实现降温。多适应于工业上高压力操
•以高温烟道气为载体, 将反应所需热量在反应 管外通过管壁传给催化 剂层
生产实例:乙苯催化脱 氢制备苯乙烯。
2、换热式固定床反应器
(1)外换热式:以各种载热体为换热介质的对外换热式反应器多为 列管式结构。 载热体选择:
低于240℃----加压热水 250—300 ℃ -----导热油 300 ℃ -----熔盐(KNO353%,NaNO27%、NaNO340%) 600—700℃左右----烟道气
固定床反应器的结构
固定床反应器的结构固定床反应器是化学反应过程中一种常用的反应装置,通常用于催化反应或氧化反应。
与流动床反应器相比,固定床反应器具有操作简单、装置体积小、节能等诸多优点。
本文将从结构方面介绍固定床反应器的结构。
固定床反应器主要由反应器本体、进料系统、排放系统、催化剂填料层等四个部分组成。
其中,反应器本体是整个反应装置的核心部分,由反应器壳体、隔板、固定床支撑、固定床填料等组成。
进料系统则是将原料送入反应器本体的渠道,同时还包括物料输送设备。
排放系统则是将反应产物从反应器中取出的系统。
最后催化剂填料层为反应器提供催化剂动力学性能的支撑体系。
反应器本体反应器本体的壳体与隔板主要起到将反应物料与催化剂填料完全隔离的作用。
隔板的设计需要考虑到反应物流粘度、温度、压力等因素,以保证反应物能够在反应器内部得到合适的处理。
一般来说,反应器的壳体应该采用合适的合金材料,以满足耐腐蚀、耐高温、耐压等性能要求。
同时为了便于维修和检修,还应该在壳体内设置检查口。
反应器本体内的固定床支撑通常安放在隔板上,用于支撑固定床填料层,同时固定床支撑还需要具备较好的耐高温、耐震动、耐腐蚀以及质量稳定等性能,以保证整个反应系统的安全运行。
为了提高反应器内的催化剂填料均匀性,通常采用分层式催化剂填料结构,在固定床填料层中安排不同尺寸、不同形状的催化剂,以达到均匀分布的目的。
进料系统进料系统主要包括输送设备和进料渠道等。
为了满足不同的反应物要求,在进料系统中通常安装具有不同功能的输送设备,如阀门、泵等。
催化剂填料层的位置和是否增加固定道等都是进料系统中需要考虑的因素。
排放系统排放系统通常有两种设计方案,一种为单口设计,另一种为多口设计。
多口的反应器能够彻底分离反应物与反应产物,不同口的控制带动整个装置的效率稳定。
单口的反应器则更直接、不用配置复杂设备,相对更方便。
排放系统的设计需要考虑排放产物时的温度、压力问题。
催化剂填料层催化剂填料层在反应器中的地位至关重要,因为其直接影响着化学反应的效果。
固定床的特点及应用
蚀,无相变,温度范围200~ 350℃
3.熔盐:温度范围300℃~400℃,由无机熔盐KNO3、NaNO3、NaNO2按
一定比例组成,在一定温度时呈熔融液体,挥发性很小。但高温下渗
透性强,有较强的氧化性。
4.烟道气:适用于600~700℃的高温反应。
32
汽化 效率高 选择性提高
压力高
温度易控 投 资 大 设 备
其中以利用气态物质为反应物料,通过由固体催化剂所构 成的床层进行反应的气固相催化反应器在化工生产中应用最为 广泛。
固定床反应器 - 基本原理
• 又称填充床反应器,装填有固体催化剂或固体反应物用
以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒
径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止 不动,流体通过床层进行反应。它与流化床反应器及移动床反
特点:传热面积大,传热效果 好,易控制催化剂床层温度, 反应速率快,选择性高。 缺点:结构较复杂,设备费用高。 应用:能适用于热效应大的反应。
列管式固定床反应器
二〉换热式固定床反应器
✪列管式固定床反应器
热效应较大,不宜采用绝热式反应器,可采用换热式固定床反
应器。此设备如同列管式换热器,又称为列管式固定床反应器。
应器的区别在于固体颗粒处于静止状态。固定床反应器主要用
于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、 烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层
则填装固体反应物。涓流床反应器也可归属于固定床反应器,
气、液相并流向下通过床层,呈气液固相接触。
• 涓流床反应器,是固流床三相反应器之一。指在反应器中,气液成逆 流或气液向下并流,液体以薄膜形式与气体接触的三相床反应器。液 体流为非连续相由上而下流动。用于石油产品的加氢脱硫、脱氮、脱 钒、脱金属和加氢裂化,丙烯水合和废水处理等过程。滴流床的优点 是接触时间分布较窄,且可在进入反应区前脱除毒物。床内流动接近 平推流可获得高转化率;荷液量低,可减少加氢脱硫时油品热裂解, 缺点是低液流速率,液体与催化剂的比例较低,可能形成局部的温度 与浓度梯度,甚至不完全润湿,影响反应效果;径向传热差,易于局 部过热而导致失活;在催化剂颗粒较大、反应速率较快时,内扩散影 响会导致有效系数低落;长期操作中,积炭、污垢等会使催化剂孔口 堵塞,影响寿命。
第五章 固定床气-固相催化反应器
连续换热式固定床催化反应器的分类
⑴按反应管的形式,可分为:单管式、双套管 式和三套管式 ⑵按热源,可分为:外热式和自热式,又分有 内冷自热式、外冷列管式、外部供热管式三 种。 ⑶按冷热气体的流向,可分为:并流式和逆流 式 ⑷按反应气体在催化床中的流动方向,可分为: 轴向反应器和径向反应器。
自热式反应器
缺点:结构较复杂,设备费用高。 适用: 能适用于热效应大的反应。原料成本高,副 产物价值低以及分离不是十分容易的情况。
加压热水作载热体的反应装置
以加压热水作载热体的固定床反应装置示意图
1-列管上花板;2-反应列管;3-膨胀圈;4-汽水分离器;5-加压热水泵
用有机载热体带走反应热的反应装置:
反应器外设置载热体冷却器,利用载热体移出的反 应热副产中压蒸汽。 1-列管上花板; 2、3-折流板; 4-反应列管;
外冷列管式催化床
用于放热反应,催化剂装载在管内, 以增加单位体积催化床的传热面积。载热 体在管间流动或汽化以移走反应热。 载热体的选择:合理地选择载热体是 控制反应温度和保持稳定操作的关健。载 热体的温度与催化床之间的温差宜小,但 又必须移走大量的反应热。反应温度不同, 选用的热载体不同。
一般反应温度在200—250℃时,采用加压 热水汽化作载热体而副产中压蒸汽; 反应温度在250~300℃时,可采用挥发性 低的有机载热体如矿物油,联苯—联苯醚 混合物; 反应温度在300℃以上时,采用熔盐作载 热体,熔盐吸收的反应热都用来产生蒸汽。 无机熔盐(硝酸钾,硝酸钠及亚硝酸钠的混 合物, KNO353%,NaNO37%,NaNO240% ) 可用于300~400℃的情况。
(1)列管式固定床反应器 这种反应器由多根管径通常为25~50㎜ 的反应管并联构成,但不小于25mm。管数可 能多达万根以上。管内装催化剂,催化剂粒 径应小于管径的8倍,通常固定床用的粒径 约为2~6mm,不小于1.5mm。载热体流经管 间进行加热或冷却。在管间装催化剂的很少
化工反应过程之固定床反应器
化工反应过程之固定床反应器固定床反应器是一种常见的化工反应器,广泛应用于工业生产中的催化反应、气体吸附分离、气体净化等领域。
它的特点是反应物固定在反应器内的催化剂床层上,反应过程中通过流体将反应物质质量传递到催化剂表面进行反应,反应生成物质通过床层离开反应器。
固定床反应器的结构主要由反应器本体、进料管、排料管和反应器床层组成。
反应器本体通常由金属材料制成(如不锈钢),具有良好的发热、承压和耐腐蚀性能。
进料管在反应器底部引入反应物质,排料管则在反应器顶部将反应生成物排出。
床层是固定床反应器的核心部分,通常由催化剂颗粒物质装填而成,具有大的比表面积和较高的孔隙度,以提供足够的反应表面积和反应空间。
固定床反应器在化工生产中具有重要的应用。
首先,它广泛用于催化反应。
在固定床反应器中,催化剂床层有效地提供了反应的活性表面,使得反应速率得以提高。
例如,加氢反应、氧化反应、脱氢反应等都可以使用固定床反应器进行。
其次,固定床反应器也被用于气体吸附分离和气体净化。
吸附剂床层能够吸附特定成分,实现气体组分的分离和纯化。
此外,固定床反应器还适用于颗粒物质的固液分离、固气分离等过程。
固定床反应器的工作原理主要包括质量传递和物质平衡两个方面。
在反应物进入床层前,需要先经过预热区,以使其达到适宜的反应温度。
之后,在床层内发生质量传递过程,即反应物质通过流体传递到催化剂表面,发生化学反应。
在反应过程中,需要保持适宜的温度和压力条件,以提供反应的最佳反应速率和选择性。
反应生成物质则随着流体一起流出固定床反应器。
固定床反应器的优势在于:一、反应物质与催化剂的接触充分,反应效率高;二、催化剂寿命长,催化剂载体不易破碎;三、床层的填料物质易于更换和维护;四、反应器体积相对较小,能够实现高度效能的连续化生产。
然而,固定床反应器也有一些缺点需要克服。
首先,反应床层在长时间运行后会出现积碳、堵塞等现象,需进行定期清洗和更换床层。
其次,固定床反应器对反应物料的物理性质要求较高,如化学性质、颗粒度等。
反应器设计原理-第四章 固定床反应器-PPT
按水力半径的定义:
RH 流道有效截面积 床层的空隙体积 流道润湿周边长 总的润湿面积 Se
(4-11)
因此,床层的当量直径
d e 4 RH 4 2 ds Se 3 1
2 ( ) sd p 3 1
(4-12)
4.2.2
固定床的流动特性
JD
k c D G
2/3
k P G G D M
2/3
(4-25)
Sh
kc d p D
(4-26)
Sc
D
d P u
(4-27)
Re
(4-28)
传质系数的关联式很多,选择几个比较广泛使用的公式供参考。 对气体:Sc = 0.5~3
根据热量衡算,传热速率应等于反应的放热(或吸热)速率,即
ha (Ts Tb ) (H ) (rA )
(4-35)
颗粒表面与气流主体间传热问题的关键是决定给热系数。有
关给热系数可用传热j因子JH表达式计算。即
1、流动特性
2、气体的分布 4.2.3 固定床反应器的床层压力降
流体在空圆管中作等温流动时,当流体密度的变化可以忽略不计时,
2 L0 f u 0 P P0 PL 4 f dt 2
(4-13)
当4-13式用于计算固定床层的压力降时,u0应为流体在床层孔道中的 真正平均流速u,而 u u 0 ,dt应为当量直径de,而 合并在修正摩擦系数fM中,经处理,可得到:
(4-23)
Pe a
d P u d P u D Dea ea
Re Sc
什么叫固定床-有什么特点
什么叫固定床?有什么特点?
所谓固定床,就是指水在交换床中不断地流过,进行离子交换,而床内树脂层是固定在一个交换器中,一般不将交换剂转移到床体外部进行再生。
固定床工艺有两个特点:①所用树脂量较大,但其利用率低,因为当交换床运行时,只有工作层树脂在工作,其余大部分树脂则经常充当"支撑"作用。
而且当床内树脂需要再生前,其上部树脂已呈失效状态:②固定床的运行不是连续的,而是呈周期性的,从失效到再生合格前这段时间不能供水,所以需要备用供水设施。
从目前情况看,固定床工艺应用时间较长,工艺和技术都比较成熟,而且对水质的适应性强,树脂的损耗也比较小,所以固定床工艺仍旧是目前化学水处理的主要方法。
第六章 固定床
使气体分布均匀的办法
a.使催化剂各部位阻力相等。
b.采用气体分布器。如分布锥、分配头、设栅板等。
c.附加导流装置。
40
数学模型
1.拟均相模型 忽略床层中粒子与流体间温度与浓度的差别。 1)平推流的一维模型 2)有轴向返混的一维模型 3)同时考虑径向混合和径向温差的二维模型。
52
反应的热传递过程: 1. 反应热有催化剂颗粒内部向外表面传递; 2. 反应热由催化剂外表面向流体主体传递;
3. 反应热少部分由反应后的流体沿轴向带走,
主要部分由径向通过催化剂和流体构成的床层
传递到反应器器壁由载体热带走;
上述的每一传热过程都包括着 传导,对流和辐射三种传热方式, 了解床层内部的温度分布, 必须引进床层内部和床层与器避之间的传热计算。
49
2 u P ' m 1 B f ( )( 3 ) L dS B
150 f 1.75 ReM
'
一般床压不宜超过床内压力的 15% ,所以颗粒不 能太细,应做成圆球状。
50
压降的计算 Δ P=Δ P1+ =
Δ P2 Pa
2 f uOG L0 (1 ) 2 f uOG L0 (1 ) 150 2 1.75 3 dS dS 3
xWi i 1 d i
n
几何平均直径:
di
di di
30
6.2.3 床层空隙率及分布
固定床层是由许许多多的催化剂颗粒堆积而成的,
床层空隙率是表征床层结构的主要参数。
ε-颗粒间自由体积与整个体积之比。
31
1) 床层空隙率分布
简述固定床的工作原理
简述固定床的工作原理
固定床是一种常见的工业设备,用于进行化学反应、吸附、吸附分离等过程。
其工作原理如下:
1. 固定床结构:固定床通常由一个坚固的金属或陶瓷壳体构成,内部填充有固定的填料。
填料可以是颗粒状的固体或颗粒状的催化剂。
2. 原料进料:原料通过进料管道进入固定床的顶部,并经过填料层。
3. 反应或吸附:原料在填料层内与填料表面的催化剂或吸附剂发生反应或吸附。
反应或吸附的过程会改变原料的化学性质或物理性质。
4. 反应或吸附产物收集:反应或吸附产物沿着固定床内的流动路径逐渐形成,并通过出料管道从固定床的底部收集。
5. 修复填料:随着反应或吸附的进行,填料表面可能会被污染或活性逐渐降低。
因此,定期需要修复填料,例如清洗、更换或再生填料。
固定床的工作原理基于填料层提供了大量的表面积,使得反应或吸附能够在相对较小的空间中高效进行。
此外,固定床还具有稳定性好、操作简单、适用于连续生产等优点,因此在化工、石化、环保等领域得到广泛应用。
固定床的特点及应用
列管式固列管式固定床反应器
热效应较大,不宜采用绝热式反应器,可采用换热式固定床反
应器。此设备如同列管式换热器,又称为列管式固定床反应器。
固定床的特点及应用
化工091班第4小组
• 一、固定床反应器的大体概述
• 二、固定床反应器的类型与结构
• 三、固定床的传递特性
• 四、固定床反应器的应用
一、固定床反应器的大体概述
大量固体颗粒堆积在一起便形成颗粒床层。静止的颗粒床 层又称为固定床。
凡是流体通过不动的固体物料形成的床层面进行反应的设 备都称为固定床反应器.
甚至失去控制而出现“飞温”。此时,对反应的选择性、催化剂的活性和寿
命、设备的强度等均不利。
因其传热差,反应放热量很大,因此即使是列管 式反应器也可能出现飞温(反应温度失去控制,急剧上 升,超过允许范围)。
2、不能使用细粒催化剂,否则流体阻力增大,破坏了 正常操作,以致催化剂的活性内表面得不到充分利用。
三〉 固定床的传递特性
• 气体在催化剂颗粒之
原料 催化剂 补充水 蒸汽 调节阀
间的孔隙中流动,较
在管内流动更容易达 到湍流。 • 气体自上而下流过床 层。
产物
固定床反应器的基本单 元组合
固定床反应器内的流体流动
对于这类可逆放热反应过程,通过段间换热形成先高后低的温度变化, 提高转化率和反应速率。
根据段间反应气体的冷却或加热方式,多段绝热 床又分为中间间接换热式和冷激式。
中间间接换热式(如图a、b、c所示) 特点:催化剂床层的温度波动小。 缺点:结构较复杂,催化剂装卸较困难 应用:适用于放热反应 冷激式 特点:反应器结构简单,便于装卸催化剂,内无冷 管,避免由于少数冷管损坏而造成操作影响。催化剂床层 的温度波动小。 缺点:操作要求较高 应用:适用于放热反应,能做成大型催化反应器
化工原理之流体通过颗粒层的流动概述
4.4.2.1板框过滤机
如果将非洗涤板编号为1、框为2、洗涤板为3,则板框的组合方 式服从1—2—3—2——1—2—3之规律。组装之后的过滤和 洗涤原理如图所示。
4.4.2.1 板框过滤机
滤液的排出方式有明流和暗流之分,若滤液经由每块板底 部旋塞直接排出,则称为明流(显然,以上讨论以明流为 例);若滤液不宜暴露于空气中,则需要将各板流出的滤液 汇集于总管后送走,称为暗流。 说明:
4.2.2.5 回转真空过滤机
在水平安装的中空转鼓表面上覆以滤布,转鼓下部浸入盛有悬浮
液的滤槽0中.1 ~并3r以/ min
的转速转动。转鼓内分12个扇形格,
每格与转鼓端面上的带孔圆盘相通。此转动盘与装于支架上的固定
盘藉弹簧压力压紧叠合,这两个互相叠合而又相对转动的圆盘组成
一付分配头。转鼓表面的每一格按顺时针方向旋转一周时,相继进
数 ,就其物理意义而言称为固定床的流动摩擦系数。
4.3.1颗粒床层的简化模型
(3)模型的检验和模型参数的估值
当床 层 雷 诺 数Re deu1 u 2 时 实 验 数 据 符 合 下 式
4 a(1 )值为5.K0。 的可能误差不超过10%。
4.4.2.3转筒过滤机
③当这些小孔凹槽4相对时,这几个小孔对应的连通 管及相应的转筒表面与压缩空气吹气相连,压缩空 气经连通管从内向外吹向滤饼,此为吹松。
④随着转筒的转动,这些小孔对应表面上的滤饼又与 刮刀相遇,被刮下。此为卸渣。继续旋转,这些小 孔对应的又重新浸入滤浆中,这些小孔又与固定盘 上的凹槽2相对,又重新开始一个操作循环。
A0
流动截面积 床层截面积
床层截面积A-颗粒所占的平均截面积A P 床层截面积A
1
AP A
固定床反应器结构和工作原理
又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。
固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。
床层静止不动,流体通过床层进行反应。
它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。
固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烧类蒸汽转化炉等。
用于气固相或液固相非催化反应时,床层则填装固体反应物。
涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。
(一)轴向绝热式固定床反应器流体沿轴向自上而下流经床层,床层同外界无热交换。
奋箜舞¾b同坨超土屋是小反应λ⅛奉位它的结构简单,催化剂均匀堆置于床内,床内没有换热装置,预热到一定温度的反应物料流过床层进行反应就可以了。
(≡)径向绝热式固定床反应器流体沿径向流过床层,可采用离心流动或向心流动,床层同外界无热交换。
径向反应器与轴向反应器相比,流体流动的距离较短,流道截面积较大,流体的压力降较小。
但径向反应器的结构较轴向反应器复杂。
以上两种形式都属绝热反应器,适用于反应热效应不大,或反应系统能承受绝热条件下由反应热效应引起的温度变化的场合。
由多根反应管并联构成。
管内或管间置催化剂,载热体流经管间或管内进行加热或冷却,管径通常在25~50mm之间,管数可多达上万根。
列管式固定床反应器适用于反应热效应较大的反应。
此外,尚有由上述基本形式串联组合而成的反应器,称为多级固定床反应器。
例如:当反应热效应大或需分段控制温度时,可将多个绝热反应器串联成多级绝热式固定床反应器,反应器之间设换热器或补充物料以调节温度,以便在接近于最佳温度条件下操作。
(五)多段绝热式固定床反应器。
固定床中的流动简化模型
6 λ c = 3. 5 4
∆p f (1 − ε ) ρ u Burke − Plummer 方程: = 1 .75 L ε 3 d a2
适用条件:高度湍流,摩擦系数为常数。 适用条件
(3) 欧根 欧根(Ergun)方程 方程 将以上两方程叠加得到:
∆p f
(1 − ε ) µ u (1 − ε ) ρ u = 150 + 1 .75 3 2 3 ε ε L da da
3.5
流体通过固定床的流动
固定床:流体以较小的流速通过颗粒床层,颗粒保持静止状态。 固定床: 流动情况: 流动情况:流体在床层的空隙中流动; 复杂性: 复杂性:孔道的形状、数目、流动状态随机, 孔道中流动属层流,但局部出现湍流。 处理方法:简化床层,管外流问题→管内流问题。 处理方法 优点:用简化的模型来代替床层内的真实流动,便于用数学 优点: 方法来处理,然后再通过实验加以校正。
ε
(aB = a (1 − ε ))
6 (d a = ) a
4d aε 当量直径: d e = 6 (1 − ε )
孔道长度:l ′ = CL
3.5.2 流体流过固定床的阻力 32η CL u ′ (1) 层流
∆p f = d e2
其中,u ′:流体在孔道中流速
32ηlu (∆p f = 2 ) d
适用条件:流体为层流 , 床层空隙率 ε ≤ 0.5
(2) 湍流 根据 范宁公式:
l ′ ρu ′2 ∆p f = λ de 2
代入:u ′ = u / ε ,
l ′ = CL,
4 d aε de = 6 1− ε
∆p f 6 (1 − ε ) ρ u 得: = λC L 4 ε3 d a2
实验数据证明,
固定床层结构
固定床反应器的常见结构固定床反应器的结构型式主要分为绝热式和换热式两类,以适应不同的传热要求和传热方式。
1.绝热式固定床反应器1.1单段绝热式特点:反应器结构简单,生产能力大。
缺点:反应过程中温度变化较大。
应用:适用于反应热效应不大的放热反应, 反应过程允许温度有较宽变动范围的反应; 热效应较大的, 但对反应温度不很敏感或是反应速率非常快的过程也可适用。
1.2多段绝热床多段绝热式固定床反应器 (a )、(b )、(c )中间换热式;(d )、(e )冷激式 根据段间反应气体的冷却或加热方式,多段绝热床又分为中间间接换热式和冷激式。
中间间接换热式特点:催化剂床层的温度波动小。
绝热式固定床反应器 1-矿渣棉2-瓷环3-催化剂甲醇氧化的薄层反应器1-催化剂2-冷却器缺点:结构较复杂,催化剂装卸较困难应用:适用于放热反应冷激式特点:反应器结构简单,便于装卸催化剂,催化剂床层的温度波动小。
缺点:操作要求较高应用:适用于放热反应,能做成大型催化反应器2、换热式固定床反应器按换热介质不同,可分为对外换热式固定床反应器和自热式固定床反应器。
2.1、对外换热式固定床反应器以各种载热体为换热介质的对外换热式反应器多为列管式结构,类似于列管式换热器列管式固定床反应器特点:传热面积大,传热效果好,易控制催化剂床层温度,反应速率快,选择性高缺点:结构较复杂,设备费用高应用:能适用于热效应大的反应。
载热体的选择:一般反应温度在240C以下宜采用加压热水作载热体;反应温度在250C〜300C可采用挥发性低的导热油作载热体;反应温度在300C的则需用熔盐作载热体,女口KNO53% NaNOT% NaNG40%的混合物。
加压热水作载热体的反应装置。
以加压热水作载热体的固定床反应装置示意图1-列管上花板;2-反应列管;3-膨胀圈;4-汽水分离器;5-加压热水泵用有机载热体带走反应热的反应装置。
反应器外设置载热体冷却器,利用载热体移岀的反应热副产中压蒸汽。
固定床,流化床,浆态床的优缺点
固定床反应器定义:气体流经固定不动的催化剂床层进行催化反应的装置。
特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。
应用:主要用于气固相催化反应。
基本形式:轴向绝热式、径向绝热式、列管式。
固定床反应器缺点:床层温度分布不均匀;床层导热性较差;对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。
流化床反应器(沸腾床反应器)定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置.应用:应用广泛,催化或非催化的气—固、液-固和气—液—固反应.原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。
结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成.优点:传热面积大、传热系数高、传热效果好。
进料、出料、废渣排放用气流输送,易于实现自动化生产.缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。
固定床:一、固定床反应器的优缺点凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。
气固相固定床反应器的优点较多,主要表现在以下几个方面:1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。
2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。
3、催化剂不易磨损,可以较长时间连续使用。
4、适宜于高温高压条件下操作。
由于固体催化剂在床层中静止不动,相应地产生一些缺点:1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难.对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料温度继续升高,直到反应物浓度降低,反应速度减慢,传热速度超过了反应速度时,温度才逐渐下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固定床反应器的常见结构
固定床反应器的结构型式主要分为绝热式和换热式两类,以适应不同的传热要求和传热方式。
1.绝热式固定床反应器
1.1单段绝热式
绝热式固定床反应器甲醇氧化的薄层反应器
1-矿渣棉2-瓷环3-催化剂 1-催化剂 2-冷却器
特点:反应器结构简单,生产能力大。
缺点:反应过程中温度变化较大。
应用:适用于反应热效应不大的放热反应,反应过程允许温度有较宽变动范围的反应;热效应较大的,但对反应温度不很敏感或是反应速率非常快的过程也可适用。
1.2多段绝热床
多段绝热式固定床反应器
(a)、(b)、(c)中间换热式;(d)、(e)冷激式
根据段间反应气体的冷却或加热方式,多段绝热床又分为中间间接换热式和冷激式。
中间间接换热式
特点:催化剂床层的温度波动小。
缺点:结构较复杂,催化剂装卸较困难
应用:适用于放热反应
冷激式
特点:反应器结构简单,便于装卸催化剂,催化剂床层的温度波动小。
缺点:操作要求较高
应用:适用于放热反应,能做成大型催化反应器
2、换热式固定床反应器
按换热介质不同,可分为对外换热式固定床反应器和自热式固定床反应器。
2.1、对外换热式固定床反应器
以各种载热体为换热介质的对外换热式反应器多为列管式结构,类似于列管式换热器。
列管式固定床反应器
特点:传热面积大,传热效果好,易控制催化剂床层温度,反应速率快,选择性高。
缺点:结构较复杂,设备费用高。
应用:能适用于热效应大的反应。
载热体的选择:一般反应温度在240℃以下宜采用加压热水作载热体;反应温度在250℃~300℃可采用挥发性低的导热油作载热体;反应温度在300℃的则需用熔盐作载热体,如KNO353%,NaNO37%,NaNO240%的混合物。
加压热水作载热体的反应装置。
以加压热水作载热体的固定床反应装置示意图
1-列管上花板;2-反应列管;3-膨胀圈;4-汽水分离器;5-加压热水泵
用有机载热体带走反应热的反应装置。
反应器外设置载热体冷却器,利用载热体移出的反应热副产中压蒸汽。
以道生油作载热体的固定床反应装置示意图
1-列管上花板;2、3-折流板;4-反应列管;5-折流板固定棒;6-人孔;7-列管下花板;8-载热体冷却器
以熔盐作载热体冷却装置在器内的反应装置。
以熔盐为载热体的反应装置示意图
1-原料气进口;2-上头盖;3-催化剂列管;4-下头盖;
5-反应气出口;6-搅拌器;7-笼式冷却器
2.2自热式固定床反应器
如图是三套管并流式催化床的气体温度分布和操作状况图。
三套管并流式冷管催化床温度分布及操作状况
特点:反应床层中温度接近最佳温度曲线、反应过程中热量自给。
缺点:结构复杂,造价高,催化剂装载系数较大。
应用:只适用于较易维持一定温度分布的热效应不大的放热反应,能适用于高压反应。
2.3其他型式固定床反应器
气固相固定床催化反应器除以上几种主要型式外,近年来又发展了径向反应器。
按照反应气体在催化床中的流动方向,固定床反应器可分为轴向流动与径向流动。
轴向流动反应器中气体流向与反应器的轴平行,而径向流动催化床中气体在垂直于反应器轴的各个横截面上沿半径方向流动,如图所示
径向固定床催化反应器示意图
径向流动催化床的气体流道短,流速低,可大幅度地降低催化床压降,为使用小颗粒催化剂提供了条件。
径向流动反应器的设计关键是合理设计流道使各个横截面上的气体流量均等,对分布流道的制造要求较高,且要求催化剂有较高的机械强度,以免催化剂破损而堵塞分布小孔,破坏流体的均匀分布。