上海民办兰生复旦中学数学几何图形初步综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F

(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;

(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.

【答案】(1)∠PFD+∠AEM=90°

(2)过点P作PG∥AB

∵AB∥CD,

∴PG∥AB∥CD,

∴∠AEM=∠MPG,∠PFD=∠NPG

∵∠MPN=90°

∴∠NPG-∠MPG=90°

∴∠PFD-∠AEM=90°;

(3)设AB与PN交于点H

∵∠P=90°,∠PEB=15°

∴∠PHE=180°-∠P-∠PEB=75°

∵AB∥CD,

∴∠PFO=∠PHE=75°

∴∠N=∠PFO-∠DON=45°.

∵AB∥CD,

∴PH∥AB∥CD,

∴∠AEM=∠MPH,∠PFD=∠NPH

∵∠MPN=90°

∴∠MPH+∠NPH=90°

∴∠PFD+∠AEM=90°

故答案为:∠PFD+∠AEM=90°;

【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.

2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.

(1)当时,的值为________.

(2)如何理解表示的含义?

(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.

【答案】(1)5或-3

(2)解:∵ = ,

∴表示到-2的距离

(3)解:∵点、在0到3(含0和3)之间运动,

∴0≤a≤3, 0≤b≤3,

当时, =0+2=2,此时值最小,

故最小值为2;

当时, =2+5=7,此时值最大,

故最大值为7

∴a=5或-3;

故答案为:5或-3;

【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;

(2)此题就是求表示数b的点与表示数-2的点之间的距离;

(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.

3.如图①,△ABC的角平分线BD,CE相交于点P.

(1)如果∠A=80∘,求∠BPC= ________.

(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.

(3)将直线MN绕点P旋转。

(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

【答案】(1)130°

(2)90°﹣∠A

(3)解:(i)∠MPB+∠NPC= − ∠A.

理由如下:

∵∠BPC= +∠A,

∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.

(ii)不成立,有∠MPB−∠NPC= − ∠A.

理由如下:

由题图④可知∠MPB+∠BPC−∠NPC= ,

由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)=

− ∠A.

【解析】【解答】(1)

故答案为:

( 2 )由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= − ∠A

【分析】(1)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理及∠A的度数,求出∠ABC+∠ACB的值,然后再利用三角形的内角和就可求出∠BPC的度数。

(2)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理得出∠BPC=180°-(∠PBC+∠PCB),∠ABC+∠ACB=180°-∠A ,代入计算即可得出结论。

(3)(i)根据∠MPB+∠NPC= 180 ° −∠BPC和∠BPC= 90 ° + ∠ A,代入即可得出结论;(ii)根

据∠BPC= 90 ° + ∠ A及∠MPB−∠NPC= 180 ° −∠BPC,代入求出即可得出结论

4.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.

(1)问运动多少时BC=8(单位长度)?

(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;

(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存

在,求线段PD的长;若不存在,请说明理由.

【答案】(1)解:设运动t秒时,BC=8单位长度,

①当点B在点C的左边时,

由题意得:6t+8+2t=24

解得:t=2(秒);

相关文档
最新文档