仰角俯角的概念
飞机中仰角的名词解释
![飞机中仰角的名词解释](https://img.taocdn.com/s3/m/cc555d692bf90242a8956bec0975f46527d3a7f1.png)
飞机中仰角的名词解释飞机,在现代社会中已经成为人们日常生活中不可或缺的交通工具之一。
在空中飞行的过程中,飞机的姿态调整起着至关重要的作用。
其中,仰角作为飞机姿态调整中的一个重要参数,对于飞行安全和顺利进行起着重要的作用。
本文将对飞机中仰角的相关概念进行解释和探讨。
仰角,也被称为俯仰角,是指飞机机身纵轴与地平面的夹角。
飞机是在三维空间中运动的,通过调整飞机的姿态,可以实现飞行、起飞、盘旋等各种运动状态。
仰角是飞机姿态调整中最基本的参数之一,它直接影响着飞机的前倾与后仰。
在飞机飞行中,仰角有时候也被称为姿态角。
仰角的单位通常是度(°),通过测量飞机机身与水平面的夹角来确定。
在飞行控制系统中,仰角对应着飞行员通过操纵操纵杆或操纵盘来控制飞机的机头朝向的角度。
当飞行员向前推杆或向前旋转操纵盘时,飞机的仰角会增大,飞机机头将会向上抬升;相反,当飞行员向后拉杆或向后旋转操纵盘时,飞机的仰角会减小,飞机机头则会朝下倾斜。
飞机机身的仰角不仅仅影响着飞行的姿态和飞行安全,还直接与气动性能相关。
当飞机机身的仰角增大时,机翼与风的夹角也会相应增大,这会导致机翼所产生的升力增加,同时也会增加飞机的阻力。
因此,飞行员需要根据需要和具体情况来调整飞机的仰角,以保持飞行的平稳和高效。
此外,飞机的仰角也与飞行中的重力加速度有关。
在地球的引力作用下,飞机受到向下的加速度,这就需要通过调整仰角来抵消这种加速度。
当仰角增加时,飞机所受到的重力向下的分量减小,同时垂直向上的升力也会增加,从而保持飞机的水平飞行状态。
在实际飞行操作中,飞机的仰角是由飞行员凭借经验和技巧来控制和调整的。
在不同的飞行阶段和特定的任务要求下,飞行员需要根据飞机性能和飞行安全原则来合理选择和调整仰角。
飞行员在飞行训练中也会通过模拟飞行和实际飞行来熟悉和掌握飞机的仰角控制技巧。
总结而言,飞机中的仰角是指飞机机身纵轴与地平面的夹角,它对于飞机的姿态调整、飞行安全以及飞机性能有着重要的影响。
三角函数应用举例(1)仰角俯角
![三角函数应用举例(1)仰角俯角](https://img.taocdn.com/s3/m/6a95ca58cfc789eb162dc80d.png)
28.2.2解直角三角形的应用(仰角和俯角)教案
中,
D
设计意图:通过分析题意,引导学生构造直角三角形,把已知条件转化到两个直角三角形里,根据已知的边角条件,恰当地选择锐角三角函数关系,解决实际问题,让学生初步认识到解直角三角形在实际问题中的应用;同时通过
一方面让学生进一步认识到解直角三角形在实际问题中的应用,另一方面,让学生意识到通过设未知数,建立方程也是解决实际问题时常用到
处,看另一栋楼楼顶的俯角为30°,看这
BC有多高?
A
E
尽管实际问题的背景发生了变化,
C E。
第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)
![第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)](https://img.taocdn.com/s3/m/373a589b1711cc7930b7160b.png)
第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。
仰角俯角;坡度坡角
![仰角俯角;坡度坡角](https://img.taocdn.com/s3/m/ad513b96856a561252d36ff3.png)
山?
B
565m A 1000m C
练习1
一个公共房屋门前的台阶共高出地面1.2米.台阶被 拆除后,换成供轮椅行走的斜坡.根据这个城市的 规定,轮椅行走斜坡的倾斜角不得超过30°.从斜 坡的起点至楼门的最短的水平距离该是多少?(精 确到0.1米)
C
1.2
1.2
30°
A
B
练习2
为了增加抗洪能力,现将横断面如图所示的 大坝加高,加高部分的横断面为梯形DCGH, GH∥CD,点G、H分别在AD、BC的延长线上, 当新大坝坝顶宽为4.8米时,大坝加高了几米?
3、斜坡长是12米,坡高6米,则坡比是_______。
h α
L
例1.水库大坝的横断面是梯形,坝顶宽6m,坝高
23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度
i=1∶2.5,求: (1)坝底AD与斜坡AB的长度。(精确到0.1m )
(2)斜坡CD的坡角α。(精确到 1 0)
分析:(1)由坡度i会想到产
A
BD
C
2、能根据直角三角形的知识解决与仰角、俯角、 方位角有关的实际问题。
自学指导1
请同学们认真看课本113--114页练习以上内容。
思考:什么是仰角、俯角?
仰角和俯角
铅 垂
线
在进行测量时, 从下向上看,视 线与水平线的夹 角叫做仰角;
从上往下看,视 线与水平线的夹 角叫做俯角.
视线
仰角 俯角
水平线
视线
=69+6+57.5
=132.5m
一段路基的横断面是梯形,高为4米,上底 的宽是12米,路基的坡面与地面的倾角分别 是45°和30°,求路基下底的宽.(精确 到0.1,米, 3 1.732 ,2 1.414 )
仰角和俯角的意思
![仰角和俯角的意思](https://img.taocdn.com/s3/m/3d4b1dcb05a1b0717fd5360cba1aa81144318f8c.png)
仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。
在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。
本文将详细介绍仰角和俯角的概念、计算方法及实际应用。
1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。
在天文学中,仰角通常用于描述天体在天空中的位置。
在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。
2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。
假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。
如果B点比A点高,则仰角为90度减去俯角。
(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。
仰角=90度-天体高度角。
俯角=天体高度角。
(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。
无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。
2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。
(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。
三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。
飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。
在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。
在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。
地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。
3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。
天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。
四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。
28.2.2仰角、俯角(教案)2023-2024学年九年级下册数学人教版(安徽)
![28.2.2仰角、俯角(教案)2023-2024学年九年级下册数学人教版(安徽)](https://img.taocdn.com/s3/m/1c970d707275a417866fb84ae45c3b3567ecddae.png)
在今天的仰角与俯角教学中,我尝试了多种方法来帮助学生理解和掌握这一概念。首先,通过日常生活中的实际问题导入新课,我发现同学们的兴趣被激发了,他们开始积极思考仰角和俯角的应用。这种生活化的引入有助于学生认识到数学知识的实用性和重要性。
在理论讲授环节,我注意到了一些学生在理解仰角和俯角定义时的困难。我意识到,仅仅通过语言描述可能不足以让学生形成清晰的认识,因此在接下来的教学中,我加入了实物演示和图示辅助,希望能更直观地帮助学生建立起空间观念。
在总结回顾环节,我对学生今天的学习成果进行了梳理,并强调了对仰角和俯角知识的应用。我感到欣慰的是,大多数学生能够掌握今天的教学内容,但也有学生提出了疑问,我及时给予了解答。
反思今天的整个教学过程,我认为以下几点值得注意:
1.对于空间观念的培养,需要更多的直观教具和实物演示,帮助学小组讨论、实践操作,提升数学探究和问题解决的综合素养。
5.引导学生运用所学知识,关注生活中的数学现象,培养数学应用意识和创新意识。
三、教学难点与重点
1.教学重点
-仰角与俯角的概念:准确理解仰角和俯角的定义,掌握它们的度数表示方法。
-画仰角与俯角的方法:学会使用三角板、直尺等工具在平面图上正确画出仰角和俯角。
在教学过程中,教师应通过实物演示、图示说明、案例分析和反复练习等多种方法,帮助学生突破这些难点,确保学生能够深刻理解和掌握仰角与俯角的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《仰角、俯角》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断物体高度或视线范围的情况?”(如看旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索仰角与俯角的奥秘。
第02课时 仰角、俯角、方位角
![第02课时 仰角、俯角、方位角](https://img.taocdn.com/s3/m/781cd873783e0912a2162a49.png)
1.(5 分)如图,某地修建高速公路,要从 B 地向 C 地修一座隧道(B,
C 在同一水平面上),为了测量 B,C 两地之间的距离,某工程师乘坐热
气球从 C 地出发,垂直上升 100 m 到达 A 处,在 A 处观察 B 地俯角为
30°,则 B,C 两地之间的距离为( A )
A.100 3 m
B.50 2 m
一、选择题(每小题 6 分,共 12 分)
7.如图,从热气球 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
如果此时热气球 C 处的高度 CD 为 100 米,点 A,D,B 在同一直线上,
则 A,B 两点的距离是( D )
A.200 米
B.200 3 米
C.220 3 米
D.100( 3+1)米
CED=60°,sin∠CED=CCDE ,∴CE= sinC6D0°= 2
3+1.5 3 =(4+
3)
2
≈5.7(米),答:拉线CE的长约为5.7米
11.(14分)(2014·黔东南州)黔东南州某校九年级某班开展数学活 动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得 旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为 30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身 高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,
三、解答题(共42分) 10.(14分)(2014·钦州)如图,在电线杆CD上的C处引拉线CE,CF 固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米 的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30 °,求拉线CE的长.(结果保留小数点后一位,参考数据: 2 ≈ 1.414, 3≈1.732)
解直角三角形的应用(仰角和俯角问题)
![解直角三角形的应用(仰角和俯角问题)](https://img.taocdn.com/s3/m/14303e2f001ca300a6c30c22590102020740f218.png)
计算角度证结果:检 查计算结果是 否满足三角形 内角和为180
度的条件
添加标题
确定已知条件:已知三角形的边长和角度
添加标题
利用正弦定理:sin/ = sinB/b = sinC/c
添加标题
利用余弦定理:cos = (b^2 + c^2 - ^2) / (2bc)
正弦定理:在直角三角形中 任意一边的长度等于其对角 的正弦值乘以斜边的长度
余弦定理:在直角三角形中 任意两边长度的平方和等于 斜边的平方
正切定理:在直角三角形中 任意一边的长度等于其对角 的正切值乘以斜边的长度
余切定理:在直角三角形中 任意两边长度的平方差等于 斜边的平方
正割定理:在直角三角形中 任意一边的长度等于其对角 的正割值乘以斜边的长度
确保测量工具的 准确性和稳定性
避免在危险区域 进行测量如高空、
高压电等
遵守操作规程确 保人身安全
做好防护措施如 佩戴安全帽、手
套等
及时清理现场避 免杂物影响测量
结果
遇到突发情况及 时停止操作并寻
求帮助
仰角和俯角为0度:此时三角形退化为直线无法求解
仰角和俯角为90度:此时三角形退化为直角三角形可以直接求解
全站仪等
测量误差:注 意测量误差对 仰角和俯角测 量结果的影响
测量环境:注 意测量环境的 影响如温度、 湿度、风速等
测量方法:注 意测量方法的 选择如直接测 量、间接测量
等
测量误差:测量工具的精度、测量人员的操作水平等
计算误差:计算过程中的舍入误差、公式使用错误等
环境误差:温度、湿度、光照等环境因素对测量结果的影响
添加文档副标题
目录
01.
02.
高考数学一轮复习教学案正弦定理和余弦定理的应用
![高考数学一轮复习教学案正弦定理和余弦定理的应用](https://img.taocdn.com/s3/m/d2c6a1f0f605cc1755270722192e453610665b77.png)
第八节正弦定理和余弦定理的应用[知识能否忆起]1.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).2.解三角形应用题的一般步骤(1)审题,理解问题的实际背景,明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)选择正弦定理或余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.[小题能否全取]1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( ) A .α>β B .α=β C .α+β=90°D .α+β=180°答案:B2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示, ∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由正弦定理得AB =AC ·sin ∠ACB sin B =50×2212=502(m).4.(·上海高考)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米.解析:如图所示,由题意知∠C =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6. 答案: 65.(·泰州模拟)一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行________海里.解析:如图,由题意知在△ABC 中,∠ACB =75°-60°=15°,B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8海里.答案:8解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.测量距离问题典题导入[例1] 郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). [自主解答] (1)在△ABC 中,由余弦定理得 cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D .解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°.故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得AB sin ∠ACB =BC sin ∠CAB ,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入[例2] (·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度.[自主解答] (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BC sin ∠BAC =ABsin ∠ACB ,所以BC =l sin αsin (β-α).(2)由(1)知BC =l sin αsin (β-α)=24×sin 15°sin 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40米.测量角度问题典题导入[例3] (·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[自主解答] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20.根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500. 在△CAD 中,由余弦定理得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,∴∠CAD =45°.答案:45°1.在同一平面内中,在A 处测得的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.19解析:选D ∵∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.2.一个大型喷水池的有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.3.(·天津高考) 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 4.(·厦门模拟)在不等边三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.5.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 2 海里D .20 3 海里解析:选A 如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°, ∴∠BCA =45°.又AB =40×12=20(海里),∴由正弦定理可得20sin 45°=BCsin 30°.∴BC =20×1222=102(海里).6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003 m ,∴BC =AB sin 45°·sin 30°=50 00032m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km.7.(·南通调研)“温馨花园”为了美化小区,给居民提供更好的生活环境,在小区内的一块三角形空地上(如图,单位:m)种植草皮,已知这种草皮的价格是120元/m 2,则购买这种草皮需要________元.解析:三角形空地的面积S =12×123×25×sin 120°=225,故共需225×120=27 000元.答案:27 0008.(·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:329.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN = 900+300-2×30×103×32=300=103(m).答案:10 310.如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°, ∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B=10sin 60°sin 45°=10×3222=5 6. 11.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =140 3.答:该仪器的垂直弹射高度CH 为1403米.12.(·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D 在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该准备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,所以∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD, 所以AD =CD ×sin ∠ACD sin ∠CAD=6×2232=2 6. 在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,所以∠CBD =135°.因为CD sin ∠CBD =BD sin ∠BCD, 所以BD =CD ×sin ∠BCD sin ∠CBD=6×1222=3 2. 又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,所以△ABD 是直角三角形.所以AB =AD 2+BD 2=(26)2+(32)2=42.所以电线长度至少为l =1.2×AB =6425(单位:km) 答:施工单位至少应该准备长度为6425km 的电线.1.某城市的电视发射塔CD 建在市郊的小山上,小山的高BC 为35 m ,在地面上有一点A ,测得A ,C 间的距离为91 m ,从A 观测电视发射塔CD 的视角(∠CAD )为45°,则这座电视发射塔的高度CD 为________米.解析:AB =912-352=84,tan ∠CAB =BC AB =3584=512.由CD +3584=tan(45°+∠CAB )=1+5121-512=177,得CD =169. 答案:1692.10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发现一个生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x =________.解析:∵由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°,∴x sin 45°=10sin 60°.∴x =1063m. 答案:1063m 3.(·泉州模拟)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向与CA ―→成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R )的值域.解:(1)连接BC ,由余弦定理得BC 2=202+102-2×20×10cos 120°=700.∴BC =107,即所求距离为107海里. (2)∵sin θ20=sin 120°107, ∴sin θ= 37. ∵θ是锐角,∴cos θ=47. f (x )=sin 2θsin x +34cos 2θcos x =37sin x +37cos x =237sin ⎝⎛⎭⎫x +π6, ∴f (x )的值域为⎣⎡⎦⎤-237,237.1.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102, ∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∴∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=30 2(海里/时). 2.如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?解:(1)在△OCD 中,由正弦定理,得CD sin ∠COD =OD sin ∠DCO =CO sin ∠CDO=23, 所以CD =23sin ⎝⎛⎭⎫2π3-θ=cos θ+13sin θ,OD =23sin θ, 因为OD <OB ,即23sin θ<1, 所以sin θ<32,所以0<θ<π3, 所以CD =cos θ+33sin θ,θ的取值范围为⎝⎛⎭⎫0,π3. (2)设观光道路长度为L (θ),则L (θ)=BD +CD +弧CA 的长=1-23sin θ+cos θ+13sin θ+θ =cos θ-13sin θ+θ+1,θ∈⎝⎛⎭⎫0,π3, L ′(θ)=-sin θ-33cos θ+1, 由L ′(θ)=0,得sin ⎝⎛⎭⎫θ+π6=32, 又θ∈⎝⎛⎭⎫0,π3,所以θ=π6,列表: θ⎝⎛⎭⎫0,π6 π6 ⎝⎛⎭⎫π6,π3 L ′(θ)+ 0 - L (θ)增函数 极大值 减函数所以当θ=π6时,L (θ)达到最大值,即当θ=π6时,观光道路最长.。
第十二讲仰角、俯角
![第十二讲仰角、俯角](https://img.taocdn.com/s3/m/3f176a814b73f242326c5f16.png)
第十二讲、仰角、俯角第一部分、教学目标:1、能够用三角函数有关知识解决问题,学会解决仰角俯角问题。
2、掌握仰角俯角的关系,能利用解直角三角形的知识,解决相关的实际问题。
第二部分、教学重点和难点:1、理解仰角与俯角的概念,并能灵活运用。
2、利用仰角与俯角等条件,解决有关的实际问题。
第三部分、教学过程:例题讲解:例1、直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处,那么点C在点A的()A.俯角67°方向B.俯角23°方向C.仰角67°方向D.仰角23°方向【分析】求出∠BAC=23°,即可得出答案.【解答】解:∵BC⊥AB,∠BCA=67°,∴∠BAC=90°﹣∠BCA=23°,从低处A处看高处C处,那么点C在点A的仰角23°方向;故选:D.练1.1、跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着落点A的距离是()A.200米B.400米C.米D.米【分析】已知直角三角形的一个锐角和直角边求斜边,运用三角函数定义解答.【解答】解:根据题意,此时小李离着落点A的距离是=,故选:D.练1.2、如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC 的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.例2、如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD 为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【分析】根据直角三角形锐角三角函数即可求解.【解答】解:∵在Rt△ABC中,BC=AB•tanα=a tanα,在Rt△ABD中,BD=AB•tanβ=a tanβ,∴CD=BC+BD=a tanα+a tanβ.故选:C.练2.1、某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.(300+300)米【分析】由题意可得在Rt△ACD中,∠A=30°,CD=300米,在Rt△BCD中,∠B=45°,然后利用三角函数,求得AD与BD的长,继而求得答案.【解答】解:∵在Rt△ACD中,∠A=30°,CD=300米,∴AD===300(米),∵在Rt△BCD中,∠B=45°,CD=300米,∴BD=CD=300米,∴AB=AD+BD=(300+300)米.故选:D.练2.2、在湖边高出水面40m的山顶A处看见一架无人机停留在湖面上空某处,观察到无人机底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则无人机底部P距离湖面的高度是()A.(40+40)m B.(40+80)m C.(50+100)m D.(50+50)m 【分析】设AE=x,则PE=AE=x,根据山顶A处高出水面40m,得出OE=40,OP′=x+40,根据∠P′AE=60°,得出P′E=x,从而列出方程,求出x的值即可.【解答】解:设AE=xm,在Rt△AEP中∠P AE=45°,则∠P=45°,∴PE=AE=x,∵山顶A处高出水面40m,∴OE=40m,∴OP′=OP=PE+OE=x+40,∵∠P′AE=60°,∴P′E=tan60°•AE=x,∴OP′=P′E﹣OE=x﹣40,∴x+40=x﹣40,解得:x=40(+1)(m),∴PO=PE+OE=40(+1)+40=40+80(m),即无人机离开湖面的高度是(40+80)m.故选:B.例3、如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可表示出此时飞机离地面的高度.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.练3.1、小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°(≈1.732),则灯顶端O到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F.设DF=x,∵tan60°=,∴OF=x,∴BF=3+x,∵tan30°=,∴OF=(3+x)•,∴x=(3+x),∴x=1.5,∴OF=1.5×≈2.60,∴OE≈2.60+1.5≈4.1,故选:B.练3.2、当地时间2019年4月15日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶B的高度,在地面选取了与塔底D共线的两点A、C,A、C在D的同侧,在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,则下列关系式正确的是()A.tan27°=B.cos27°=C.sin27°=D.tan27°=【分析】根据三角函数得出CD=BD,进而利用根据CD=AD﹣AC可得答案.【解答】解:∵在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,可得:tan27°=,故选:A.例4、如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A、B两点的俯角分别为60°和45°.若飞机离地面的高度CO为900m,且点O,A,B在同一水平直线上,则这条江的宽度AB为.(结果保留根号)【分析】在Rt△ACO和Rt△OCB中,利用锐角三角函数,用CO表示出AO、BO的长,然后计算出AB的长.【解答】解:由于CD∥OB,∴∠CAO=∠ACD=60°,∠B=∠BCD=45°在Rt△ACO中,∵∠CAO=30°∴AO=CO=300米,在Rt△OCB,∵tan∠B=∴OB=(米).∴AB=OB﹣OA=900﹣300(米)故答案为:900﹣300(米)练4.1、如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN 为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【分析】根据题意需求AB长.由已知易知AB=BM,解直角三角形MNB求出BM即AB,再求速度,与限制速度比较得结论.注意单位.【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.练4.2、如图,无人飞机从A点水平飞行10秒至B点,在地面上C处测得A点、B点的仰角分别为45°,75°,已知无人飞机的飞行速度为80米/秒,则这架无人飞机的飞行高度为.【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作BD⊥AC,AH⊥水平线,由题意得:∠BCH=75°,∠ACH=30°,AB∥CH,∴∠BAC=45°,∠ACB=30°,∵AB=80×10=800m,∴BD=AD=400m,CD==400m,∴AC=CD+AD=(400+400)m,则AH=AC•sin45°=(400+400)m.答:这架无人飞机的飞行高度为(400+400)m例5、金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为42°,测得楼AB的底部B处的俯角为30°.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数,参考数据:tan42°=0.90,tan48°=1.11,≈1.73)【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△AED、△CBD,通过解这两个直角三角形求得AE、DC的长度,进而可解即可求出答案.【解答】解:如图,过点D作DE⊥AB于点E.依题意得:∠ADE=42°,∠CBD=30°,CD=12m.可得四边形DCBE是矩形.∴BE=DC,DE=CB.∵在直角△CBD中,tan∠CBD=,∴DE=CB=.∵在直角△ADE中,tan∠ADE=.∴AE=DE•tan42°.∴AE=•tan42°≈=18.68(米).∴AB=AE+BE≈31(米).答:楼AB的高度约为31米.练5.1、如图,小明家的窗口到地面的距离CE=9米,他在C处测得正前方花园中树木顶部A点的仰角为37°,树木底部B点的俯角为45°,求树木AB的高度.(参考数据sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】根据等腰直角三角形的性质求出DC,根据正切的概念计算即可.【解答】解:如图,由题意得,DB=CE=9,∵∠CDB=90°,∠DCB=45°,∴CD=DB=9,在Rt△ADC中,AD=DC×tan∠ACD=9tan37°,∴AB=AD+BD=9+9tan37°≈15.75,答:旗杆AB的高约为15.75米.练5.2、从一栋二层楼AE的楼顶点A处看对面的教学楼CD,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知楼AE高6米,AB⊥CD于B,求楼CD高度(结果保留根号)【分析】在Rt△ABC根据三角函数求出CB,再在Rt△ABD中根据三角函数求出BD,继而相加可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AE=6米,∴AB=BC=AE=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6,∴DC=CB+BD=6+6(米).答:教学楼的高CD是(6+6)米.例6、为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)【分析】作EF⊥AB于F.在Rt△DCE中,根据正切函数的定义即可求出大厦DE的高度;设EF=DB=x米,BF=DE,∠AEF=60°.在Rt△ABC中,根据正切函数的定义得出AB=BC•tan∠ACB,在Rt△AFE中,根据正切函数的定义得出AF=EF•tan∠AEF,由AB=BF+AF列出方程求出x,从而求解.【解答】解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.练6.1、在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】作BF⊥AC于F,作BG⊥CD于G,则CG=BF,BG=CF,在Rt△ABF中,由三角函数得出BF=AB×sin65°≈0.72,AF=AB×cos65°≈0.32,得出BG=CF=AF+AC =0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,由三角函数得出CE=≈3.333,证明△BDG是等腰直角三角形,得出DG=BG=4.32,求出CD的长,即可得出答案.【解答】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=,cos∠BAF=,∴BF=AB×sin65°≈0.8×0.9=0.72,AF=AB×cos65°≈0.8×0.4=0.32,∴BG=CF=AF+AC=0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,tan∠CEA=,∴CE=≈≈3.333,∵∠BDG=45°,∠BGD=90°,∴△BDG是等腰直角三角形,∴DG=BG=4.32,∴CD=CG+DG=0.72+4.32=5.04,∴DE=CD﹣CE=5.04﹣3.333≈1.7(m);答:小水池的宽DE约为1.7m.练6.2、如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C 与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)【解答】解:由题意得,∠FCD=90°,∠FDC=60°,∴FC=CD•tan∠FDC=10,在Rt△CGF中,FG=FC•sin∠FCG=10×=15,∴PF=FG+GE﹣PE=15+2.5﹣1.5=16,16÷46≈0.35,答:国旗上升的平均速度约为0.35米/秒.第四部分、出门测试时间(10分钟左右)第六部分、作业布置今天是2020年月日星期天气今日所学:仰角俯角今日作业:自我巩固1-10题老师说:1、下次正常上课2、路上注意安全。
部优:《方向角、仰角、俯角的定义,角的比较,角的和差》教学设计
![部优:《方向角、仰角、俯角的定义,角的比较,角的和差》教学设计](https://img.taocdn.com/s3/m/b00eddc55f0e7cd1842536f4.png)
《方向角、仰角、俯角的定义,角的比较,角的和差》教学设计一、教学内容分析角的比较、角的和与差是本章重要的基础知识,也是后续学习几何图形必备的基础知识.角的大小比较方法有两种:度量法和叠合法. 其中,叠合法是本课重点讲解的一种方法,叠合时使两个角的顶点及一边重合,另一边落在第一条边的同旁,保证了可比性;度量法中量角器起到了移角作用,其实质是将两个角移动后叠合在一起. 比较两角的大小是本节知识产生、发展的起点,不论是图形还是数量,除角的大小外,自然会产生角的和与角的差的问题,再将角的和与差特殊化,自然又会产生等分问题.与线段的比较、线段的和与差、线段的中点一样,角的比较、角的和与差、角平分线也是从数和形两方面来研究的. 研究方法:一是数与形结合,角的度数通过测量或计算得到,再比较数量大小,通过数量大小关系得到图形的关系;二是仅从形出发,利用几何元素的位置来比较或推理. 从知识内容上看,角的比较、角的和与差是类比线段的比较、线段的和与差;从叙述方式上看,它们都是采用图形语言、文字语言和符号语言综合描述所研究的对象;从学习过程看,二者都注意从具体到抽象(模型→图形→文字→符号),同时也重视逆向思维的训练.基于以上分析,确定本节课的教学重点:角的大小、角的和与差的意义及数量关系;感受类比的思想.数学初始阶段,离不开实际生活,这里我们仍然会考虑实际生活中的角的研究,引入实际生活中方位角、仰角、俯角的定义,培养学生的几何抽象能力.角是由两条共端点的射线构成,在图形上比较于线段而言略显复杂,学生识图、分析图形会增加一些难度.总之,本节课将类比线段的学习过程,螺旋上升学生的几何抽象能力和推理论述水平.二、学生分析学生在前面知识的学习中已经积累了一些几何学习方法,对于几何抽象、几何作图、几何三种语言的转化有了一定的基础,但是学生的接受能力是有差异的,这一点在初学者身上会有明显地体现,特别是分类讨论的时候,有些同学往往不知道如何画图、如何表述,没有推理,只有计算的现象仍然会出现,对于这种正常的现象,教师要保持耐心,搭台阶,不要急于求成.三、目标确定1. 掌握仰角、俯角、方向角的定义,并会画图,测量、计算.2. 会利用测量法、叠合法进行两个角的大小比较.3. 会根据图形用符号语言表示角的和与差,会简单的推理计算.4. 会根据已知条件,分类画图、推理、计算.5. 培养几何抽象能力,建立类比的学习方法,培养分类讨论思想和推理能力.四、重点难点重点:会根据图形用符号语言表示角的和差,并会简单的推理计算;难点:会根据已知条件,分类画图、推理、计算.五、评价设计“方向角、仰角、俯角的定义,角的比较,角的和差”学习评价量表标准等级掌握仰角、俯角、方向角的定义和画法. A掌握测量法、叠合法比较角的大小. A会用符号语言表示角的和差. A会用符号语言对角进行简单的推理和计算. B会根据条件,画出位置不同的图形并对其进行分类解答问题. C六、活动设计教学环节教学活动设计意图教师活动学生活动情境导入问题1:小明同学站在三楼教室里向窗外平视时,发现树上有一只鸟,向上看时,看见树接近顶端有一个鸟窝,向下看时,发现树根处有一块石头,请问这个情境里面有什么几何图形?你能将它们抽象出来吗?学生尝试画图. 仰角、俯角概念出现在“锐角三角函数”中,方向角没有作为一个严格的概念出现过,但是从角的概念来看,它们是结合实际生活抽象出来的数学问题,这也是教材的一根主线. 相比角教师定义:仰角:当观察者抬头望一物时,其视线与水平线的夹角称为仰角.俯角:当观察者低头望一物时,其视线与水平线的夹角称为俯角.小明同学用自制测角仪,测得看鸟窝时,仰角为30°,看石头时俯角为40°,那么小明看鸟窝的视线与看石头的视线夹角是多少?请画图后说明理由.教师巡视,订正.问题2:小明在灯塔O上观察,发现货轮A在它北偏东60°的方向上,货轮B 在它南偏东45°的方向上,货轮C在它北偏东45°的方向上,请你面出图形,并计算∠AOB,∠AOC,∠BOC的度数.教师巡视,指导.教师定义:方向角:从正北或正南方向到目标方向所形成的小于90°的角.规定:北偏东45°的方向,简称为东北方向;南偏东45的方向为东南方向. 学生在刚才画图基础上,标上字母或数字表示角,并进行简单推理.学生尝试根据实际情境作图,讨论,并进行简单推理. 根据教师指导完善画图和推理.的计算和比较,这些内容让学生觉得有些枯燥,因此适当将这两个易懂的概念迁移,插入角的计算,激发学生的兴趣,也使知识螺旋上升.巩固练习:利用直尺和量角器画出表示下列方向的射线:(1)在铅垂线同侧,仰角为68°,俯角为42°.(2)在同一地点观测,北偏西30°,南偏东60°,北偏东15°,西南方向. (3)根据(1)或(2)的图形,自拟一道角的计算题并完成解答. 学生根据实际情境作图,命题,进行简单推理,根据教师指导完善画图和推理.思考探究1.下发小条.提出问题:你可以比较图中三个角的大小吗?说说你的办法.类似线段比较大小的方法,比较角的大小也有如下两种方法:度量法——先用测量工具(如量角器)测量出每个角的度数,再通过测量结果的数据比较它们的大小;叠合法——将要比较的角的顶点和一条边重合,并使另一边落在同旁,看另一条边的相互位置来比较它们的大小.2.角的和差.(下发题目小条)学生思考,利用测量法,或者是裁剪下来使用叠合法比较三个角的大小.学生思考,识图,填空.这个环节会使学生类比线段的和差倍分的研究方法来分析解决问题,学生可以在此处复习巩固几何基本量的计算方法以及分类绘图等思想方法,在温故中进一步提高,虽然几何元素不确定,但是不确定的后面却又有一定的确定性,这是将来学生把握几何分类的思考突破口,虽然对称性还没有严格定义过,但是在小学中,学生已经感受过各种对称,此时教师应点明这种性质,为将来复杂的分类做好铺垫.(1)根据图1填空:∠AOC=______+______;∠BOD=______+______;∠AOC-∠BOC=______;∠AOD-∠BOC=______+______.(2)如图2,∠AOC=∠BOD=78°,∠BOC=35°,求∠AOD的度数.分析:可以根据等量减等量差相等,先求出∠AOB,∠COD的度数,再求∠AOD.解:方法一:∵∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC-∠BOC=78°-35°=43°,∠COD=∠BOD-∠BOC=78°-35°=43°.∴∠AOB=∠COD.∴AOD=∠AOC+∠COD=78°+43°=121°.方法二:∵∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOD=∠AOC+∠BOD-∠BOC=2∠AOC-∠BOC=78°×2-43°=121°.(3)如图3,∠AOB=90°,∠AOC:∠学生思考,分析图形,设参数,进行推理,完善解题过程.COD:∠BOD=1:3:5,求∠COD的度数.解:∵AOC:∠COD:∠BOD=1:3:5,∴设∠AOC=k,则∠COD=3k,∠BOD=5k.∴∠AOC+∠COD+∠BOD=9k.∵∠AOC+∠COD+∠BOD=∠AOB,∠AOB=90°,∴k=10°.∴∠COD=3k=30°.(4)若∠AOB:∠BOC=2:3,∠AOB=30°,求∠AOC的度数.分析:当射线OC在射线OB上方时,如图4.当射线OC在射线OB下方时,如图5. 学生思考,分类画出图形,设参数,进行推理,完善解题过程.教师总结:在直线、射线、线段的时候我们也遇到了分类讨论的问题,学生说,如果不给图就应该考虑到分类讨论,这个意识是对的,但是几何图形产生分类的根本原因是几何元素位置的不确定性造成的,其实这种不确定的背后也有一定的确定性,也就是对称性. 此题中,射线OC关于射线OB 对称. 注意“点在直线上”的条件往往存在着关于某点中心对称.练习巩固发诊断小条.1.根据下图填空:AOC=_______+_______;∠AOD ∠DOC=______;若∠AOB=30°,∠COD=40°,∠AOB=∠COB,则∠AOD=________.2.如图,∠AOC=90°,∠COD比∠DOA大22°,∠COB=∠DOA,求∠BOD的度数.学生做练习.课堂的复习巩固是对所学知识方法的重新温习,这个环节通过设计活动再次激发学生兴趣,并提高课堂效率.3.如图,将一副三角尺的两个直角顶点重合于点O.(1)若∠AOD=127°,求∠BOC的度数;(2)若∠AOD=2∠BOC,求∠BOC 的度数.(请画出抽象的几何图形解答,留下必要的线和角即可.)教师巡视指导.抽象图形如下:追问:若去掉上图条件,其他条件不变,请你画出抽象图形.(提示分类讨论)课堂小结教师点评,确定本节课的教学重点,演示测量法,叠合法比较两个角的大小.小结仰角、俯角、方向角概念,角的和差计算注意事项.本课知识点比较琐碎,通过“课堂小结”帮助学生梳理相关知识,加深他们对概念的理解.七、板书设计仰角、俯角定义例1(3)分类讨论方向角定义八、练习诊断1.(A)小明在博物馆看油画上沿仰角为55°,看油画下沿俯角为15°,请画出以小明眼睛为顶点,两种不同视线为边的角的图形,并计算该角的度数.小明的眼睛2.(A)货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上. 同时,在它北偏东40°、南偏西10°、西北(北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D. 画出表示灯塔A,客轮B,货轮C和海岛D方向的射线.3.(A)A,B两点表示两个不同的海上观测点,从A地发现在它北偏东60°的方向上有一艘轮船C,同时在B地发现这艘船C在它北偏东30°的方向,试通过作图确定该船C的位置,并测量∠ABC,∠ACB,∠BAC的大小,计算∠ABC+∠ACB+∠BAC的值.4.(A)如下图所示,点D,E分别在AC,BC边上,则∠ABC=________+_________;∠ADC ∠BDC=_______;∠DEC+________=180°;∠BDE+______=∠BDC.5.(B)已知∠A+∠B+∠C=180°,∠A:∠B:∠C=2:3:7,求∠A,∠B,∠C的度数.6.(B)如图,∠AOB=∠COD=90°,∠BOD=3∠AOC,求∠AOC的度数.7.(B)如图,将一副三角板叠放在一起,使直角顶点重合于O点,请抽象画出有关计算的角的图形并求∠AOC+∠DOB的值.8.(C)若∠AOB:∠BOC=3:2,∠AOB=30°,求∠AOC的度数.九、反思与改进本节课类比线段的大小、线段的和与差,学习角的比较、角的和与差,体会类比学习方法. 能从图形和数量关系两个角度认识角的大小,会用度量法和叠合法比较两个角的大小;能从几何图形和数量关系两方面认识角的和与差,知道两个角和差仍然是一个角,知道角的和差或等分的度数的计算;能结合角的大小、和与差的立体图形,用文字语言和符号语言描述它们,反之,给出符号语言或文字语言,能够画出图形及关系,用图形直观表示出来,为分类讨论的题目做准备.在学习过程中,能在回忆线段的大小、线段的和与差内容的基础上想象本节课所要学习的内容,做到对学习进程心中有数;能将对线段的大小、线段的和与差、线段的中点的研究方法和棊本思路迁移到角的相关问题研究中,不断提出问题、分析问题、解决问题.学生在学习方法和学习内容的理解上,没有困难. 困难在于准确完成图形语言、文字语言、符号语言之间的转化. 究其原因,一方面,语言是思维的产物,是实物和模型第一次抽象,是对研究对象的直观反映. 文字语言是对图形的描述、理解和讨论,符号语言则是对文字语言的简化和再次抽象. 它们的综合运用,要求学生必须对研究对象从数和形上有着深刻的理解,并具有读图和画图的能力;二是学生缺乏培养和训练,对于图形、文字、符号语言的综合运用,虽然在学习线段知识时已有接触,但要达到融会贯通的程度还需要经过一段时间的学习和训练.11/ 11。
仰角和俯角
![仰角和俯角](https://img.taocdn.com/s3/m/623cb76c482fb4daa58d4bb0.png)
≈6.7+12.51+7.9≈27.1, 4.2米 32°
28°
答:路基下底的宽约为27.1米.A E
F
B
利用直角三角形解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形, 转化为解直角三角形的问题) (2)根据条件,适当选用锐角三角函数,运用直角 三角形的有关性质解直角三角形. (3)得到数学问题的答案. (4)得到实际问题的答案.
重点:利用坡度和坡角等条件,解决有关实际问题.
难点:将实际问题中的数量关系转化为数学中的直角
三角形中的元素之间的关系.
1、坡度(坡比)的概念
在修路、挖河、开渠和筑坝时,设计图纸上都要注
明斜坡的倾斜程度.
如图,坡面的铅垂高度(h)和水平长度(l)的比 h
叫做坡面的坡度(或坡比),记作i,即i= l
坡度通常写成1∶m的形式,如i=1:6.
学习目标:
1、理解仰角、俯角的概念及意义. 2、会利用解直角三角形的知识解决与仰角、俯角有关 的实际问题,提高把实际问题转化为数学问题的能力.
重点:会利用解直角三角形的知识解决与仰角、俯角
有关的实际问题.
难点:构造直角三角形,把实际问题转化为数学问题.
如图,在进行测量时,从下向上看,视线与水平线的夹 角叫做仰角,从上往下看,视线与水平线的夹角叫做俯角.
坡面与水平面的夹角叫做坡角,记作α,
h 有i= l=tanα.
i=h:l
h
α
l
显然,坡度越大,坡角就越大,坡面就越陡.
通过本节课的学习,你有哪些收获呢? 3、利用直角三角形解决实际问题的方法:
{ 实际问题图形→数学图形.
(1)两个转化 已知条件→数学图形中的边角关系.
数学九年级上册《仰角、俯角问题》课件
![数学九年级上册《仰角、俯角问题》课件](https://img.taocdn.com/s3/m/7136acc6f80f76c66137ee06eff9aef8951e4849.png)
视线
铅
仰角
直
线
俯角
水平线
视线
2.梯形通常分解成矩形和直角三角形(或分解成平行 四边形与直角三角形)来处理.
3.认真阅读题目,把实际问题去掉情境转化为数学中 的几何问题.把四边形问题转化为特殊四边形(矩形或平 行四边形)与三角形来解决.
水平距离为120m,这栋高楼有多高(结果精确到0.1m).
分析:我们知道,在视线与水平线所 成的角中视线在水平线上方的是仰角,
仰角 水平线
B
视线在水平线下方的是俯角,因此,
在图中,α=30°,β=60° Rt△ABD中,α=30°,AD=120,
αD Aβ
所以利用解直角三角形的知识求出
俯角
BD;类似地可以求出CD,进而求出BC.
C
解:如图,a = 30°,β= 60°, AD=120.
tan BD ,tan CD
AD
AD
BD AD tan 120 tan30
120 3 40 3 3
CD AD tan 120 tan 60
B
αD Aβ
120 3 120 3
BC BD CD 40 3 120 3
B 图1 C
B 图2 C
3.为测量松树AB的高度,一个人站在距松树15米的E处,测 得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确 到0.1米).
A 解:依题意可知,在Rt∆ADC中
AD tanACD CD tan52 15 1.28015
19.2米
CLeabharlann DEB所以树高为19.2+1.72≈20.9(米)
24.4 解直角三角形
第2课时 仰角、俯角问题
学习目标
新高考数学一轮复习考点知识归类讲义 第29讲 解三角形应用举例及综合问题
![新高考数学一轮复习考点知识归类讲义 第29讲 解三角形应用举例及综合问题](https://img.taocdn.com/s3/m/c6821104abea998fcc22bcd126fff705cc175cd5.png)
新高考数学一轮复习考点知识归类讲义第29讲解三角形应用举例及综合问题1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.➢考点1 解三角形应用举例[名师点睛]1.距离问题的类型及解法(1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.2.高度问题的类型及解法(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.3.角度问题的类型及解法(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.[典例]1.(2022·湖北·华中师大一附中模拟预测)为了测量一个不规则公园,C D 两点之间的距离,如图,在东西方向上选取相距1km 的,A B 两点,点B 在点A 的正东方向上,且,,,A B C D 四点在同一水平面上.从点A 处观测得点C 在它的东北方向上,点D 在它的西北方向上;从点B 处观测得点C 在它的北偏东15︒方向上,点D 在它的北偏西75方向上,则,C D 之间的距离为______km.【答案】2 【分析】由题意确定相应的各角的度数,在ABC 中,由正弦定理求得BC ,同理再求出DB ,解DBC △,求得答案.【详解】由题意可知,904545,9045135,9015105CAB DAB CBA ∠=-=∠=+=∠=+=,157590,15CDB DBA ∠=+=∠= ,故在ABC 中,1804510530ACB ∠=--=,故sin sin BD AB DAB ADB =∠∠ ,1sin 452sin 30BC ⨯==在ABD △中,1801513530ADB ∠=--=, 故sin sin BC AB CAB ACB =∠∠ ,1sin1352sin 30BD ⨯==, 所以在DBC △中,90CBD ∠=,则22222CD BC DB =+=+= ,故答案为:22. (2021·全国甲卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m).三角高程测量法是珠峰高程测量方法之一,如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ′,B ′,C ′满足∠A ′C ′B ′=45°,∠A ′B ′C ′=60°.由C 点测得B 点的仰角为15°,BB ′与CC ′的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A ′B ′C ′的高度差AA ′-CC ′约为(3≈1.732)( )A.346B.373C.446D.473答案 B解析如图所示,根据题意过C 作CE ∥C ′B ′,交BB ′于E ,过B 作BD ∥A ′B ′,交AA ′于D ,则BE =100,C ′B ′=CE =100tan 15°.在△A ′C ′B ′中,∠C ′A ′B ′=180°-∠A ′C ′B ′-∠A ′B ′C ′=75°,则BD =A ′B ′=C ′B ′·sin 45°sin 75°,又在B 点处测得A 点的仰角为45°,所以AD =BD =C ′B ′·sin 45°sin 75°, 所以高度差AA ′-CC ′=AD +BE=C ′B ′·sin 45°sin 75°+100=100tan 15°·sin 45°sin 75°+100=100sin 45°sin 15°+100=100×2222×⎝ ⎛⎭⎪⎫32-12+100=100(3+1)+100≈373.3.(2022·全国·高三专题练习)公路北侧有一幢楼,高为60米,公路与楼脚底面在同一平面上.一人在公路上向东行走,在点A 处测得楼顶的仰角为45°,行走80米到点B 处,测得仰角为30°,再行走80米到点C 处,测得仰角为θ.则tan θ=______________.【答案】37777【解析】首先得到60,603OA OB ==,然后由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠,2222cos OC BC OB BC OB OBC =+-⋅∠,然后求出OC 即可【详解】如图,O 为楼脚,OP 为楼高,则60OP =,易得:60,603OA OB ==由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠,2222cos OC BC OB BC OB OBC =+-⋅∠,两式相加得:()22222230800OA OC AB OB OC +=+⇒=,则77OC =故377tan 2077θ=377[举一反三] 1.(2022·山东师范大学附中模拟预测)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.一个数学学习兴趣小组研究发现,书中提供的测量方法甚是巧妙,可以回避现代测量器械的应用.现该兴趣小组沿用古法测量一山体高度,如图点E 、H 、G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,记为h ,EG 为测量标杆问的距离,记为d ,GC 、EH 分别记为,a b ,则该山体的高AB =( )A .hd h a b +-B .hd h a b--C .hd d a b +-D .hd d a b -- 【答案】A【分析】根据所给数据,利用解直角三角形先求出BM ,即可得解.【详解】连接FD ,并延长交AB 于M 点,如图, 因为在Rt BMD △中tan h BDM b ∠=,所以||||||tan BM BM b MD BDM h ==∠;又因为在Rt BMF △中tan h BFM a∠=, 所以||||||tan BM BM a MF BFM h ==∠,所以||||||||BM a BM b MF MD d h h-=-=, 所以||hd BM a b =-,即||hd AB BM h h a b =+=+-, 故选:A .2.(2022·江苏南通·高三期末)某校数学建模社团学生为了测量该校操场旗杆的高AB ,先在旗杆底端的正西方点C 处测得杆顶的仰角为45°,然后从点C 处沿南偏东30°方向前进20m 到达点D 处,在D 处测得杆顶的仰角为30°,则旗杆的高为( )A .20mB .10mC .103mD .1033m 【答案】B 【分析】根据条件确定相关各角的度数,表示出AB ,,AD AC 等边的长度,然后在ACD △中用余弦定理即可解得答案.【详解】如图示,AB 表示旗杆,由题意可知:45,0,630ACB ACD ADB ∠=∠=∠=︒︒︒,所以设AB x = ,则3,AD x AC x ==,在ACD △ 中,2222cos AD AC CD AC CD ACD =+-⨯⨯⨯∠ ,即2221(3)()(20)2202x x x =+-⨯⨯⨯ ,解得10x = ,(20x =-舍去),故选:B.3.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ;②测量A ∠、B 、BC ;③测量C ∠、AC 、BC ;④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.【答案】②③【分析】利用正弦定理可判断①②,利用余弦定理可判断③,根据已知条件可判断④不满足条件.【详解】对于①,由正弦定理可得sin sin AC BC B A =,则sin sin AC A B BC =, 若AC BC >且A ∠为锐角,则sin sin sin AC A B A AB=>,此时B 有两解, 则C ∠也有两解,此时AB 也有两解;对于②,若已知A ∠、B ,则C ∠确定,由正弦定理sin sin BC AB A C=可知AB 唯一确定; 对于③,若已知C ∠、AC 、BC ,由余弦定理可得222cos AB AC BC AC BC C =+-⋅ 则AB 唯一确定;对于④,若已知A ∠、C ∠、B ,则AB 不确定.故答案为:②③.4.(2022·辽宁·大连市一0三中学模拟预测)如图所示,遥感卫星发现海面上有三个小岛,小岛 B 位于小岛A 北偏东75距离60海里处,小岛B 北偏东15距离330海里处有一个小岛 C .(1)求小岛A 到小岛C 的距离;(2)如果有游客想直接从小岛A 出发到小岛 C ,求游船航行的方向.解:(1)在ABC 中,6030330,==AB BC1807515120ABC ∠=-+=,根据余弦定理得:.2222cos AC AB BC AB BC ABC =+-⋅⋅∠2260(30330)260(30330)cos1205400=+-⨯⨯⋅=306=AC 所以小岛A 到小岛 C 的最短距离是306.(2)根据正弦定理得:sin sin AC AB ABC ACB =∠∠ 30660120sin ACB=∠ 解得2sin ACB ∠=在ABC ∆中,,<BC ACACB ∴∠为锐角45ACB ∴∠=1801204515CAB ∴∠=--=. 由751560-=得游船应该沿北偏东60的方向航行答:小岛A 到小岛 C 的最短距离是306;游船应该沿北偏东60的方向航行. 5.(2022·广东·高三开学考试)如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得30BCD ∠=︒,135BDC ∠=︒,50CD =米,在点C 测得塔顶A 的仰角为45°,求塔高AB .【解】在BCD △中,1801803013515CBD BCD BDC ∠=︒-∠-∠=︒-︒-︒=︒,∵()sin sin15sin 4530CBD ∠=︒=︒-︒sin 45cos30cos45sin30=︒︒-︒︒62-=由正弦定理sin sin BC CD BDC CBD =∠∠得()sin 5031sin 62CD BDC BC CBD ⋅∠===∠-.在Rt ABC △中45ACB ∠=︒.∴)5031AB BC ==.所以塔高AB 为)5031米.➢考点2 求解平面几何问题[名师点睛]平面几何中解三角形问题的求解思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.1.(2021·新高考八省联考)在四边形ABCD 中,AB ∥CD ,AD =BD =CD =1.(1)若AB =32,求BC ; (2)若AB =2BC ,求cos ∠BDC . 解(1)如图所示,在△ABD 中,由余弦定理可知,cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =⎝ ⎛⎭⎪⎫322+12-122×32×1=34.∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD =34. 在△BCD 中,由余弦定理可得,BC 2=BD 2+CD 2-2BD ·CD cos ∠BDC =12+12-2×1×1×34,∴BC =22. (2)设BC =x ,则AB =2BC =2x .由余弦定理可知, cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =(2x )2+12-122×2x ×1=x ,①cos ∠BDC =CD 2+BD 2-BC 22CD ·BD =12+12-x 22×1×1=2-x 22.②∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD .联立①②,可得2-x 22=x ,整理得x 2+2x -2=0,解得x 1=3-1,x 2=-3-1(舍去).将x 1=3-1代入②,解得cos ∠BDC =3-1.2.(2022·湖北·襄阳四中模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D . (1)证明:AB DBAC DC=,2AD AB AC DB DC =⋅-⋅;(2)若1AD =,23A π=,求DB DC ⋅的最小值. 解:(1)在ABD △和BCD △中,可得BAD CAD ∠=∠,ADB ADC π∠+∠=, 所以sin sin BAD CAD ∠=∠,sin sin ADB ADC ∠=∠, 由正弦定理,得sin sin AB BDADB BAD =∠∠,sin sin AC DC ADC CAD=∠∠,两式相除得AB DB AC DC =,可得ABBD BC AB AC=+,AC DC BC AB AC =+, 又由cos cos ABD ABC ∠=∠,根据余弦定理得22222222AB BD AD AB BC AC AB BD AB BC+-+-=⋅⋅ 所以()()22222222BD DC BDAD AB BD AB BC AC AB AC BD BC BD BC BC BC=+-+-=+-- 代入可得222AC AB AD AB AC BD DC AB AC AB AC=+-⋅++ABAC AB AC BD DC AB AC BD DC AB AC AB AC ⎛⎫=⋅+-⋅=⋅-⋅ ⎪++⎝⎭.(2)由1AD =,23A π=及ABD ACD ABC S S S +=△△△,可得b c bc += 根据基本不等式得2bc b c bc=+≥,解得4bc ≥,当且仅当2b c ==时等号成立,又由1AD =,2AD AB AC DB DC =⋅-⋅,可得13DB DC bc ⋅=-≥, 所以DB DC ⋅的最小值是3. [举一反三]1.(2022·山东·济南市历城第二中学模拟预测)如图,已知在ABC 中,M 为BC 上一点,2AB AC BC =≤,π0,2B ⎛⎫∈ ⎪⎝⎭且15sin 8B =.(1)若AM BM =,求ACAM的值; (2)若AM 为BAC ∠的平分线,且1AC =,求ACM △的面积.解:(1)因为15sin B =π0,2B ⎛⎫∈ ⎪⎝⎭,所以27cos 1sin 8B B -=,因为2AB AC =,所以由正弦定理知sin 2sin C ABB AC==,即sin 2sin C B =,因为AM BM =,所以2AMC B ∠=∠,sin sin 22sin cos AMC B B B ∠==,在AMC 中,sin 2sin cos 7cos sin 2sin 8AC AMC B B B AM C B ∠====. (2)由题意知22AB AC ==,设BC x =,由余弦定理得222217cos 48x B x +-==,解得2BC =或32BC =.因为2AC BC ≤,所以2BC =,因为AM 为BAC ∠的平分线,BAM CAM ∠=∠所以11sin 2211sin 22ABM ACMAB AM BAM BM hS SAC AM CAM CM h⋅∠⨯==⋅∠⨯(h 为底边BC 的高)所以2BM AB CMAC ==,故1233CM BC ==,而由(1)知sin 2sin C B ==112sin 1223ACM S AC CM C =⋅⋅=⨯⨯=△. 2.(2022·福建省福州第一中学三模)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,sinsin2A Bb c B +=. (1)求角C ;(2)若AB 边上的高线长为ABC 面积的最小值. 解:(1)由已知A B C π++=,所以sin sin cos 222A B C Cb b b π+-==, 所以cossin 2C b c B =,由正弦定理得sin cos sin sin 2CB C B =, 因为B 、()0,C π∈,则sin 0B >,022C π<<,cos 02C>,所以,cos sin 2C C =,则cos 2sin cos 222C C C =,所以1sin 22C =,所以26C π=,则3C π=.(2)由11sin 22ABCSc ab C =⋅=,得4ab c =, 由余弦定理222222cos 2c a b ab C a b ab ab ab ab =+-=+-≥-=, 即24c c ≥,因为0c >,则4c ≥,当且仅当4a b c ===取等号,此时ABC 面积的最小值为3.(2022·山东师范大学附中模拟预测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________. (1)求角B ;(2)若a c +=D 是AC 的中点,求线段BD 的取值范围.解:(1)选①,由2sin cos sin b C B c B =+及正弦定理可得2sin sin cos sin sin B C C B C B =+,所以,sin sin cos C B C B =,因为B 、()0,C π∈,所以,sin 0C >,则sin 0B B =>,所以,tan B =3B π∴=;选②,由cos cos 2B bC a c=-及正弦定理可得()sin cos 2sin sin cos B C A C B =-, 所以,()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=,A 、()0,B π∈,sin 0A ∴>,所以,1cos 2B =,则3B π=.(2)因为a c +=0a <<由已知AD DC =,即BD BA BC BD -=-,所以,2BD BA BC =+, 所以,()222242BD BA BC BA BC BA BC =+=++⋅,即())22222242cos33BD c a ac c a ac a c ac aa π=++=++=+-=-22993,344a a ⎛⎡⎫=+=+∈ ⎪⎢ ⎣⎭⎝⎭,所以,34BD ≤<➢考点3 三角函数与解三角形的交汇问题(2022·浙江省新昌中学模拟预测)已知函数21()cos sin 2f x x x x ωωω=-+,其中0>ω,若实数12,x x 满足()()122f x f x -=时,12x x -的最小值为2π. (1)求ω的值及()f x 的对称中心;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C的对边,若()1,f A a =-=ABC 周长的取值范围. 解:(1)211cos 21()cos sin 2222x f x x x x x ωωωωω-=-+=-+12cos 2sin 226x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 显然()f x 的最大值为1,最小值为1-,则()()122f x f x -=时,12x x -的最小值等于2T,则22T π=,则22ππω=,1ω=;令2,6x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,则()f x 的对称中心为,0,122k k ππ⎛⎫-+∈ ⎪⎝⎭Z ; (2)()sin(2)16f A A π=+=-,22,62A k k πππ+=-+∈Z ,又()0,A π∈,则23A π=, 由正弦定理得2sin sin sina b cA B C====,则2sin ,2sin b B c C ==, 则周长为2sin 2sin 2sin 2sin 3a b c B C B B π⎛⎫++=+=+- ⎪⎝⎭3sin 3cos 32sin()3B B B π=++=++,又03B π<<,则2333B πππ<+<,则32sin()23B π<+≤,故周长的取值范围为(23,23⎤+⎦.[举一反三]1.(2022·浙江湖州·模拟预测)已知函数()sin(),0,0,02f x A x x R A πωϕωϕ⎛⎫=+∈>><< ⎪⎝⎭的部分图像如图所示.(1)求()f x 的解析式;(2)在锐角ABC 中,若边1BC =,且3212Af π⎛⎫-= ⎪⎝⎭,求ABC 周长的最大值.解:(1)由图得2A =,32ππ3π43124T ⎛⎫=--= ⎪⎝⎭,又2πT ω=,所以2ω=, 将点π,012⎛⎫- ⎪⎝⎭代入()2sin(2)f x x ϕ=+,得πsin 06ϕ⎛⎫-+= ⎪⎝⎭,即π,6k k Z ϕπ=+∈, 考虑到π02ϕ<<,故π6ϕ=,即()f x 的解析式为π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭(2)由π3212A f ⎛⎫-= ⎪⎝⎭3sin A =及π0,2A ⎛⎫∈ ⎪⎝⎭,故π3A =,因为ABC 为锐角三角形,且π3A =,故ππ,62B ⎛⎫∈ ⎪⎝⎭由正弦定理,得sin sin sin a b c A B C ===所以2π1sin )1sin sin3a b c B C B B ⎤⎛⎫++=+=+- ⎪⎥⎝⎭⎦1π12sin cos 12sin 26B B B ⎛⎫⎛⎫=+⋅=++ ⎪ ⎪⎝⎭⎝⎭又ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,故π2sin 6B ⎛⎫+∈ ⎪⎝⎭, 故ABC 周长的最大值为3.2.(2022·山东淄博·三模)已知函数21()cos cos (0)2f x x x x ωωωω=-+>,其图像上相(1)求函数()f x 的解析式;(2)记ABC 的内角,,A B C 的对边分别为,,a b c ,4a =,12bc =,()1f A =.若角A 的平分线AD交BC 于D ,求AD 的长.解:(1)因为()211cos cos 2cos 222f x x x x x x ωωωωω=-+=-πsin 26x ω⎛⎫=- ⎪⎝⎭,设函数()f x 的周期为T ,由题意222444πT ⎛⎫+=⎪+ ⎝⎭,即2224ππω⎛⎫= ⎪⎝⎭,解得1ω=,所以()πsin 26f x x ⎛⎫=- ⎪⎝⎭.(2)由()1f A =得:sin 216A π⎛⎫-= ⎪⎝⎭,即22,Z 62A k k πππ-=+∈,解得,Z 3A k k ππ=+∈,因为[0,]A π∈,所以π3A =, 因为A 的平分线AD 交BC 于D ,所以ABCABDACDSSS=+,即111sinsin sin 232626bc c AD b AD πππ=⋅⋅+⋅⋅,可得AD = 由余弦定理得:,()22222cos 3a b c bc A b c bc =+-=+-,而12bc =,得()252b c +=,因此AD ==。
26方位角与仰俯角
![26方位角与仰俯角](https://img.taocdn.com/s3/m/1da160b61a37f111f1855bd9.png)
高考第一轮复习
• 4.(2013·梅州模拟)如图3-8-3,为 了测量河的宽度,在一岸边选定两点A, B望对岸的标记物C,测得∠CAB=30°, ∠CBA=75°,AB=120 m.则这条河的 宽度为________m.
台山市李谭更开纪念中学数学组
高考第一轮复习
【解析】 因为∠ CAB= 30° ,∠CBA= 75°, 则∠ ACB= 180°- 30°- 75°= 75°, 所以 AC= AB=120 m, 1 1 1 所以 S△ ABC= · AC· AB· sin A= ×120× 120× =3 2 2 2 600, 1 设这条河的宽度为 h,则S△ ABC= × AB·h, 2 1 ∴ h= AC· sin A= 120× = 60(m). 2
【答案】
60
台山市李谭更开纪念中学数学组
高考第一轮复习 • 某海滨浴场东西走向的海岸线可近似看作
直线(如图).1号救生员在A处的瞭望台 上观察海面情况,发现东北方向海中的B处 有人求救.他有两种方案进行救助,方案 一:向前跑300米到离B最近的D点,再跳入 海中游到B点救助;方案二:从A处入海, 沿AB方向径直前往救援.1号救生员选择了 方案一。若每位救生员在岸上跑步的速度 是6米/秒,在水中游泳的速度是2米/秒。 (1)请问1号救生员的做法是否合理? (2)若2号救生员从A跑到C, B在C的北偏东 25°方向,再跳入海中游到B点救助,请问 谁先到达B? (参考数据:sin65°≈0.9, cos65°≈0.4,tan65°≈2,)
sin6509cos6504tan652台山市李谭更开纪念中学数学组高考第一轮复习台山市李谭更开纪念中学数学组高考第一轮复习台山市李谭更开纪念中学数学组高考第一轮复习?如图某校的教室a位于工地o的正西方向且oa200m一台拖拉机从o点出发以每秒5m的速度沿北偏西53方向行驶设拖拉机的噪声污染半径为130m试问教室a是否在拖拉机的噪声污染范围内
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得 AC BC sin ABC 32sin 30 16
sin BAC sin15 sin15
在等腰Rt△ACD中,故
CD 2 AC 2 16 8 2 16( 3 1)
2
2 sin15 sin15
∴山的高度为16( 3 1) 米。
二、教学重点、难点 重点:能根据正弦定理、余弦定理的特点找到已
知条件和所求角的关系 难点:灵活运用正弦定理和余弦定理解关于角度
的问题
解应用题中的几个角的概念
1、仰角、俯角的概念: 在测量时,视线与水平线 所成的角中,视线在水平线 上方的角叫仰角,在水平线 下方的角叫做俯角。如图:
2、方向角:指北或指南 方向线与目标方向线所成 的小于90°的水平角,叫 方向角,如图
AB2 CA2 CB2 2CA CB cosC 求得AB的长。
例题1:要测量河对岸两地A、B之间的距离,在岸边 选取相距100 3 米的C、D两地,并测得∠ADC=30°、 ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 D四点在同一平面上,求A、B两地的距离。
解:在△ACD中, ∠DAC=180°-(∠ACD+∠ADC) =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3
例3 杆OA、OB所受的 力(精确到0.1)。
700 500
例4如图在海滨某城市附近海面有一台风。 据监测,台风中心位于城市A的南偏东300方 向、距城市300km的海面P处,并以20km/h的 速度向北偏西4500方向移动。如果台风侵袭 的范围为圆形区域,半径为120km。问几小
时后该城市开始受到台风的侵袭(精确到 0.1h)?
AB BC 可求边AB的长。
sin C sin A
③两点都不能到达 第一步:在△ACD中,测角∠DAC,
由正弦定理
Hale Waihona Puke sinAC ADC
sin
DC DAC
求出AC的长;
第二步:在△BCD中求出角∠DBC,
由正弦定理 BC DC 求出BC的长;
sin BDC sin DBC
第三步:在△ABC中,由余弦定理
2、底部不能到达的 测 量 边 CD , 测 量 ∠ C 和 ∠ ADB ,
AB
CD
cot C cot ADB
例题2:在山顶铁塔上B 处测得地面上一点 A的俯 角 60 ,在塔底 C处测得点 A的俯角 45 , 已知铁塔BC部分高 32 米,求山高CD。
解:在△ABC中,∠ABC=30°, ∠ACB =135°, ∴∠CAB =180°-(∠ACB+∠ABC) =180°-(135°+30°)=15° 又BC=32, 由正弦定理 BC AC ,
AB2 CA2 CB2 2CA CB cosC
(100 3)2 (200sin 75)2
2 100 3 200sin 75cos 75 5 1002
∴ AB 100 5
所求A、B两地间的距离为100 5 米。
测量垂直高度
1、底部可以到达的;
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
1、测水量平问距题离:的测量 ①两点间不能到达, 又不能相互看到。
需要测量CB、CA的长和角C的大小,由余弦定理,
AB2 CA2 CB2 2CA CB cosC可求得AB的长。
②两点能相互看到,但不能到达。
需要测量BC的长、角B和角C的大小, 由三角形的内角和,求出角A然后 由正弦定理,
在△BCD中, ∠CBD=180°-(∠BCD+∠BDC) =180°-(45°+45°+30°)=60°
由正弦定理 BC DC , 得
sin BDC sin DBC
BC DC sin BDC 100 3 sin 75 200sin 75
sin DBC
sin 60
在△ABC中由余弦定理,
解应用题的一般步骤是:
1、分析:理解题意,画出示意图 2、建模:把已知量与求解量集中在一个三角形中 3、求解:运用正弦定理和余弦定理,有顺序地解这 些三子角形,求得数学模型的解。 4、检验:检验所求的解是否符合实际意义,从而 得出实际问题的解。
实际问题→数学问题(三角形) →数学问题的解(解三角形)→实际问题的解
1.2.3《解三角形应用举例》
审校:王伟
教学目标
1、能够运用正弦定理、余弦定理等知识和方法解 决一些有关计算角度的实际问题
2、通过综合训练强化学生的相应能力,让学生有 效、积极、主动地参与到探究问题的过程中来, 逐步让学生自主发现规律,举一反三。
3、培养学生提出问题、正确分析问题、独立解决 问题的能力,并激发学生的探索精神。