人教A版必修4 1.1.2 弧度制 学案
人教a版必修4学案:1.1.2弧度制(含答案)
1.1.2 弧度制自主学习知识梳理 1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于__________的弧所对的圆心角叫做1弧度的角,记作________. (3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:__________;这里α的正负由角α的____________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是______.23.我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α).对点讲练知识点一 角度制与弧度制的换算例1 (1)把112°30′化成弧度;(2)把-7π12化成角度.回顾归纳 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可解.把弧度转化为角度时,直接用弧度数乘以180°π即可.变式训练1 将下列角按要求转化: (1)300°=________rad ;(2)-22°30′=________rad ; (3)8π5=________度.知识点二 利用弧度制表示终边相同的角例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°; (2)23π6; (3)-4.回顾归纳 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 变式训练2 将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.知识点三 弧长、扇形面积的有关问题例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?回顾归纳 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.变式训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式.易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.课时作业一、选择题 1.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α|α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z }D.⎩⎨⎧⎭⎬⎫α|α=2k π+π6,k ∈Z 2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2C.2sin 1D .2sin 1 4.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题6.若扇形圆心角为216°,弧长为30π,则扇形半径为________.7.若2π<α<4π,且α与-7π6角的终边垂直,则α=________.8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=____________.三、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).10. 如右图,已知扇形OAB 的中心角为4,其面积为2 cm 2,求扇形的周长和弦AB 的长.1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad(3)|α|=lr终边的旋转方向 正数 负数 0解 半径为r ,圆心角n °的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .对点讲练例1 解 (1)∵112°30′=112.5°=⎝⎛⎭⎫2252° =2252×π180=5π8. (2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.变式训练1 (1)5π3 (2)-π8(3)288例2 解 (1)∵-1 500°=-1 800°+300° =-5×360°+300°.∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.变式训练2 -10π+7π4解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+7π4.例3 解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.所以当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2. 变式训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 课时作业 1.D 2.A3.C [r =1sin 1,∴l =|α|r =2sin 1.]4.D [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.B [设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsinπ6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.] 6.25解析 216°=216×π180=6π5,l =30π=α·r =6π5r ,∴r =25.7.7π3或10π3解析 -7π6+7π2=14π6=7π3,-7π6+9π2=20π6=10π3. 8.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=7π3, π3-2π=-5π3,π3-4π=-11π3. 9.解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|2k π-34π≤α≤2k π+3π4,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .10.解 设AB 的长为l ,半径OA =r ,则S 扇形=12lr =2,∴lr =4, ①设扇形的中心角∠AOB 的弧度数为α,则|α|=lr =4,∴l =4r , ② 由①、②解得r =1,l =4.∴扇形的周长为l +2r =6 (cm), 如图作OH ⊥AB 于H ,则AB =2AH =2r sin 2π-42=2r sin(π-2)=2r sin 2(cm).。
最新人教A版数学必修四导学案:1.1.2弧度制
1.
2.已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.
3.如果弓形的弧所对的圆心角为 ,弓形的弦长为4 cm,则弓形的面积是____cm2.
4.已知扇形的圆心角为2 rad,扇形的周长为8 cm,则扇形的面积为_________cm2.
3.记住公式 ( 为以角 作为圆心角时所对圆弧的长, 为圆半径)。
二:课前预习
我们把周角的 规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.
1.弧度角的定义:
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
说明:我们用弧度制表示角的时候,“弧度”或 经常省略,即只写一实数表示角的度量。
高中数学1.1.2弧度制教案新人教A版必修4
1.2弧度制一、关于教学内容的思考教学任务:帮助学生明确弧度制的概念,弧度与角度的换算,弧长公式及扇形公式. 教学目的:引导学生认识弧度制,并确立1弧度的含义。
教学意义:培养学生用转化的思想对同一事物进行不同方式描述。
二、教学过程1.1弧度的角定义:我们规定,把长度等于半径长的弧所对的圆心角叫做1弧度的角。
这种用弧度作为单位来度量角的单位制叫做弧度制。
2.弧长公式:一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是rl =||α。
3.弧度与角度的换算:π2360=︒弧度1801()5718'1180rad rad ππ⎧=︒≈︒⎪⇒⎨⎪︒=⎩例 若)(4Z k k ∈+=ππα,则在第几象限?一、三 例 填写特殊角的换算对应表:度0° 30° 45° 60° 90° 弧度0 6π 4π 3π 2π 120° 135° 150°180° 270° 360° 23π 34π 56π π 32π 2π4.弧度制下的弧长公式及扇形公式:R l ||α=,22121R lR S α==。
例 已知半径为10的圆中,弦AB 的长为10。
(1) 求弦AB 所对的圆心角α的大小;3π (2) 求α所在的扇形弧长l 及弧所在的弓形面积。
π310,)233(50-π 例 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?2,10==αr三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子1.若α是第三象限角,则απ+所在的象限是( A )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若βα,满足22πβαπ<<<-,则βα-的取值范围是 )0,(π- .3.若三角形的三个内角之比为3:2:1,则此三角形的最小内角的弧度数为 6π .4.如图所示,已知单位圆上一点)0,1(A 按逆时针方向做匀速圆周运动,s 1时间转过的弧度数是(0)θθπ<≤,经过s 2到达第三象限,经过s 14又转到最初位置,则θ的弧度数是 75,74ππ .五、课后作业 同步练习1. 半径为2的圆中,弧长为4的弧所对圆心角大小是多少? 22.已知扇形周长为10,为4,求扇形的圆心角。
高中数学第一章三角函数1.1.2弧度制教案新人教A版必修4
1.1.2 弧度制一、教学目标:1.理解1弧度的角的意义,了解弧度制的概念,领会定义的合理性;了解角的集合与实数集合之间可以建立一一对应关系;2.在亲历知识的建构过程中,渗透数形结合、特殊到一般等思想方法;3.体验角度制与弧度制的区别、联系与转化,能进行角度与弧度的换算,牢记特殊角的弧度数。
二、教学重点与难点:1、教学重点:弧度制的概念;弧度与角度的换算2、教学难点:弧度制的概念 三、教学策略与手段:采用探究式教学,以问题串的形式引导学生得到弧度制的概念、深入理解概念并应用概念。
利用PPT 和几何画板课件静态动态相结合,展示1弧度的角,帮助学生深入理解概念。
六、教学基本流程:四、教学过程: (一)复习引入1、上节课我们把角的概念推广到了任意角,包括正角、负角和零角。
这些角都是用“度”来度量的,这种用“度”作单位来度量角的制度称为角度制。
回忆一下,在角度制中,1度的角是如何定义的?弧长公式与扇形面积公式是什么?2、在我们度量长度时,有时用“米”作单位,有时用“尺”作单位,有不同的单位制,度量重量时,可以使用“千克”、“磅”等不同的单位制,角的度量除了角度制外,是否也能用不同的单位制呢? (二)新课讲授问题一:圆心角︒=30n ,当半径r 为1,2,3,4时,计算圆心角n 所对弧长l 与半径r 的比值rl 。
(1)当圆心角不变,半径变化时,rl是定值;(比值是一个实数,因此是10进制,比角度的60进制用起来更习惯)(2)若半径不变,圆心角变化时,rl随圆心角的变化而变化。
因此,弧长与半径的比rl只与圆心角的大小有关,与半径大小无关,我们可以用这个比值来度量角,这就是度量角的另一种单位制——弧度制。
与角度制中先定义1度角的大小一样,我们也要先定义1弧度的角:定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度。
几何画板演示: (1)1弧度的角rl=1,此时l r =(是一个比︒60的角略小的角)。
高一数学人教A版必修4第一章1.1.2 弧度制 教学设计
长来定义角度,而产生新的角度单位呢?那么我们就先通过简单的计算来看看能不能发现什么规律?【学生活动】分组讨论,探索研究探究1:角度为30,60的圆心角,当半径1,2,3,4r =时,分别计算对应的弧长l ,计算后你们能发现什么规律?有没有什么比值或者量是不变的?30θ=, 1r =时,3011801806n r l πππ⨯⨯===,6π=r l 2r =时,3021801803n r l πππ⨯⨯===,6π=r l3r =时,3031801802n r l πππ⨯⨯===,6π=r l4r =时,30421801803n r l πππ⨯⨯===,6π=r l 60θ=,1r =时,6011801803n r l πππ⨯⨯===,3π=r l2r =时,60221801803n r l πππ⨯⨯===,3π=r l 3r =时,603180180n r l πππ⨯⨯===,3π=r l4r =时,60441801803n r l πππ⨯⨯===,3π=r l 发现结论:圆心角不变则比值不变,这个比值与弧长和半径的大小无关,只和角度大小有关。
(抽取两个小组分享他们的发现)因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是度量角的另外一种单位制——弧度制(客观性,有理可循)。
环节三:归纳概括(新概念和新公式),初步巩固及总结(一收)【教师活动】弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号1 rad 表示,读作1弧度。
这种以弧度为单位来度量角的制度叫做弧度制。
如图, 角在形成过程中,射线上的任意一点在旋转过程中,走过的弧长以及圆弧所在圆的半径虽然不同,但是走过的角度是相同的(几何画板展示)【学生活动】即时回答:弧长分别为r,2r,半圆,一个圆所对的圆心角的弧度数,可以发现圆心角弧度数等于弧长和半径的比值,得出结论rl=α 【教师活动】几何画板展示问题,并顺便说明正角的弧度数为正,负角弧度数为负,零角的弧度数为0.【教师活动】提问:弧度制与角度制相比,不同之处在哪里? (教师引导学生进行小结) 【学生活动】在教师的引导下,整理得:1.定义方式不同:弧度制是以“弧度”为单位的度量角的单位制,角度制是以“度”教师提供的素材,通过小组探究讨论,让学生有充足的时间空间自主完成知识建构让学生体会数学中下定义本质上是抓住事物的本质,而事物的本质则是变化过程中的不变性.通过具体图象,以形助数,直观定义新概念。
高中数学(1.1.2弧度制)教案新人教A版必修4
1.1.2 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要•现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单1位进行度量,并且一度的角等于周角的,记作1 °.360°通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法•在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性•这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的- 对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的•通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性•通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的•进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点三维目标1•通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2•通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣• 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算•教学难点:弧度的概念及其与角度的关系• 课时安排1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器一一日晷,或者利用普遍使用的钟表•实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法一一弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系一一弧的度数等于圆心角的度数随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数. 圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里我们学习过角的度量,1。
高中数学1.1.2弧度制导学案新人教A版必修4
§1.1.2 弧度制1.理解弧度制的意义,正确地进行弧度制与角度制的换算,熟记特殊角的弧度数.2.了解角的集合与实数集R之间可以成立起一一对应关系.3.掌握弧度制下的弧长公式、扇形面积公式,会利用弧度制、弧长公式、扇形面积公式解决某些简单的实际问题.69在初中,咱们常常利用量角器量取角的大小,那么角的大小的气宇单位为何?二、新课导学※探索新知问题1:什么叫角度制?问题2:角度制下扇形弧长公式是什么?扇形面积公式是什么?问题3:什么是1弧度的角?弧度制的概念是什么?问题4:弧度制与角度制之间的换算公式是如何的?问题5:角的集合与实数集R之间成立了________对应关系。
问题6:用弧度别离写出第一象限、第二象限、第三象限、第四象限角的集合.问题7:回忆初中弧长公式,扇形面积公式的推导 进程。
回答在弧度制下的弧长公式,扇形面积公式。
※ 典型例题例1:把下列各角进行弧度与度之间的转化(用两种不同的方式) (1)53π(2) (3)252º (4)11º15¹变式训练:①填表②若6-=α,则α为第几象限角?③用弧度制表示终边在y 轴上的角的集合___ ____.用弧度制表示终边在第四象限的角的集合__ _____.例2: ①已知扇形半径为10cm,圆心角为60º,求扇形弧长和面积 ②已知扇形的周长为8cm , 圆心角为2rad,求扇形的面积变式训练(1):一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求此扇形的最大面积.变式训练 (2):A=()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k,21ππ, B=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,22ππ则A 、B 之间的关系为 .※ 动手试试一、将下列弧度转化为角度:(1)12π= °;(2)-87π= ° ′; (3)613π= °;二、将下列角度转化为弧度:(1)36°= rad ; (2)-105°= rad ; (3)37°30′= rad ;3、已知集合M ={x ∣x = 2π⋅k , k ∈Z },N ={x ∣x = 2ππ±⋅k , k ∈Z },则 ( )A .集合M 是集合N 的真子集B .集合N 是集合M 的真子集C .M = ND .集合M 与集合N 之间没有包括关系4、圆的半径变成原来的2倍,而弧长也增加到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变 C .扇形的面积增大到原来的2倍 D .扇形的圆心角增大到原来的2倍三、小结反思角度制与弧度制是气宇角的两种制度。
高一数学人教A版必修四教案:1.1.2 弧度制 Word版含答案
1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67P P ~,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,yxAαOB或1弧度,或1(单位可以省略不写).3.探究:如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A ,终边与圆交于点B .请完成表格.-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为r 的圆的圆心角α所对的弧长是,那么a 的弧度数是多少?角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 5.根据探究中180rad π︒=填空:1___rad ︒=,1___rad =度显然,我们可以由此角度与弧度的换算了. 6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =. 其中R 是半径,是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 例4.利用计算器比较sin1.5和sin85︒的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习 教材10P .9.学习小结(1)你知道角弧度制是怎样规定的吗?(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?五、评价设计1.作业:习题1.1 A 组第7,8,9题. 2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.。
高中数学必修4人教A1.1.2弧度制(教、学案)
1. 1.2 弧度制【教学目标】① 了解弧度制,能进行弧度与角度的换算.② 认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【教学重难点】重点:了解弧度制,并能进行弧度与角度的换算. 难点:弧度的概念及其与角度的关系. 【教学过程】 (一)复习引入.复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系 提出问题:①初中的角是如何度量的?度量单位是什么? ② 1°的角是如何定义的?弧长公式是什么? ③ 角的范围是什么?如何分类的? (二)概念形成初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?1.自学课本第7、8页.通过自学回答以下问题: (1)角的弧度制是如何引入的?(2)为什么要引入弧度制?好处是什么? (3)弧度是如何定义的?(4)角度制与弧度制的区别与联系? 2.学生动手画图来探究: (1)平角、周角的弧度数(2)角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关? (3)角的弧度与角所在圆的半径、角所对的弧长有何关系? 3.角度制与弧度制如何换算?3602π= rad 180π= rad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈ 归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是: 一些特殊角的度数与弧度数的互相转化,请补充完整 30° 90° 120° 150° 270°4π3π43πππ2例1、把下列各角从度化为弧度: (1)0252 (2)0/1115 (3) 030 (4)'3067︒解:(1)π57 (2)π0625.0 (3) π61(4) π375.0 变式练习:把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º 解:(1)π81 (2)π67- (3)π320例2、把下列各角从弧度化为度: (1)35π (2) 3.5 (3) 2 (4)4π 解:(1)108 º (2)200.5 º (3)114.6 º (4)45 º 变式练习:把下列各角从弧度化为度: (1)12π (2)—34π (3)103π解:(1)15 º (2)-240 º (3)54 º弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.弧度下的弧长公式和扇形面积公式弧长公式:||l rα=⋅ 因为||l rα=(其中l 表示α所对的弧长),所以,弧长公式为.||l r α=⋅ 扇形面积公式:.说明:以上公式中的α必须为弧度单位.例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。
高一数学(1.1.2弧度制)教案新人教A版必修4
弧度制的关键 , 为更好地理解角度弧度的关系奠定基础 . 讨论后教师提问学生 , 并对回答好的
学生及时表扬 , 对回答不准确的学生提示引导考虑问题的关键
. 教师板书弧度制的定义 : 规定
长度等于半径长的圆弧所对的圆心角叫做
1 弧度的角 . 以弧度为单位来度量角的制度叫做弧
度制 ; 在弧度制下 ,1 弧度记作 1 rad. 如图 1 中 , 的长等于半径 r,AB 所对的圆心角∠ AOB
生找出区别和联系 . 教师给予补充和提示 , 对表现好的学生进行表扬 , 对回答不准确的学生提
示和鼓励 . 引入弧度之后 , 应与角度进行对比 , 使学生明确 : 第一 , 弧度制是以“弧度”为单位
来度量角的单位制 , 角度制是以“度”为单位来度量角的单位制 ; 第二 ,1 弧度是等于半径长
的弧所对的圆心角 是以“度”为单位
角度制、弧度制都是度量角的制度 , 二者虽单位不同 , 但却是互相联系、辩证统一的 . 进一步
加强对辩证统一思想的理解 , 渗透数学中普遍存在、相互联系、相互转化的观点
.
三维目标
1. 通过类比长度、重量的不同度量制 , 使学生体会一个量可以用不同的单位制来度量
,
从而引出弧度制 .
2. 通过探究使学生认识到角度制和弧度制都是度量角的制度
位进行度量 , 并且一度的角等于周角的
1 , 记作 1°.
360
通过类比引出弧度制 , 给出 1 弧度的定义 , 然后通过探究得到弧度数的绝对值公式
, 并得
出角度和弧度的换算方法 . 在此基础上 , 通过具体的例子 , 巩固所学概念和公式 , 进一步认识
引入弧度制的必要性 . 这样可以尽量自然地引入弧度制 , 并让学生在探究过程中 , 更好地形成
高中数学必修四1.1.2弧度制学案新人教A版必修4
度制.
2.弄清 1 弧度的角的含义是了解弧度制,并能进行弧度与角度换算的关键.
3.引入弧度制后,应与角度制进行对比,明确角度制和弧度制下弧长公式和扇形面积公式的
联系与区别 .
1. 1 弧度的角:把长度等于
的弧所对的圆心角叫做
读作
.
2.弧度制:用
作为单位来度量角的单位制叫做弧度制.
3.角的弧度数的规定:
最大面积是多少?
解 设扇形的圆心角为 θ,半径为 r ,弧长为 l ,面积为 S,
1 ∴ S= 2lr
=
1 2×
(40
-
2r
)
r
=
20r
-
r
2=-
(
r
-
10)
2+ 100.
∴当半径 r = 10 cm 时,扇形的面积最大,最大值为 100 cm 2,
l 40-2×10 此时 θ =r = 10 rad =2 rad.
l 径为 r 的圆的圆心角 α 所对弧的长为 l ,那么,角 α 的弧度数的绝对值是 | α | = r . 这里, α
的正负由角 α 的终边的旋转方向决定.
问题 4 角度制与弧度制换算时,灵活运用下表中的对应关系,请补充完整
.
角度化弧度
弧度化角度
360°= rad
2π rad =
180°= rad
180
12
180 π °即可化为角度.
225
225 π 5π
所以, (1)112 °30′= 112.5 °= 2 °= 2 × 180= 8 .
7π 7π 180 (2) - 12 =- 12 × π °=- 105°.
小结 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记
高中数学 第一章 三角函数 1.1.2 弧度制导学案 新人教A版必修4-新人教A版高一必修4数学学案
1.1.2 弧度制学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一 角度制与弧度制思考1 在初中学过的角度制中,1度的角是如何规定的? 答案 周角的1360等于1度.思考2 在弧度制中,1弧度的角是如何规定的,如何表示?答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad 表示. 思考3 “1弧度的角”的大小和所在圆的半径大小有关系吗?答案 “1弧度的角”的大小等于半径长的圆弧所对的圆心角,是一个定值,与所在圆的半径大小无关.梳理 (1)角度制和弧度制 角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360弧度制长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制(2)角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr. 知识点二 角度制与弧度制的换算思考 角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢? 答案 利用1°=π180rad 和1 rad =(180π)°进行弧度与角度的换算.梳理 (1)角度与弧度的互化角度化弧度 弧度化角度 360°=2π rad2π rad=360°180°=π rad π rad=180° 1°=π180rad≈0.017 45 rad1 rad =⎝⎛⎭⎪⎫180π°≈57.30°(2)一些特殊角的度数与弧度数的对应关系度0° 1° 30° 45° 60° 90°120°135° 150° 180° 270° 360° 弧度 0π180π6π4π3π22π33π45π6π3π22π知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示?答案 设扇形的半径为R ,弧长为l ,α为其圆心角,则:α为度数 α为弧度数 扇形的弧长l =απR 180°l =αR 扇形的面积S =απR 2360°S =12lR =12αR 2类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.解 (1)20°=20π180=π9.(2)-15°=-15π180=-π12.(3)7π12=712×180°=105°.(4)-11π5=-115×180°=-396°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad=180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝ ⎛⎭⎪⎫180π°即可.跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.解 (1)112°30′=⎝⎛⎭⎪⎫2252°=2252×π180=5π8.(2)-5π12=-⎝ ⎛⎭⎪⎫5π12×180π°=-75°.类型二 用弧度制表示终边相同的角例2 把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出是第几象限角. (1)-1 500°;(2)23π6;(3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角. (2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角. (3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角. 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°.∴在[0°,720°]内与2π5角终边相同的角为72°,432°.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A.π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A.2 B.2sin 1 C.2sin 1 D.4sin 1答案 (1)A (2)D解析 (1)扇形的中心角为120°=2π3,半径为3,所以S 扇形=12|α|r 2=12×2π3×(3)2=π.(2)连接圆心与弦的中点,则以弦心距、弦长的一半、半径长为长度的线段构成一个直角三角形,半弦长为2,其所对的圆心角也为2,故半径长为2sin 1.这个圆心角所对的弧长为2×2sin 1=4sin 1. 反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.下列说法中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用角度制和弧度制度量角,都与圆的半径有关 答案 D解析 根据1度、1弧度的定义可知只有D 是错误的,故选D. 2.时针经过一小时,转过了( ) A.π6 rad B.-π6 radC.π12 rad D.-π12rad答案 B解析 时针经过一小时,转过-30°, 又-30°=-π6 rad ,故选B.3.若θ=-5,则角θ的终边在( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限答案 D解析 2π-5与-5的终边相同, ∵2π-5∈(0,π2),∴2π-5是第一象限角,则-5也是第一象限角.4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4答案 C解析 设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1.5.已知⊙O 的一条弧的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是 . 答案 - 3解析 设⊙O 的半径为r ,其内接正三角形为△ABC .如图所示,D 为AB 边中点, AO =r ,∠OAD =30°, AD =r ·cos 30°=32r , ∴边长AB =2AD =3r . ∴的弧长l =AB =3r . 又∵α是负角, ∴α=-l r=-3rr=- 3.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.课时作业一、选择题1.-300°化为弧度是( ) A.-43πB.-53πC.-74πD.-76π答案 B解析 -300°=-300×π180=-53π.2.下列与9π4的终边相同的角的表达式中,正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 A ,B 中弧度与角度混用,不正确. 9π4=2π+π4,所以9π4与π4的终边相同. -315°=-360°+45°,所以-315°也与45°的终边相同.故选C. 3.下列转化结果错误的是( ) A.60°化成弧度是π3B.-103π化成度是-600°C.-150°化成弧度是-76πD.π12化成度是15° 答案 C解析 C 项中-150°=-150×π180=-56π.4.设角α=-2弧度,则α所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 ∵-π<-2<-π2,∴2π-π<2π-2<2π-π2,即π<2π-2<32π,∴2π-2为第三象限角, ∴α为第三象限角.5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.-34πB.-2πC.πD.-π答案 A解析 ∵-114π=-2π+⎝ ⎛⎭⎪⎫-34π =2×(-1)π+⎝ ⎛⎭⎪⎫-34π,∴θ=-34π.6.若扇形圆心角为π3,则扇形内切圆的面积与扇形面积之比为( )A.1∶3B.2∶3C.4∶3D.4∶9答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsinπ6=r +2r =3r .∴S 内切圆=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切圆∶S 扇形=2∶3.7.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m的弧田,按照上述经验公式计算所得弧田面积约是( )A.6 m 2B.9 m 2C.12 m 2D.15 m 2答案 B解析 根据题设,弦=2×4sin π3=43(m),矢=4-2=2(m),故弧田面积=12×(弦×矢+矢2)=12(43×2+22)=43+2≈9(m 2). 二、填空题8.在直径长为20 cm 的圆中,圆心角为165°时所对的弧长为 cm. 答案55π6解析 ∵165°=π180×165=11π12(rad),∴l =11π12×10=55π6(cm).9.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B = . 答案 [-4,-π]∪[0,π] 解析 如图所示,∴A ∩B =[-4,-π]∪[0,π].10.若2π<α<4π,且α与-76π角的终边垂直,则α= .答案 73π或103π解析 α=-76π-π2+2k π=2k π-53π,k ∈Z ,∵2π<α<4π,∴k =2,α=73π;或者α=-76π+π2+2k π=2k π-23π,k ∈Z ,∵2π<α<4π,∴k =2,α=103π.综上,α=73π或103π.11.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为 .答案4π3解析 如图,作BF ⊥AC .已知AC =23,∠ABC =2π3,则AF =3,∠ABF =π3.∴AB =AFsin ∠ABF =2,即R =2.∴弧长l =|α|R =4π3,∴S =12lR =4π3.三、解答题12.已知一扇形的圆心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10(cm),∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝ ⎛⎭⎪⎫π3-32 (cm 2). (2)∵l +2R =30,∴l =30-2R ,从而S =12·l ·R =12(30-2R )·R =-R 2+15R =-⎝⎛⎭⎪⎫R -1522+2254. ∴当半径R =152 cm 时,l =30-2×152=15(cm), 扇形面积的最大值是2254 cm 2,这时α=l R=2(rad). ∴当扇形的圆心角为2 rad ,半径为152 cm 时,面积最大,为2254cm 2. 13.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角;(2)在区间[-4π,π]上找出与α终边相同的角.解 (1)∵α=1 200°=1 200×π180=20π3=3×2π+2π3, 又π2<2π3<π, ∴角α与2π3的终边相同,∴角α是第二象限的角. (2)∵与角α终边相同的角(含角α在内)为2k π+2π3,k ∈Z , ∴由-4π≤2k π+2π3≤π,得-73≤k ≤16. ∵k ∈Z ,∴k =-2或k =-1或k =0.故在区间[-4π,π]上与角α终边相同的角是-10π3,-4π3,2π3.。
高中数学人教A版必修4教学案设计:1.1.2-弧度制
1.1.2 弧度制问题提出1.角是由平面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形,其中正角、负角、零角分别是怎样规定的?2.在直角坐标系内讨论角,象限角是什么概念?3.与角α终边相同的角的一般表达式是什么?S={β|β=α+k·360°,k ∈Z}4.长度可以用米、厘米、英尺、码等不同的单位度量,物体的重量可以用千克、磅等不同的单位度量.不同的单位制能给解决问题带来方便,以度为单位度量角的大小是一种常用方法,为了进一步研究的需要,我们还需建立一个度量角的单位制. 探究1:弧度的概念思考1:在平面几何中,1°的角是怎样定义的?将圆周分成360等份,每一段圆弧所对的圆心角就是1°的角.思考2:在半径为r 的圆中,圆心角n°所对的圆弧长如何计算? n r l ⋅=3602π=180rn π 1.1弧度的角把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1rad ,读作1弧度. 思考3:1弧度圆心角的大小与所在圆的半径的大小是否有关?为什么?思考4:约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.如果将半径为r 圆的一条 半径OA ,绕圆心顺时针旋转到OB ,若弧AB 长为2r ,那么∠AOB 的大小为多少弧度?-2rad思考5:如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?|α|=l r2.角α的弧度数如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值|α|=lr.思考6:半径为r 的圆的圆心与原点重合,角的始边与x 轴的非负半轴重合,交圆于点A ,终边与圆交于点弧AB 的长 πr 2πr r 2r 3πr OB 旋转的方向逆时针逆时针 逆时针逆时针顺时针探究(二):度与弧度的换算思考1:一个圆周角以度为单位度量是多少度?以弧度为单位度量是多少弧度?由此可得度与弧度有怎样的换算关系?360°、2π弧度、360°=2π rad思考2:根据上述关系,1°等于多少弧度?1rad 等于多少度? 1°=π180rad ≈0.01745 rad 、1 rad =(180π)°≈57.30°=57︒18/ 思考3:今后用弧度制表示角时,“弧度”二字或“rad ”通常略去不写,而只写该角所对应的弧度数.如α=2表示α是2rad 的角. 思考4:在弧度制下,角的集合与实数集R 之间可以建立一个一一对应关系,这个对应关系是如何理解的?角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一种一一对应关系:每一个角都有唯一的一个实数(角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(弧度数等于这个实数的角)和它对应.探究(三):弧长公式与扇形面积公式思考5:已知一个扇形所在圆的半径为R ,弧长为l ,圆心角为α(0<α<2π),那么扇形的面积如何计算?l =|α|·R ,S =12lR =12|α|R 23.扇形所在圆的半径为R ,弧长为l ,圆心角为α(0<α<2π),那么扇形的弧长l =|α|·R ,扇形面积S =12|α|R 2.思考6:在弧度制下,与角α终边相同的角如何表示? 终边在坐标轴上的角如何表示?)(2Z k k ∈+=παβ终边x 轴上:k π(k ∈z) 终边y 轴上:)(2Z k k ∈+ππ知识运用一、弧度制的概念问题例1.下列命题中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用弧度制度量角时,角的大小与圆的半径有关[思路点拨]正确理解角度制和弧度制的概念,对每个命题认真分析并作出判断.[解析]根据角度制和弧度制的定义可以知道,A ,B 是正确的;1 rad 的角是(180π)°≈57.30°,∴C 正确;无论是用角度制还是用弧度制度量角,角的大小都与圆的半径无关,故D 错误. [答案] D[一点通] 准确理解概念是判断的前提,弧度制与角度制的异同:例2.A.1弧度是1度的圆心角所对的弧B.1弧度是长度为半径长的弧C.1弧度是1度的弧与1度的角之和D.1弧度是长度等于半径长的弧所对的圆心角解析:根据1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.对照各选项,可知D 为正确答案. 答案:D二、角度与弧度的换算 例3.(1)把202°30′化成弧度;(2)把-512π化成角度;(3)已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α、β、γ、θ、φ的大小.[思路点拨] 第(1)(2)小题可直接利用1°=π180rad ,1 rad =(180π)°进行转化;第(3)小题可先统一单位,再比较大小.[精解详析] (1)202°30′=202.5°=4052×π180=98π.(2)-512π=-(512π×180π)°=-75°.(3)法一(化为弧度):α=15°=15×π180=π12,θ=105°=105×π180=7π12.显然π12<π10<1<7π12.故α<β<γ<θ=φ.法二(化为角度):β=π10=π10×(180π)°=18°,γ=1≈57.30°,φ=7π12×(180π)°=105°.显然,15°<18°<57.30°<105°. 故α<β<γ<θ=φ.[一点通] ①在进行角度与弧度的换算时,关键是抓住π rad =180°这一关系.②用弧度制表示角时,“弧度”或“rad ”可以省略不写,只写这个角所对应的弧度数即可.但是在用角度表示时,“度”或“°”却不能省略,以防止与弧度混淆.③用弧度作为单位时,常出现π,如果题目中没有特殊的要求,应当保留π的形式,不要写成小数.例4.与π4角终边相同的角的表达式是( )A.45°+2k πB.π4+k ×360°C.-315°+k ×360°,k ∈ZD.4π5+k π,k ∈Z解析:π4=45°,∴用角度制表示为k ·360°+45°,k ∈Z ,用弧度制表示为2k π+π4,k ∈Z .结合选项,∵45°与-315°终边相同,∴选项C 正确. 答案:C 例5.已知两角和为1弧度,且两角差为1°,这两个角的弧度数分别是多少?解:设两个角的弧度数分别为x ,y .∵1°=π180 rad ,∴⎩⎪⎨⎪⎧x +y =1,x -y =π180. 解得⎩⎨⎧x =12+π360,y =12-π360. 即所求两角的弧度数分别为12+π360,12-π360.三、扇形的弧长和面积公式例6.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?[思路点拨] 设出半径和圆心角,列出周长关系式,构建面积的函数解析式,应用二次函数求最值. [精解详析] 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r ,(4分)∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.(8分)∴当半径r =10 cm 时,扇形的面积最大,最大面积为100 cm 2,这时θ=l r =40-2×1010=2 rad. (12分)[一点通] 有关扇形的弧长l 、圆心角α、面积S 的题目,一般是知二求一的问题,解此类问题的关键在于灵活运用l =|α|·R ,S =12lR =12|α|R 2两组公式,采用消元思想或二次函数思想加以解决.4.弧度制与角度制的比较:(1)从定义上:弧度制是以“弧度”为单位度量角的单位制,角度制是以“度”为单位度量角的单位制.因此,弧度制和角度制一样,都是度量角的方法.(2)从意义上:1弧度是等于半径长的圆弧所对的圆心角(或该弧)的大小,而1°是圆的周长的1360所对的圆心角(或该弧)的大小;任意圆心角α的弧度数的绝对值|α|=lr,其中l 是以角α作为圆心角时所对的圆弧长,r 为圆的半径.(3)从换算上:1 rad =(180π)°,1°=π180rad.(4)从写法上:用弧度为单位表示角的大小时,“弧度”两字可以省略不写;如果以度(°)为单位表示角时,度(°)就不能省去.(5)作角的运算或表示角的集合时,角度制和弧度制不能混用,如2k π+30°或k ·360°+π4都是错误的.小结作业1.用度为单位来度量角的单位制叫做角度制,用弧度为单位来度量角的单位制叫做弧度制.2.度与弧度的换算关系,由180°=rad 进行转化,以后我们一般用弧度为单位度量角.3.利用弧度制,使得弧长公式和扇形的面积公式得以简化,这体现了弧度制优点. 作业:1.P10 习题1.1 A 组: 6,7,8,9,10.2.作业本. 课后作业 1.1 920°的弧度数为( )A.163 B .323 C.16π3 D.32π3解析:1 920°=π180×1 920弧度=323π弧度.答案:D 2.29π6是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角解析:29π6=4π+5π6,∵56π是第二象限角,∴29π6是第二象限角.答案:B3.若角α为第二象限角,则角α2是( )A.第一象限角B.第二象限角C.第一或第三象限角D.第一或第二象限角解析:∵角α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z .π4+k π<α2<π2+k π,k ∈Z ,则角α2是第一或第三象限角.答案:C4.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的( )A.12倍 B .2倍 C.13倍 D .3倍 解析:设圆的半径为r ,弧长为l ,其弧度数为l r .将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l 12r =3·lr ,即弧度数变为原来的3倍.答案:D 5.把-114π写成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________.解析:-114π=-34π-2π=54π-4π,∴使|θ|最小的θ的值是-34π.答案:-34π6.用弧度表示终边落在y 轴右侧的角的集合为________.解析:y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为⎩⎨⎧⎭⎬⎫θ|-π2+2k π<θ<π2+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫θ|-π2+2k π<θ<π2+2k π,k ∈Z。
高中数学 弧度制学案 新人教A版必修4
数学必修4学案第一章 1.1.2 弧度制
一、学习目标:
1、知识与技能:从明确引入弧度制的必要性,理解新单位制意义.
2、过程与方法:学生经历熟练掌握角度制与弧度制的换算.
3、情感态度与价值观:学生经历数学活动,感受数学活动充满了探索性与创造性.
二、重点与难点:
重点:理解弧度制引入的必要性,掌握定义,能熟练地进行角度制与弧度制的互化。
难点:用弧度制定义的理解。
三、课前学习:
在角度制下,当把两个带着度、分、秒各单位的角相加、相减时,由于运算进率非十进制,总给我们带来不少困难.那么我们能否重新选择角单位,使在该单位制下两角的加、减运算与常规的十进制加减法一样去做呢?从中能发现什么?
四、课中学习:
对课前的学习,进一步分析:
1、复习角度制的定义:
2、正确理解弧度制定义的含义。
3、掌握角度制与弧度制的互换方法。
4、分析例题1,总结方法
5、总结弧度制的作用:
8、第9页,练习1-6,
五、课后反思
对这一节的收获是什么?有什么问题期待解决?
六、作业设计:
P10习题A组4-10。
秋人教A版数学必修四1.1.2《弧度制》word导学案
秋人教A版数学必修四1.1.2《弧度制》word导学案1.1.2 弧度制【学习目标】1.理解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数2.掌握弧度制下的弧长公式和扇形的面积公式,会利用弧度制解决某些简单的实际问题 3.了解角的集合与实数集之间可以建立起一一对应的关系【学习重点、难点】弧度的概念,弧度与角度换算【自主学习】一、复习引入请同学们回忆一下初中所学的1的角是如何定义的?二、建构数学 1.弧度制角还可以用__________为单位进行度量,___________________________________叫做1弧度的角,用符号_____表示,读作________。
2.弧度数:正角的弧度数为_________,负角的弧度数为_________,零角的弧度数为_____如果半径为r的圆心角所对的弧的长为1,那么,角α的弧度数的绝对值是_________。
这里,α的正负由____________________________________决定。
3.角度制与弧度制相互换算360°=_________rad 180°=_________rad1°=_________rad 1 rad=_________°≈ _________°4.角的概念推广后,在弧度制下, ________________与______________之间建立起一一对应的关系:每个角都有唯一的一个实数(即_______________)与它对应;反过来,每一个实数也都有________________(即_______________)与它对应。
5.弧度制下的弧长公式和扇形面积公式:角?的弧度数的绝对值|?|?______________ (l为弧长,r为半径)弧长公式:____________________________扇形面积公式:____________________________【典型例题】例1.把下列各角从弧度化为度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2 弧度制Q 情景引入ing jing yin ru炎炎夏日,用纸扇驱走闷热,无疑是一种好办法.扇子在美观设计上,可考虑用料、图案和形状.若从数学角度看,我们能否用黄金比例(0.618)去设计一把富有美感的纸扇?要探索这个问题首先要认识一种新的角度单位——弧度.X 新知导学in zhi dao xue1.弧度制(1)定义:以__弧度__为单位度量角的单位制叫做弧度制.(2)度量方法:长度等于__半径长__的弧所对的圆心角叫做1弧度的角.如图所示,圆O 的半径为r ,AB ︵的长等于r ,∠AOB 就是1弧度的角.[知识点拨] 一定大小的圆心角α的弧度数是所对弧长与半径的比值,是唯一确定的,与半径大小无关.(3)记法:弧度单位用符号__rad__表示,或用“弧度”两个字表示.在用弧度制表示角时,单位通常省略不写.2.弧度数一般地,正角的弧度数是一个__正__数,负角的弧度数是一个__负__数,零角的弧度数是__0__.如果半径为r 的圆的圆心角α 所对弧的长为l ,那么角α的弧度数的绝对值是|α|=__lr __.[知识点拨] 对于角度制和弧度制,在具体的应用中,两者可混用吗?如何书写才是规范的?角度制与弧度制是两种不同的度量制度,在表示角时不能混用,例如α=k ·360°+π6(k ∈Z ),β=2k π+60°(k ∈Z )等写法都是不规范的,应写为α=k ·360°+30°(k ∈Z ),β=2k π+π3(k ∈Z ).3.弧度与角度的换算公式(1)周角的弧度数是2π,而在角度制下的度数是360,于是360°=2π rad ,即根据以上关系式就可以进行弧度与角度的换算了. 弧度与角度的换算公式如下:若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180 rad.(2)常用特殊角的弧度数0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 0__π6__ __π4__ __π3__ π2__2π3__ __3π4__ __5π6__ π__3π2__ __2π____一一对应__每一个角都有唯一的一个__实数__(即这个角的弧度数)与它对应;反过来,任一个实数也都有唯一的一个__角__(即弧度数等于这个实数的角)与它对应.[知识点拨]角度制与弧度制是两种不同的度量单位,在表示角时,二者不可混用. 角度制 用度作为单位来度量角的单位制 角的大小与半径无关 单位“°”不能省略 角的正负与方向有关 六十进制弧度制用弧度作为单位来度量角的单位制角的大小与半径无关单位“rad ”可以省略角的正负与方向有关十进制(1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =__|α|r __,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为lr rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.[知识点拨]弧长公式及扇形面积公式的两种表示方法对比名称角度制弧度制弧长公式l=nπr180l=|α|r 扇形面积公式S=nπr2360S=|α|2r2=12lr 注意事项r是扇形的半径,n是圆心角的角度数r是扇形的半径,α是圆心角的弧度数,l是弧长弧长公式与扇形的面积公式在角度制与弧度制下形式不同,解题时要看清角的度量制,选用相应的公式,切不可混淆.Y预习自测u xi zi ce1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)用弧度制表示角时,都是正角.(×)(2)在大小不等的圆中,1弧度的圆心角所对弧的长度是不同的.(√)(3)用角度制和弧度制表示角时,单位都可以省略不写.(×)(4)π弧度的角大于π°的角.(√)(5)扇形的半径为5,圆心角是60°,则弧长为300.(×)2.-300°化为弧度是(B)A.-4π3B.-5π3C.-7π4D.-7π63.已知半径为10 cm的圆上,有一条弧的长是40 cm,则该弧所对的圆心角的弧度数是__4__.4.α=-2 rad,则α的终边在(C)A.第一象限B.第二象限C.第三象限D.第四象限[解析]∵1 rad≈57.30°,∴-2 rad≈-114.60°.故α的终边在第三象限.H互动探究解疑u dong tan jiu jie yi命题方向1⇨有关“角度”与“弧度”概念的理解典例1 下列命题中,正确的命题是__①③④__.①1°的角是周角的1360,1 rad 的角是周角的12π;②1 rad 的角等于1度的角; ③180°的角一定等于π rad 的角;④“度”和“弧度”是度量角的两种单位.[思路分析] 从两种度量制的定义上,把握解题角度,从弧度制和角度制的定义出发解题.[解析] 对于④,“度”与“弧度”是度量角的两种不同单位,故④正确;对于①,因为1°=360°360,1=2π2π,所以①正确; 对于③,由弧度制规定知π rad =180°,故③正确. 『规律总结』 弧度与角度的概念的区别与联系区别(1)定义不同.(2)单位不同:弧度制以“弧度”为单位,角度制以“度”为单位. 联系(1)不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的值.(2)“弧度”与“角度”之间可以相互转化.〔跟踪练习1〕在半径不等的圆中,半径长的弦所对的圆心角( D ) A .为1弧度B .各不相等,半径长则圆心角大C .各不相等,半径长则圆心角小D .都相等,为π3弧度命题方向2 ⇨角度制与弧度制的转化典例2 (1)将下列各角化为弧度:①112°30′;②-315°;(2)将下列各弧度化为角度:①-5π12 rad ;②193π.[思路分析][解析] (1)①∵1°=π180 rad ,∴112°30′=π180×112.5 rad =5π8rad. ②-315°=-315×π180=-7π4.(2)①∵1 rad =(180π)°,∴-5π12 rad =-⎝⎛⎭⎫5π12×180π°=-75°. ②193π=(193π×180π)°=1 140°. 『规律总结』 角度制与弧度制互化的关键与方法: (1)关键:抓住互化公式π rad =180°是关键.(2)方法:度数×π180=弧度数;弧度数×(180π)°=度数.(3)角度化弧度时,应先将分、秒化成度,再化成弧度.(4)角度化为弧度时,其结果写成π的形式,没特殊要求不必化成小数. 〔跟踪练习2〕设α1=-570°、α2=750°、β1=3π5、β2=-π3.(1)将α1、α2用弧度制表示出来,并指出它们各自所在的象限; (2)将β1、β2用角度制表示出来,并指出它们各自所在象限. [解析] (1)∵180°=π rad , ∴-570°=-570π180=-19π6,∴α1=-19π6=-2×2π+5π6,α2=750°=750π180=25π6=2×2π+π6.∴α1在第二象限,α2在第一象限. (2)β1=3π5=35×180°=108°,β2=-π3=-60°,∴β1在第二象限,β2在第四象限.命题方向3 ⇨用弧度制表示区域角典例3 用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如下图).[思路分析] ①用弧度表示区域角时,需进行角度与弧度的换算.注意单位要统一.②在表示角的集合时,可以先写出如-π~π,0~2π范围内的角,再加上2k π,注明k ∈Z .③终边在同一条直线上的角的集合可以直接根据知识点4中的结论得出.[解析] (1)OA 是30°角的终边,30°=π6rad ,所以以OA 为终边的角为π6+2k π(k ∈Z );OB是240°角的终边,也是-120°角的终边,-120°=-23π rad ,所以以OB 为终边的角为-2π3+2k π(k ∈Z ).∴阴影部分内的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪-2π3+2k π<α<π6+2k π,k ∈Z . (2)如图②,OA 是60°角的终边,60°=π3 rad ,所以以OA 为终边的角为π3+2k π(k ∈Z );OB 是120°角的终边,120°=23π rad ,所以以OB 为终边的角为2π3+2k π(k ∈Z );不妨设右边阴影部分所表示的集合为M 1,左边阴影部分所表示的集合为M 2,则M 1=⎩⎨⎧⎭⎬⎫α⎪⎪2k π<α<π3+2k π,k ∈Z , M 2=⎩⎨⎧⎭⎬⎫α⎪⎪2π3+2k π<α<π+2k π,k ∈Z . ∴阴影部分所表示的集合为:M 1∪M 2=⎩⎨⎧ α⎪⎪ 2k π<α<π3+2k π ⎭⎬⎫或2π3+2k π<α<π+2k π,k ∈Z . 『规律总结』 解答本题时常犯以下三种错误. (1)弧度与角度混用.(2)终边在同一条直线上的角未合并.(3)将图①中所求的角的集合错误地写成{α|43π+2k π<α<π3+2k π,k ∈Z },这是一个空集.对于区域角的书写,一定要看其区间是否跨越x 轴的正半轴,若区间跨越x 轴的正半轴,则在“前面”的角用负角表示,“后面”的角用正角表示;若区间不跨越x 轴的正半轴,则无须这样写.〔跟踪练习3〕用弧度制表示顶点在原点,始边与x 轴的非负半轴重合,终边落在阴影部分的角的集合 (不包括边界),如图所示.[解析] (1)330°和60°的终边分别对应-π6和π3,所表示的区域位于-π6与π3之间且跨越x轴的正半轴,所以终边落在阴影部分的角的集合为{θ|2k π-π6<θ<2k π+π3,k ∈Z }.(2)210°和135°的终边分别对应-5π6和3π4,所表示的区域位于-5π6与3π4之间且跨越x 轴的正半轴,所以终边落在阴影部分的角的集合为{θ|2k π-5π6<θ<2k π+3π4,k ∈Z }.(3)30°=π6,210°=7π6,所表示的区域由两部分组成,即终边落在阴影部分的角的集合为{θ|2k π<θ<2k π+π6,k ∈Z }∪{θ|2k π+π<θ<2k π+7π6,k ∈Z }={θ|2k π<θ<2k π+π6,k ∈Z }∪{θ|(2k +1)π<θ<(2k +1)π+π6,k ∈Z }={θ|n π<θ<n π+π6,n ∈Z }.X 学科核心素养ue ke he xin su yang求扇形面积最值的函数思想当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想.典例4 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?[思路分析] 正确使用扇形弧长公式及面积公式.[解析] 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20)∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2, 此时θ=l r =40-2×1010=2(rad).『规律总结』 1.运用扇形弧长及面积公式时应注意的问题.(1)由扇形的弧长及面积公式可知,对于α,r ,l ,S 中“知二求二”的问题,其实质上是方程思想的运用.(2)运用弧度制下扇形的弧长公式与面积公式比用角度制下的公式要简单得多.若角是以“度”为单位的,则必须先将其化成弧度,再计算.(3)在运用公式时,还应熟练掌握下面几个公式. ①l =αr ,α=l r ,r =lα;②S =12αr 2,α=2Sr2.2.解决扇形的周长或面积的最值问题的关键是运用函数思想,把要求的最值问题转化为求函数的最值问题即可.〔跟踪练习4〕(1)一个扇形的面积为15π,弧长为5π,则这个扇形的圆心角为( D ) A .π6B .π3C .2π3D .5π6(2)(2019·厦门期末)若一扇子的弧长等于其所在圆的内接正方形的边长,则其圆心角α(0<α<π)的弧度数为( C )A .π4B .π2C . 2D .2[解析] (1)设扇形的圆心角为θ,半径为r ,则⎩⎪⎨⎪⎧ 12θr 2=15π,θr =5π,解得⎩⎪⎨⎪⎧r =6,θ=5π6.故扇形的圆心角为5π6.(2)设圆的直径的2r ,则圆内接正方形的边长为2r . ∵扇子的弧长等于其所在圆的内接正方形的边长, ∴扇子的弧长等于2r , ∴圆心角α(0<α<π)的弧度数为2rr= 2. Y 易混易错警示i hun yi cuo jing shi角度和弧度混用致错典例5 求终边在如图所示阴影部分(不包括边界)内的角的集合.[错解一] {α|k ·360°+330°<α<k ·360°+60°,k ∈Z }. [错解二] {α|2k π-30°<α<2k π+60°,k ∈Z }.[错因分析] 错解一中,若给k 赋一个值,集合中不等式右边的角反而小于左边的角.错解二中,同一不等式中混用了角度制与弧度制.[正解] {α|2k π-π6<α<2k π+π3,k ∈Z },也可写成{α|k ·360°-30°<α<k ·360°+60°,k ∈Z }.[误区警示]同一个问题(或题目)中使用的度量单位要统一,要么用角度制单位,要么用弧度制单位,不能将两者混用.〔跟踪练习5〕与1°角终边相同的角的集合是( C ) A .{α|α=k ·360°+π180,k ∈Z }B .{α|α=k ·360°+π180°,k ∈Z }C .{α|α=2k π+π180,k ∈Z }D .{α|α=2k π+π180°,k ∈Z }K 课堂达标验收e tang da biao yan shou1.在不等圆中1 rad 的圆心角所对的是( D ) A .弦长相等 B .弧长相等C .弦长等于所在圆的半径D .弧长等于所在圆的半径[解析] 根据弧度制的定义,因为1弧度的角就是弧长与半径之比等于1的角,所以1 rad 的圆心角所对弧长等于所在圆的半径,故选D .2.-10π3转化为角度是( B )A .-300°B .-600°C .-900°D .-1 200°[解析] ∵1 rad =(180π)°,∴-10π3=-(180π×10π3)°=-600°.3.圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为( C )A .π3B .23πC . 3D .2[解析] 设圆的半径为R ,则圆的内接正三角形的边长为3R ,弧长等于3R 的圆心角的弧度数为α=3RR=3,故选C . 4.(2018·沈阳铁路中学期末)已知扇形面积为38π,半径是1,则扇形的圆心角是( C )A .316πB .38πC .34πD .32π[解析] 设扇形圆心角为α,则S =12αR 2=38π,∴α=34π.5.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:现有扇形田,下周长(弧长)20步,径长(两端半径的和)24步,则该扇形田的面积为__120__平方步.[解析] 由题意: S =14·l ·(2r )=12lr =12×20×12 =120.。