高等数学-微积分下-试卷系列-华南理工大学(12)
华南理工大学大二理学专业高等数学试卷及答案 (2)
华南理工大学2021~2021学年第二学期高数期末考试题一. 填空题 (每题4分,共20分)(){}221.42,16,181.z x y gradz ==+9点的梯度()()44221,1,1,12.(,)2.f x y x y x xy y =+-----的极值点是22223..LL x y a a π+==⎰假设为圆周的右半部分,则()()221,0,14.sin 20.x A e yi xy z j xzy k divA+=设=++,则()()()22123222125.3,3,3222266,.3xxy y x y x e x x y x y x y x y C x C e ==+=++'''---+-=-=++设都是方程的解则该方程的通解为 二. (此题8分)计算三重积分()222222,1.x y z dv x y z Ω++Ω++=⎰⎰⎰其中是由所围成的闭球体21220sin 45d d r r drππθϕϕπ=⋅=⎰⎰⎰原式三. (此题8分)()():(,)0,0,(0,0)(0,0),0,0.x y f x y f f =证明处连续与存在但在处不可微()()()()()00001lim0(0,0),(,)0,0(,0)(0,0)2(0,0)lim (0,0)0,(0,0)(0,0).(0,0)(0,0)3lim (,)0,0.x y x x y x y x y x y f f x y f x f f xf f f f f x f y f x y →→∆→∆→∆→===∆-=∆=⎡⎤∆-∆+∆因为所以处连续.=0,同理所以与存在因为,所以在处不可微 四. (此题8分)(),cos ,sin ,u x y x r y r u ux y r y xθθθ==∂∂-∂∂设函数有连续偏导数,试用极坐标与直角坐标的转化公式将变换为,下的表达式.cos ,sin arctan ,sin cos cos ,sin ,,.x r y r yr xr r x y x r y ru u u x y y x θθθθθθθθθθ====∂∂∂∂===-=∂∂∂∂∂∂∂-=∂∂∂由得到从而于是 五. (此题8分)计算()()()()()()2222,:111121L xdy ydxL x y x y x y -+-+-=+=⎰其中为圆周按反时针方向闭曲线按反时针方向()()()()()()()()222222222221111,0,0,21:,,2L L l x y Q P x y x y xdy ydx x y x y l x y xdy ydx xdy ydxx y x yεεεπ--+-=∂∂≠∂∂-=++=+=--==++⎰⎰⎰圆周按反时针方向由于=,,利用格林公式闭曲线按反时针方向作小圆取顺时针方向则在复连通区域上用格林公式有六. (此题8分)计算224.ydS x y z x y ∑∑++=+⎰⎰,是平面被圆柱面=1截出的有限部分22:4,:0()Dz x y dS xoy x y ydS ∑∑=--=∑+≤==⎰⎰⎰⎰在面的投影区域为D 1则对称性七. (此题8分) 计算曲面积分2,.I yzdzdx dxdy z ∑=+∑=⎰⎰其中为上半球面{}()()2222:,,,,cos ,cos :422212Dz n x y z y dzdx dxdy dxdy z xoy D x y I yzdzdx dxdy y dxdyy dxdy αγπ∑∑∑====∑+≤=+=+=+=⎰⎰⎰⎰⎰⎰取上侧即法向量利用对坐标的转换在面的投影区域为则八. (此题6分)sin .dy y xdx x x +=求微分方程的通解cos .C xy x-=通解为:九. (此题6分)22.x y y y e '''+-=求微分方程的通解1212x x x y C eC e e -=++通解为:十. (非化工类做)(此题6分)()12111.4n n nn xn -∞-=-⋅∑求幂级数的收敛域[]2,2-收敛域为十一. (非化工类做)(此题7分)2(),2.xf x x x=+-将函数展开成麦克劳林级数并确定其成立区间()()120111,1,1232n n n n x x x x x ∞-=⎡⎤=-+∈-⎢⎥+-⎣⎦∑ 十二. (非化工类做)(此题7分)[)()2,1,0,(),1,0,.f x x f x x πππππ--≤<⎧-=⎨≤<⎩设函数是以为周期的周期函数它在上的表达式为将其展开成傅立叶级数并确定其成立范围()141()sin 21,0,,2,3210,,2,3,()n f x n x x n x f x πππππππ∞==-≠±±±-=±±±∑时的傅立叶级数收敛于0.十.(化工类做) (此题6分)求微分方程()()222336640.xxy dx x y y dy ++=+的通解32243x x y y C ++=通解为:十一. (化工类做) (此题7分)计算2,.Lxds L y x y x ==⎰其中为直线及抛物线所围成区域的整个边界()1111122Lxds x ==-+⎰⎰⎰+十二. (化工类做) (此题7分)22.1y y y'''+-求微分方程=0的通解 1211y C x C =-+通解为。
华南理工大学高数习题册答案汇总
第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
华南理工大学期末考试-高数-微积分上-14年真题
,考试作弊将带来严重后果!华南理工大学期末考试《 微积分(上) 》试卷A(试卷号:2015.1.5 时间120分钟,总分100)1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上( 密封线装订区内、草稿纸上答题均无效); .考试形式:闭卷;.设0x →2与kx 是同阶无穷小,则k = 1.由方程()2cos 1x yexy e +-=-确定()y y x =,则()0y '2-.设y =1x =处对应的微分dy =2dx .已知()()()001,13f f f '===,则为1- 曲线(1y x =-的拐点处的横坐标x =15-5分,共20分)、求极限()()sin 230lim ln 1x xx e e x x x →-++原式=()()()sin sin 034342300001sin 1lim lim lim lim x x x x x x x x x x e e x x e e e x x x x x x x--→→→→----==+++ ()3423200000sin sin 1cos sin 11limlim lim lim lim 346126126x x x x x x x x x x x x x x x x x x →→→→→----====++++ 、求极限1402sin lim 1x x xe x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解 由于14344002sin 2sin lim lim 01111x x xx x x x e x e e x x x e e --→+→+-⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭1144002sin 2sin 20lim lim 111011x x x x x x e x e x x x e e →-→-⎛⎫⎛⎫+++ ⎪ ⎪+=-=-= ⎪ ⎪+ ⎪ ⎪++⎝⎭⎝⎭,从而左右极限存在且相等,故原式极限存在且1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭=1 8、用泰勒公式求极限()30sin 1lim x x e x x x x→-+ 解 因为()()23231,sin 2!3!xx x e x o x x x o x =+++=-+,所以 原式=()()()232330112!3!lim x x x x o x x o x x x x→⎡⎤⎡⎤+++-+-+⎢⎥⎢⎥⎣⎦⎣⎦ ()()33232333001131126lim lim2663x x x x x x o x x x o x x x →→++-+---==-+== 9、设()2,111,1x f x x x ≠⎪=⎨-⎪-=⎩在1x =处连续,求,a b 的值 解 因为()11,1x f x x ≠=⎪-=⎩在1x =处连续,所以()12lim 111x f x →==--,从而)()()112lim2lim 10101x x x x →→=-=⋅-=- ,即)1lim220,4,4x a b b a →==+==-进而2111421x x a x →→-+--==14x a→===,即()4,448a b =-=--=三、计算下列各题(每小题5分,共15分)10、设1124y =,求y '解令t =11111arctan ln arctan ln 1ln 124124t y t t t t t +=+=+⎡+--⎤⎣⎦- 从而()14421111111121411x dy dt y x dt dx t t t '⎡⎤⎡⎤'=⋅=+⋅-⋅⋅+⎢⎥⎢⎥++-⎣⎦⎣⎦ ()()()114342211111110421414t t x x t t ---+⎡⎤⎡⎤=+⋅++⎢⎥⎢⎥+-⎣⎦⎣⎦ ()()()22333434442241111111121121t t x x x x t t t ----+⎡⎤=-⋅+=⋅+⎢⎥+--⎣⎦ ()()()()223333434344444441111111121111t t x x x x x x t t x -----+--=⋅+=⋅+=⋅+--+-=11、设()f x 连续,在0x =的某个邻域内有()()()1sin 31sin 8f x f x x o x +--=+,且()f x 在1x =处可导,求曲线()y f x =在点()()1,1f 处的切线方程。
最新-2012-2《微积分(下)》汇总
2011-2012-2《微积分(下)》系 别 经贸与管理工程系 专 业年 级 2011级 任课教师姓名 教研组负责人签名华南理工大学广州学院基础部数学组关于11级《微积分》(经管类)第二学期期末统考的通知通知要点★考试的重点内容与要求★考试的形式与试卷结构★题型示例与答案统考考试时间定于2012年6月29日上午。
一、考试的重点内容与要求考试的范围是《微积分》(第三版·赵树嫄主编)第六、七、八、九章,以下按各章顺序分四个部分明确考试的重点与要求:1、定积分及其应用理解定积分的定义(含两点补充规定:当«Skip Record If...»时,«Skip Record If...»;当«Skip Record If...»时,«Skip Record If...»)。
理解定积分的几何意义与定积分的基本性质。
掌握变上限的定积分及其导数的定理求函数的导数。
掌握牛顿—莱布尼茨公式。
掌握定积分的第一、二类换元法及分部积分法。
会用定积分求平面图形的面积与旋转体的体积。
会求无限区间上的广义积分。
2、无穷级数理解无穷级数收敛、发散以及和的概念,了解级数的基本性质(含级数收敛的必要条件)。
熟悉几何级数(即等比级数)«Skip Record If...»(«Skip Record If...»叫公比)、调和级数«Skip Record If...»与«Skip Record If...»级数«Skip Record If...»的敛散性,掌握正项级数的比较判别法及比值判别法。
了解交错级数的莱布尼茨判别法,了解任意项级数的绝对收敛与条件收敛概念,以及绝对收敛与收敛的关系。
了解幂级数«Skip Record If...»及其收敛域、和函数等概念,掌握幂级数的收敛半径、收敛区间及收敛域的求法,了解幂级数在其收敛区间内的一些基本性质,会利用函数«Skip Record If...»、«Skip Record If...»、«Skip Record If...»等的麦克劳林展开式将一些简单的函数展开成«Skip Record If...»的幂级数。
04届,华南理工大学,高等数学第二学期重修(考)试卷(共3页)
04届,华南理工大学,高等数学第二学期重修(考)试卷华南理工大学高等数学第二学期重修试卷院系:专业班级:学号:姓名:题号一二三四五六总分得分题号七八九十十一得分一、选择题:在括号内填上所选项字母 1、过点和直线的平面方程是 (A);(B);(C);(D) 2、已知曲面上在点处的切平面平行于平面,则点的坐标是(A);(B) ;(C) ;(D) 3、设为连续函数,则改换二次积分的积分次序等于(A) ;(B) ;(C) ;(D) 4、设曲线为圆周且取正向,则曲线积分 (A);(B) ;(C) ;(D) 5、通解为的微分方程是(A);(B) ;(C);(D) 二、填空题:将答案填写在横线上 1、已知空间向量的方向余弦为,且,又向量,则。
2、函数在点处沿点指向点方向的方向导数为。
3、设是圆域,则当时,有4、改变二次积分的积分次序,则。
5、微分方程的特解的形式是。
三、设,其中和具有二阶连续导数,求。
四、计算三重积分,其中是由曲面与所围成的闭区域。
五、求曲线积分,其中为从点沿曲线到点的一段。
六、计算对面积的曲面积分,其中是球面被柱面截下的部分。
七、求经过点且与三个坐标面所围成的四面体体积为最小的平面,并求其最小的体积。
八、设,其中是由确定的隐函数,求。
求幂级数的收敛域。
九、计算二重积分,其中。
将函数展开成的幂级数。
十、求微分方程满足初始条件的特解。
十一、设具有二阶连续导数,且曲线积分与积分路径无关,求函数。
十二、。
高等数学-微积分下-习题册答案-华南理工大学 (6)
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及x v ∂∂与yv∂∂. 解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB ∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分24112211d e d d e d x xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤ 作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d ()d ()d 2x y x y z S z S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰222220(2D x y d rr πθπ=+==⎰⎰⎰⎰⎰(40411315t ππ⎛⎫=+-=+ ⎪ ⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y+-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y ⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y z z x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D D x y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t s x =适合042222=∂∂+∂∂syt y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos 2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
(完整版)华南理工大学《高等数学》(下册)期末试题及答案三
《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。
高等数学试卷下册华南理工大学高等数学统考试卷
《微积分(下)》自测试卷4(时间120分钟,总分100)学院(系) 专业班 姓 名: 成绩报告表序号:一、填空题1.[3分] (),f x y 在()00,x y 的一阶偏导数连续是(),f x y 在()00,x y 可微的 条件2.[3分]幂级数()211!n n n x n ∞=-∑在(),-∞+∞的和函数()f x = 3.[3分] 幂级数044nn n x n ∞=+∑的收敛半径为 4.[3分]设()22,f xy x y xy x y -=--,则(,)f x y x ∂=∂ ,(,)f x y y∂=∂ 5.[3分]设区域(){}222,D x y x y a =+≤,当a = 时,二重积分D π=6、[3分]方程245cos x y y y e x '''-+=的特解形式可设为二、计算1、[4分]求(,)(0,0)lim x y →2、[5分]设,y z F x y x ⎛⎫=- ⎪⎝⎭,其中(),F u v 具有一阶连续偏导数,求z 的全微分 3、[6分]设()()()()()2222,,0,0,0,,0,0x y xy x y x y f x y x y ⎧-≠⎪+=⎨⎪=⎩,求()0,0,xx f '' ()0,0,yy f '' ()0,0,xy f '' 4、[6分]求22,D x dxdy D y ⎰⎰由1,,2xy y x x ===所围 5、[6分]求由曲面z =及22z x y =+所围立体的体积6、[7分将函数()()ln 2f x x =-展开为x 的幂级数,并写出收敛范围7、[6分]判别正项级数()3113nn n n ∞=⎛⎫- ⎪ ⎪⎝⎭∑的敛散性 8、[7分] 求微分方程()2620y x y y '-+=的通解9、[7分] 设()f x DSMT4 函数在(,)-∞+∞内满足关系()()2sin f x x f x ''-=-,且曲线()y f x =与x 轴切于点,02π⎛⎫ ⎪⎝⎭,求()f x 10、[8分]某公司的甲乙两厂生产同一种产品,月产量分别为,x y (千件),甲厂的月生产成本为2125c x x =-+(千元),乙厂的月生产成本为2123c y y =++(千元),若要求该产品每月总产量为8千件,并使总成本最少,求各厂的最优产量及相应的最优成本。
华南理工大学《高等数学》 2021-2022学年第一学期期末试卷B卷
《高等数学》试卷B 第1页共2页,考试作弊将带来严重后果!华南理工大学2021-2022学年期末考试《高等数学》试卷B(试卷号时间120分钟,总分100)1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上( 密封线装订区内、草稿纸上答题均无效); .考试形式:闭卷;(每小题5分,共30分) lim 1[1cosπn nn→∞++1cos2πnΛ++++πn n 1cos ]= . 设f x ()的一个原函数为arctan x ,则2(1)xf x dx -=⎰212arctan(1)-+x c . ⎰<<1..曲线⎰=-y t t dt x(1)1的上凹区间是 。
⎰+=-x dx (121.函数f x x x =-+42()82在闭区间[-1, 3]上的最大值为 , 最小值为 。
二、计算下列各题(每题7分,共42分)1、设函数f x e e x x x tdt x x xx ()sin 2(1)1,02,01cos ,02202⎰=-->=<⎧⎨⎪⎪⎩⎪⎪, 求→x f x 0lim ()。
《高等数学》试卷B 第2页共2页2. 设 x f x x x e x 2()11,011,0-=+≥+<⎧⎨⎪⎪⎩⎪⎪ , 求(1)2--∞⎰f x dx3、 设函数=y y x ()由方程2⎰t x ye dt =1确定,试求'y x ()及''y x ()。
4、x d x n i s ò2px s o c e 。
5、计算⎰x 04。
6. 求广义积分⎰++∞x x dx(1)12。
三、(8分)设正数a ,且满足关系⎰⎝⎭+ ⎪=⎛⎫-→-+∞a x xe dx a x ax xxlim 0142,试求a 的值。
四、(10分)求函数 f x x t e dt t x ()2122=--⎰)(的单调增减区间和极值.五、证明题(每小题5分,共10分):(1)设函数f x ()在[0,1]上可导,且⎰=-f e f x dx x (0)2()211,求证:在开区间(0,1)内至少存在一点ξ,满足 ='ξξf f ()().(2)设''f x ()在[0,1]上连续,且==f f (0)(1)0,求证:⎰⎰=-''f x dx x x f x dx 2()(1)()1011。
高等数学-微积分下-试卷系列-华南理工大学 (12)
2003-2004高等数学下册期中考试试卷姓名: 班级: 成绩单号:一、填空题(48⨯)1、设{}{}4,3,4,2,2,1a b =-=,则()b a2、与直线112211-=+=+z y x 及112x y t z t =⎧⎪=+⎨⎪=+⎩都平行,且过原点的平面方程为 。
3、设()(),,sin ,arctan z f u v u xy v y ===,又f 为任意可微函数,则z x ∂=∂ ,z y∂=∂ 。
4、设()2,x y u f x y e ==,则2u x y∂=∂∂ ,其中f 具有连续二阶偏导数 5、设函数z x xy xyz =++在点()1,0,3M 的所有方向导数中,最大的方向导数沿方向6、设L 为()2220x y R R +=>在第二象限部分,则积分Lxyds =⎰ 7、设L 为抛物线21y x =+从点()0,1到点()1,2的一段,则积分()()22L x y dx y x dy -++=⎰8、设∑为平面1x y z ++=在第一卦限部分,则积分()x y z ∑++=⎰⎰9、交换积分的次序()22141,x x dx f x y dy --=⎰⎰10、曲面1xy yz zx ++=在点()3,1,2-处的切平面方程为 ,法线方程为22:2D x y x +≤,由二重积分的几何意义知D= 。
二、(8)设(),u z x y =由方程222z x y z y f y ⎛⎫++=⋅ ⎪⎝⎭确定,试证:()22222z z x y z xy xz x y∂∂--+=∂∂,其中f 具有一阶连续偏导数 三、(8)设22,3x z y f y y ⎛⎫=⋅ ⎪⎝⎭,又f 具有连续的二阶偏导数,求22z y ∂∂ 四、(8)计算xy Dye dxdy ⎰⎰,其中D 是由直线1,2,2x x y ===和双曲线1y x =所围成五、(8)设由曲面22z x y =+与2z =所围成的立体中每点的密度与该点到平面xOy 的距离成正比,试求该立体的质量六、(7)计算积分()()22L y x dy x y dx +++⎰,其中L 是沿着半圆1y =的逆时针方向七、(7)计算积分1dS z ∑⎰⎰,其中∑是球面2222x y z R ++=被锥面222x y z z ⎛+=> ⎝所截的部分八、(7)计算积分∑⎰⎰,其中∑是柱面221x z +=被平面0,2y y ==所截的部分外侧九、(7)求曲线2222221622224x y z x y z x y z ⎧++=⎪⎨+++++=⎪⎩的最低点与最高点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
"
2003-2004高等数学下册期中考试试卷
姓名: 班级: 成绩单号:
一、填空题(48⨯)
1、设{}{}4,3,4,2,2,1a b =-=,则()b a
2、与直线112211-=+=+z y x 及112x y t z t =⎧⎪=+⎨⎪=+⎩
都平行,且过原点的平面方程为 。
3、设()(),,sin ,arctan z f u v u xy v y ===,又f 为任意可微函数,则z x ∂=∂ #
,z y
∂=∂ 。
4、设()2,x y u f x y e ==,则2u x y
∂=∂∂ ,其中f 具有连续二阶偏导数 5、设函数z x xy xyz =++在点()1,0,3M 的所有方向导数中,最大的方向导数沿方向
6、设L 为()2220x y R R +=>在第二象限部分,则积分L
xyds =⎰ 7、设L 为抛物线21y x =+从点()0,1到点()1,2的一段,则积分()()22L x y dx y x dy -++=⎰
8、设∑为平面1x y z ++=在第一卦限部分,则积分()x y z ∑++=⎰⎰
9、交换积分的次序()22141,x x dx f x y dy --=⎰⎰
10、曲面1xy yz zx ++=在点()3,1,2-处的切平面方程为 ,法线方程为
"
22:2D x y x +≤,由二重积分的几何意义知D
= 。
二、(8)设(),u z x y =由方程222z x y z y f y ⎛⎫++=⋅ ⎪⎝⎭
确定,试证:
()22222z z x y z xy xz x y
∂∂--+=∂∂,其中f 具有一阶连续偏导数 三、(8)设22,3x z y f y y ⎛⎫=⋅ ⎪⎝⎭
,又f 具有连续的二阶偏导数,求22z y ∂∂ 四、(8)计算xy D
ye dxdy ⎰⎰,其中D 是由直线1,2,2x x y ===和双曲线1y x =
所围成
五、(8)设由曲面22z x y =+与2z =所围成的立体中每点的密度与该
点到平面xOy 的距离成正比,试求该立体的质量
六、(7)计算积分()()22L y x dy x y dx +++⎰,其中L 是沿着半圆1y =的逆时针方向
七、%
八、
(7)计算积分1dS z ∑⎰⎰,其中∑是球面2222x y z R ++=被锥面222
x y z z ⎛+=> ⎝
所截的部分
九、(7)计算积分∑
⎰⎰,其中∑是柱面221x z +=被平面0,2y y ==所
截的部分外侧
十、(7)求曲线2222221622224
x y z x y z x y z ⎧++=⎪⎨+++++=⎪⎩的最低点与最高点的坐标。