Matlab机械优化设计实例教程

合集下载

完整版优化设计Matlab编程作业

完整版优化设计Matlab编程作业

化设计hl4HU©0⑥ 3 hlu 凹内r d X1州fci-rU-fFF卢F ♦ 忡下¥为+1 —*— S-ll-« F41:Si —MATLABoftiHMirjirCfiffliiiiJ PHI■1**■ 温不平?」11,・—喜M - 〜FT 文词一时y 片 34ml 3F*L9TR0i. Jill!-LkftLgWf 1S1CSI掰f 1 ■ >A A A »W I % :k Dnfl w I ■ J k^lXMprfaMk tjn nn Alflhw初选 x0=[1,1] 程序:Step 1: Write an Mfle objfunl.m.function f1=objfun1(x)f1=x(1)人2+2*x(2)入2-2*x(1)*x(2)-4*x(1);Step 2: Invoke one of the unconstrained optimization routinesx0=[1,1];>> options = 0Ptimset('LargeScale','off);>> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options)运行结果: x =4.0000 2.0000 fval = -8.0000exitflag =1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007algorithm: 'medium-scale: Quasi-Newton line search message: [1x85 char]非线性有约束优化1. Min f(x)=3 x : + x 2+2 x 1-3 x 2+5 Subject to:g 2(x)=5 X 1-3 X 2 -25 < 0 g (x)=13 X -41 X 2 < 0 3 12g 4(x)=14 < X 1 < 130无约束优化 min f(x)=X 2 + x 2-2 x 1 x 2-4 x 1g5 (x)=2 < X 2 < 57初选x0=[10,10]Step 1: Write an M-file objfun2.mfunction f2=objfun2(x)f2=3*x(1)人2+x(2)人2+2*x(1)-3*x(2)+5;Step 2: Write an M-file confunl.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18;5*x(1)-3*x(2)-25;13*x(1)-41*x(2)人2;14-x(1);x(1)-130;2-x(2);x(2)-57];% Nonlinear inequality constraints ceq=[];Step 3: Invoke constrained optimization routinex0=[10,10]; % Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options)运行结果:x =3.6755 -7.0744 fval =124.14952.min f (x) =4x2 + 5x2s.t. g 1(x) = 2X] + 3x2- 6 < 0g (x) = x x +1 > 0初选x0=[1,1]Step 1: Write an M-file objfun3.m function f=objfun3(x) f=4*x(1)人2 + 5*x(2)人2Step 2: Write an M-file confun3.m for the constraints. function [c,ceq]=confun3(x) %Nonlinear inequality constraints c=[2*x(1)+3*x(2)-6;-x(1)*x(2)-1];% Nonlinear equality constraints ceq口;Step 3: Invoke constrained optimization routinex0=[1,1];% Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)运行结果:Optimization terminated: no feasible solution found. Magnitude of search direction less than2*options.TolX but constraints are not satisfied.x =11fval =-13实例:螺栓连接的优化设计图示为一压气机气缸与缸盖连接的示意图。

利用Matlab求解机械设计优化题目-螺栓

利用Matlab求解机械设计优化题目-螺栓
3.机械优化设计应用实例
机械优化设计把数学规划理论与数值方法应用于设计中,用计 算机从大 量可行方案中找出最优化设计方案,从而大大提高设计质 量和设计 效率。MATLAB 具有解决线性规划和非线性规划、约束 优化和无约 束优化问题的内 部函数,因而可以完成这一功能。
现举一例: 螺栓组联结的优化设计 如图 4 所示的压力容器螺栓组联接中,已知 D1= 400mm,D2 =
对于粗牙普通螺纹:由文献[3]推荐,小径 d1=0.85d 所以,强度约束条
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们社邓新。出寻始会小的邓(找终主平关小1一代义)坚键平种表的我2持在对能.1中本国把科人社9够国质社5发学才会从4先,会展社年,主更进是主作会,人义深生解义为主毛才本层产放制执义在的质次1力生度政理《成所.认社1的产还兴论论长作.识会 发发力刚国和十靠的社主 展展,刚的实大教概会义 才要发建第践关坚育括主本 是求展立一的系2持。,义质 硬、,生,要基》以人一,理 道发大产还务本重发才方从论 理展力力没是成要展资面而把 ,才促,有由果讲社的源强为我 把是进消完中,话会办是调中四们 发(硬先灭全国抓中主法第必国、对 展2道进剥建共住提三义解一)须的科社 生理生削立产“出、经决资采解社学会 产,产,党什(代济前源取放会技主 力是力消还的么1表基进。从和主术义 作)对的除不执是中础科低发义是1的 为吧社3发两完政社9国基的学级展.建第发认 社二国5会展极全地会先本问技到6生设一展识 会、内主,年分巩位主进建题术高产在生才提 主发外义是底化固所义生立,实级力改产是高 义1展一时中我,的决邓产的是力9,革力硬到 建是切间5国最思定怎小力同实和国另3开道了 设党积经共对终想年的样平的时行国家一放理一 的执极验产农达。1,建一发,改民资方中2,个 根政因教党业到(是设月再展我革教本面探是新 本兴素训站、共2对社,强要国开育主指索)适的 任国都的在手一同执会毛调求的放水义出出第创应科 务在的调深时工、富1政主泽,政以平的4了一三造.时学 ,社第动刻坚代.业发裕规义东中一治来,过2解条节性代水 符会一起总持前.和展。律”关社 国个领我始度放发、地主平 合阶要来结社列资才”认这于会 社公域们终形和展社提题。 马级务为。会,本是1识个总主 会有也党是式发更会9出变社 克二关中主保硬的根8路义 主制发的衡。展快主了化会 思6、系国义持道3深本线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要本 基.主变事所平化向业1也,整度 制,大要小国家的享本9义。质 本义化业有方建的是深5的度一变经平力资手受社任理 原6本的服问法设根社对刻表确 的个化验年提和本段到会 1务论 理第质同务题进与本会一党揭.述立 确共,。出社主社和社主基的 ,二理时的行社体主、实示:, 立同确苏“会义会目会3义本提 是节论,基关改会现义社现了.从为 ,富立共社文,社主的主一改矛出 巩、的我本键造主和改会其社中当 使裕了二会明就会义。义、造盾, 固对重国方是。义根造之所会华代 占,中十主程是主基建中的和为 和第社要针这改本基一承主人中 世这国大义度在义本设国基两进 发一会意。靠不造要本本担义民国 界是共以财的国基制内成特本类一 展节主义的(自仅同求完质的本共一 人我产后富重家本度涵果色完矛步 社、义主2己保时。成理历质和切 口们党毛属要直)制的包最伴社成盾推 会中本要的证并,论史,国发 四必领泽于标接正度确括大随会,的进 主国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学改 义特理盾展2社。志五提需是立进 之坚的提民。制处确是1.能社义我说采革 制色论也。会实着章)出要对,步 一持人出,和理立中够会建国,取开 度社的发的践中把。马到奠 的民要社支经,国社充经设强积放 的会提生稳证国解克社定 东民“会配济是历会分济道调极和 必主出了定明历放思会了 方主以下建4广史主体制路要引社 然义变,.史和主主把制 大专苏义的设大上义现度初严导会 要二建化而党上发义义对度 国政为的资和劳最的出和步经格、主 求设。且坚长展的改企基 进党的鉴致本社动深本对社探济区逐义 。确道人极持达生重造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产大基的。 了过本会,是义发民最和本经的构过代社的对的会千力逐发本改社渡原主探全经展真伟根主济理发正渡化会初于促主年概步展完造会时则义索民济中正大本义结论生确的建新主步经进义的括实,成和主期。基自共的成任优构成了处方设中义探济了改阶为现对,对义总本己同国一为社务越的果根理式提国基索文社造级国于这人制 社路政的致家系国会性根本两。供的本化会与剥家建是的度 会线治道富资列家变的一本变类中了成制迅主社削的设一改的 ,第制路。本重的革道、变化不国强立度速义会制社中个造建 这三主度。社大主,路社化,同这大,的发事主度的会国过结立 是节要。会义关人也,1会社性场的标重展业义的本主特.渡合极 世、内人主有系解和是奠主我会质巨思志大的的工结(质义色时起大 界社容民义初。决社2定义国主的大想着意需发业束30。工社期来地 社(会被民原级了会)世了基社义矛而武我义要展化,(业会。,提 会2主概则和3在生把纪理本会经盾深器国同),同实2化主党把高 主对义括专,高一产资中)论制的济,刻。新经遵改总时现新是义在对了 义手制为政第级个资本国强基度阶成在特的通民济循革之并了民党具这资工 运二七度“实一形以料主又调础的级分新别社过主文自4过,举由主在有个本人 动、届 业在一质是式农的.(义一消,初关已民是它会(没主化愿于和的新主过重过主阶 史新社二 的中化上发之民主1工次灭开步系占主要是变4收义不互集平方民()义渡大渡义级 上民会中 社国三已展)分为人商划剥阔确也绝主正中革官能利中改针主3用社时的时工和 又主全 会的改成生坚。主)业时削了立发对义确国,僚命满、的造,主和会期理期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义平的论.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向赎五总和总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3买种路实路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会的经线践线成人 性理历中 ,化级是导的义后1农为巨极。√的会内体对革成本要的和如刻主)方济的意和为民 的论史国 党”专共、工的村自变分邓中主指部实生命的结建国初实的义积法成主义总自的 伟是经“ 和即政同稳家商半的食。化小国义导矛际产在走社束状设家步现社的极改分体。任食积 大以验稳 政社;致步资业殖阶其们平社革。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民级力吐对1会命有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地和的出社第必制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半阶社了会二须已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封��

机械优化设计

机械优化设计

机械优化设计matlab优化设计程序学校:班级:学号:姓名:指导老师:一.进退法求最优点所在区间1.算例:函数:f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;初始参数:x0=0,step=0.01,st=[0,0],sd=[1,1];2.编程代码:function [lb,ub]=jintuifa(x0,step0,st,sd)% lb为区间下限,up为区间上限% x0初始探测点,step0是初始探测步长,st初始搜索点,sd是初始搜索方向step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;end3.运行结果二.黄金分割法求最求最优值1.eg:函数:f=x^2+2*x;初始参数:a=-3,b=5,e=0.0001;2.编程代码:function [ans,sp]=golden(a,b,e)%[a,b]初始区间,e为最小区间长度要求%ans为最优解,sp为所需迭代次数a(1)=a;b(1)=b;L=e;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;m(1)=feval('f1',t(1));n(1)=feval('f1',u(1));while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endm(k+1)=feval('f1',t(k+1));n(k+1)=feval('f1',u(k+1));ans=feval('f1',t(k+1));k=k+1;endans=(a(k)+b(k))/2;sp=k-1;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y=f1(x)y=x^2+2*x;end3.运行结果三.无约束优化方法——坐标轮换法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9];2.编程代码:function [x,f]=lunhuan(x0)%输入初始点x0[8,9]%输出最优解点x,与最优解值fp=1;h=0.000001;x=x0;while(p>h)%做精度比较w=x(1);q=x(2);d1=[1,0];a1=golden('objfun',x,d1);%黄金分割法求最佳步长 x=x+a1*d1;d2=[0,1];a2=golden('objfun',x,d2);x=x+a2*d2;p=sqrt((x(1)-w)^2+(x(2)-q)^2);endf=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)%函数名f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)%进退法函数x0=0;step0=0.000001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd); %进退法求最佳步长区间a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endt(k)=0;u(k)=0;m(k)=0;n(k)=0;p=[a',b',t',u',m',n'];ans=(a(k)+b(k))/2;end3.运行结果四.无约束优化方法——鲍威尔法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9],初始搜索方向[0,1],[1,0];2.编程代码:function [x,f]=powill(x0,d1,d2)%输入x0为初始点,d1,d2为两个线性无关向量for k=1:2w=x0(1);q=x0(2);a1=golden('objfun',x0,d1);x1=x0+a1*d1;a2=golden('objfun',x1,d2);x2=x1+a2*d2;d1=d2;d2=x2-x0;a3=golden('objfun',x2,d2);x3=x2+a3*d2;x0=x3;endx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)x0=0;step0=0.0001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd);a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endend3.运行结果五.有约束优化方法——复合形法1.eg:函数:min f(x)=x1^2+x2^2-x1*x2-10*x1-4*x2+60 St:g1(x)=-x1≤0g2(x)=-x2≤0g3(x)=x1-6≤0g4(x)=x2-8≤0g5(x)=x1+x2-11≤02.编程代码:function fuhexing(n,b,h,xb1,xb2)%元素数n,初始可行点b,精度h,xb1横坐标上下界,xb2为纵坐标上下界if (rem(n,2)==0)k=n+n/2;elsek=n+(n+1)/2;end%取k值A=kexingdian(k,xb1,xb2,b');%确定可行点A=mubiao(A,n,k,h);%求出目标函数并排序比较,得出最优解End %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=mubiao(A,n,k,h)for i=1:kA(3,i)=objfun(A(:,i));endB=A';%根据目标函数值排序A=sortrows(B,3)';p=0;for j=1:kx=(objfun(A(:,j))-objfun(A(:,1)))^2;p=p+x;endo=sqrt(p/(k-1));%收敛条件if(o<h)%判断所求点是否为最优点disp('最优点为')xz(1)=A(1,1);xz(2)=A(2,1);disp(xz);disp('其函数值为')f=A(3,1);disp(f);elsexr=Xcpanduan(A,k,n,h,1.3);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=kexingdian(k,xb1,xb2,b)A=zeros(3,k);A(1,1)=b(1);A(2,1)=b(2);for i=2:kA(1,i)=xb1(1)+rand(1)*(xb1(2)-xb1(1));A(2,i)=xb2(1)+rand(1)*(xb2(2)-xb2(1));%产生j个顶点endt=0;for j=1:kif(A(1,j)+A(2,j)<=11&&A(1,j)<=6&&A(2,j)<=8)%判断是否有不可行点t=t+1;T(:,t)=A(:,j);endendif(t<k)%计算出可行点的中心位置xcxc=zhongxindian(T,t);endt=0;for j=1:k%利用中心点将原不可行点逼近为可行点while(A(1,j)+A(2,j)>11||A(1,j)>6||A(2,j)>8)A(:,j)=xc+0.5*(A(:,j)-xc);endendendx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=objfun(x)f= x1^2+x2^2-x1*x2-10*x1-4*x2+60;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=Xcpanduan(A,k,n,h,a)for i=1:k-1T(:,i)=A(:,i);endxc=zhongxindian(T,k-1);%计算除最坏点以外的可行点中心坐标if(xc(1)+xc(2)<=11&&xc(1)<=6&&xc(2)<=8)%判断xc是否可行xr=Xrpanduan(xc,A,a,n,k,h);A(:,k)=xr;else%不可行时,即重新确定初始可行点fuhexing(n,h,A(:,1),xr);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=zhongxindian(T,t)xc=[0;0;0];for i=1:txc=xc+T(:,i);endxc=xc/t;%求解中心点end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xr=Xrpanduan(xc,A,a,n,k,h)xr=xc+a*(xc-A(:,k));while(xr(1)+xr(2)>11||xr(1)>6||xr(2)>8)%判断xr 是否可行若不可行,则持续迭代a=0.5*a;xr=xc+a*(xc-A(:,k));endxr=ercipanduan(a,xr,A(:,k),A,n,k,xc,h,xr);%可行时进入下一判断end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xr=ercipanduan(a,p,b,A,n,k,xc,h,t)if(objfun(p)>=objfun(b))%判断反射点和最坏点函数值的大小if(a<=1e-10)A(:,k)=A(:,k-1);xr=Xcpanduan(A,k,n,h,a);disp(xr);elsea=0.5*a;xr=Xrpanduan(xc,A,a,n,k,h);%返回中心点判断,持续迭代endelseA(:,k)=p;%以反射点取代最坏点进行循环mubiao(A,n,k,h);xr=t;endend3.运行结果五.有约束优化方法——混合惩罚法1.eg:函数:min f(x)=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;St:g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);2.编程代码function [x,f]=hunhechengfa(x0,r0,c,h1,h2)k=1;z=0;A(:,1)=x0;r(1)=r0;while (z==0)k=k+1;x=lunhuan(x0,r(k-1));A(:,k)=x;r(k)=c*r(k-1);z=shoulian(A,r,h1,h2,k);if(z==1)break;endx0=x;enddisp('最优解点x=');disp(x);disp('最优值=');f=fhanshu(x);disp(f);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z=shoulian(A,r,h1,h2,k)%判断收敛条件U=abs(objfun(A(:,k),r(k))-objfun(A(:,k-1),r(k-1))/obj fun(A(:,k-1),r(k-1)));V=0;for i=2:kV=V+(A(1,k)-A(1,k-1))^2;endV=sqrt(V);if(U<=h1&&V<=h2)z=1;elsez=0;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function p=objfun(x,r)%φ函数g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);j=sqrt(r);u=r*(1/g1+1/g2+1/g3+1/g4);v=(g1^2+g2^2+g3^2+g4^2)/j;p=fhanshu(x)-u+v;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=fhanshu(x)%目标函数f=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function x=lunhuan(x0,r)%轮换法p=1;h=0.01;d=zeros(6,6);a=zeros(6,1);x=x0;for i=1:6for j=1:6if(i==j)d(i,j)=1;endendendwhile(p>h)t=x;v=0;for k=1:6a(k)=golden(x,d(:,k),r);c=d(:,k);x=x-a(k)*c';v=v+(x(k)-t(k))^2;endp=sqrt(v);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(st,sd,r)%黄金分割法求最佳步长 [g,h]=jintuifa(st,sd,r);a(1)=g;b(1)=h;L=0.01;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd';q=st+u(1)*sd';m(1)=objfun(p,r);n(1)=objfun(q,r);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd';z=st+u(k+1)*sd';m(k+1)=objfun(w,r);n(k+1)=objfun(z,r);k=k+1;endans=(a(k)+b(k))/2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd,r)%代入步长f=objfun(st+a.*sd',r);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd,r)%进退法求最佳步长区间x0=0;step0=0.001;step=step0;f0=jintui(x0,st,sd,r);x1=x0+step0;f1=jintui(x1,st,sd,r);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd,r);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd,r);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2; f1=f0; f0=f2;endendend3.运行结果。

利用Matlab求解机械设计方案优化问题的分析

利用Matlab求解机械设计方案优化问题的分析

利用MATLAB求解机械设计优化问题的分析周婷婷(能源与动力学院,油气0701>摘要:MATLAB是目前国际上最流行的科学与工程计算的软件工具,它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。

本文浅谈MATLAB在机械设计优化问题的几点应用。

关键词:MATLAB 约束条件机械设计优化引言:在线性规划和非线性规划等领域经常遇到求函数极值等最优化问题,当函数或约束条件复杂到一定程度时就无法求解,而只能求助于极值分析算法,如果借助计算器进行手工计算的话,计算量会很大,如果要求遇到求解极值问题的每个人都去用BASIC,C和FORTRAN之类的高级语言编写一套程序的话,那是非一朝一日可以解决的,但如用MATLAB语言实现极值问题的数值解算,就可以避免计算量过大和编程难的两大难题,可以轻松高效地得到极值问题的数值解,而且可以达到足够的精度。

1无约束条件的极值问题的解算方法设有Rosenbrock函数如下:f(X1,X2>=100(X2-X1*X1>2+(1-X1>2求向量X取何值时,F(x>的值最小及最小值是多少?先用MATLAB语言的编辑器编写求解该问题的程序如下:%把函数写成MATLAB语言表达式fun=’100*(X(2>-X(1>*X(1>2+(1-X(1>>2%猜自变量的初值X0=[-1 2]。

%所有选项取默认值options=[ ];%调用最优化函数进行计算。

%函数最小值存放在数组元素options(8>中%与极值点对应的自变量值存放在向量X里%计算步数存放在数组元素options(10>中[X,options]=fmins(fun,X0,options>;%显示与极值点对应的自变向量X的值。

%显示函数最小值options(8>%显示函数计算步数options(10>把上面这段程序保存为m文件,然后用“Tools”菜单中的“Run”命令行这段程序,就可以轻松的得到如下结果:X=9.999908938395383e-0019.99982742178110e-001ans=1.706171071794760e-001ans=195显然,计算结果与理论结果的误差小到e-10级,这里调用了MATLAB的最优化函数fmins(>,它采用Nelder-Mead的单纯形算法,就是因为这个函数的采用,使最小值问题的解算变得非常简单。

机械优化设计_经典实例

机械优化设计_经典实例

g3 ( x)
1
7 45
x13 x2

0
g4 ( x)
1
1 321
x1 x22

0
g5 (x) x1 0
g6 (x) x2 0
盖板优化实例

l1 ) 2
]

0
优化设计工具
优化设计工具
第1部分 MATLAB基础 第2部分 优化计算工具
第1部分 MATLAB基础
1.1 MATLAB环境简介 1.2 数据表示 1.3 数组 1.4 源文件(M-文件)
1.1 MATLAB窗口
启动MATLAB 其窗口如右
1、Command Window (命令窗口)
x = 0:0.1:2*pi; y = sin(x); plot(x,y)
1.4.3 M-文件的操作
1.4.3 M-文件的操作
sin( x 2 y 2 ) z
x2 y2
(7.5 x 7.5,7.5 y 7.5)
1.4.3 M-文件的操作
1.4.3 M-文件的操作
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
1.5 f max
1

1 321
x1 x22
1

0
g5 (x) x1 0
g6 (x) x2 0

利用Matlab求解机械设计优化问题-螺栓

利用Matlab求解机械设计优化问题-螺栓

3.机械优化设计应用实例机械优化设计把数学规划理论与数值方法应用于设计中,用计算机从大量可行方案中找出最优化设计方案,从而大大提高设计质量和设计效率。

MATLAB 具有解决线性规划和非线性规划、约束优化和无约束优化问题的内部函数,因而可以完成这一功能。

现举一例:螺栓组联结的优化设计如图4所示的压力容器螺栓组联接中,已知D 1= 400mm,D 2 =250mm ,缸内工作压力为p=1.5 MPa ,螺栓材料为35号钢,σs =320Mpa,安全系数S=3,取残余预紧力Q ’p =1.6F,采用铜皮石棉密封垫片。

现从安全、可靠、经济的角度来选择螺栓的个数n 和螺栓的直径d 。

3.1 设计问题分析若从经济性考虑,螺栓数量尽量少些、尺寸小些,但这会使降低联结的强度和密封性,不能保证安全可靠的工作;若从安全、可靠度考虑,螺栓数量应多一些、尺寸大一些为好,显然经济性差,甚至造成安装扳手空间过小,操作困难。

为此,该问题的设计思想是:在追求螺栓组联结经济成本最小化的同时,还要保证联结工作安全、可靠。

3 .2 设计变量 目标函数 约束条件3.2 .1 设计变量 选取螺栓的个数n 和直径d(mm)为设计变量:T 21T ]x [x ]d [n X ==3.2 .2 目标函数 追求螺栓组联结经济成本C n 最小为目标。

而当螺栓的长度、材料和加工条件一定时,螺栓的总成本与nd 值成正比,所以本问题优化设计的目标函数为min F(X) = C n = n d = x 1x 2① 强度约束条件 为了保证安全可靠地工作,螺栓组联结必须满足强度条件][32.521σπσ≤=d Qca ; 其中Mpa S s 106.3320][===σσ; n n p n D F F F F Q Q p πππ6093742505.16.246.26.26.1222'=⨯=⨯==+=+= N ;对于粗牙普通螺纹:由文献[3]推荐,小径 d 1=0.85d 所以,强度约束条件为:0106146192106146192106105624)(2212211≤-=-=-=x x nd nd X g ② 密封约束条件 为了保证密封安全,螺栓间距应小于10d ,所以,密封约束条件为:01040010)(2112≤-=-=x x d n D X g ππ ③ 安装扳手空间约束条件 为了保证足够的扳手空间,螺栓间距应大于5d ,所以,安装约束条件为:040055)(1213≤-=-=x x n D d X g ππ ④ 边界约束条件 0)(14≤-=x X g ;0)(25≤-=x X g3.3 .3 建立数学模型综上所述,本问题的数学模型可表达为:设计变量:T 21]x [x X =目标函数:min F(X) = x 1x 2约束条件: s.t. 0)(≤X g i ( i = 1, 2, 3, 4, 5,)现运用MATLAB 的优化函数进行求解 :先编写M 文件function [c,ceq]=mynas(x)c(1)=/(x(1)*x(2)^2)-106; % 非线性不等式约束c(2)=400*pi/x(1)-10*x(2);c(3)=-400*pi/x(1)+5*x(2);ceq=[]; % 非线性等式约束在MATLAB 命令窗口输入:fun='x(1)*x(2)'; % 目标函数x0=[4,6]; % 设计变量初始值A=[-1,0;0,-1]; % 线性不等式约束矩阵b=[0;0];Aeq=[]; % 线性等式约束矩阵beq=[];lb=[]; % 边界约束矩阵ub=[];[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,@mynlsub) % 调用有约束优化函数运行结果如下:x = 11.4499 10.9751fval = 125.6637所以,该问题优化结果为:n =11.4499 ,d = 10.9751,目标函数最小值:F(X)= 125.6637。

MATLAB在力学机械中的应用举例(课件PPT)

MATLAB在力学机械中的应用举例(课件PPT)

wx=diff(vx)./dt(1:Ldt-1);wy=diff(vy)./dt(1:Ldt-1); %二次导数
[t(2:Ldt),x(2:Ldt),y(2:Ldt),wx,wy]
%显示数据
10
子程序ex713f
函数程序应另存成一个文件ex713f.m function zprime=ex713f(t,z) global vt vm zprime=[0;0]; % 给出t0之前zprime初值 zprime(1)=-vt-vm*z(1)/sqrt(z(1)^2+z(2)^2); zprime(2)=-vm*z(2)/sqrt(z(1)^2+z(2)^2); %上面两句可换成一个矩阵语句: zprime=-vt*[1;0]-vm*z/sqrt(z(1)^2+z(2)^2);
5
线性数学模型
对杆件1:ΣX=0 Nax + Ncx = 0 ΣY=0 Nay + Ncy - G1 = 0; ΣM=0 Ncy*L1*cos(theta1)-Ncx*L1*sin(theta1)-…
G1*L1/2*cos(theta1)=0; 对杆件2: ΣX=0 Nbx - Ncx = 0; ΣY=0 Nby - Ncy - G2 = 0; ΣM=0 Ncy*L2*cos(theta2)+ …
从而 w3 = L1w1cos(π/2-θ1+θ2)/ (L3cos(θ3-π/2-θ2)) 由杆2两端点a和b的速度沿杆长垂直方向的分量之差,可以求
出杆2的角速度. w2 = (-(L3sin(θ3-π/2-θ2))- L1w1sin(π/2-θ1+θ2))/L2 2. 求运动全过程的角位置,角速度,角加速度曲线,这只有借助 于计算工具才能做到,因为用手工算一个点就不胜其烦, 算 几十个点是很难想象的.而由MATLAB编程调用fzero函数时, 要求给出一个近似猜测值,若连续算几十点,前一个解就可 作为后一个解的猜测值,所以反而带来了方便. 这样,本书将提供两个程序ex714a.m和ex714b.m来表述这两种 方法,它们所要调用的函数程序命名为ex714f.m.

MATLAB在机械设计与动力学仿真中的应用实例

MATLAB在机械设计与动力学仿真中的应用实例

MATLAB在机械设计与动力学仿真中的应用实例1. 引言机械设计与动力学仿真是现代工程领域非常重要的一个环节。

通过仿真软件可以在设计前对机械系统进行全面的分析和验证,大大减少了实际试制的时间和成本。

而MATLAB作为一种功能强大的科学计算软件,被广泛应用于机械设计与动力学仿真中。

本文将通过几个实际应用例子来展示MATLAB在这一领域的应用。

2. 机械结构分析机械结构的分析是机械设计的基础。

MATLAB提供了各种方法和工具,可以帮助工程师对机械结构进行静力学和动力学分析。

例如,可以利用MATLAB的有限元分析工具对机械结构进行强度校核。

通过输入结构的几何参数和材料性质,MATLAB可以计算出结构的应力和变形情况,从而判断是否满足设计要求。

此外,还可以利用MATLAB的多体动力学分析工具对机械结构的振动和冲击响应进行模拟和优化,以确保结构的安全性和可靠性。

3. 机械传动系统分析机械传动系统是机械设备中的重要组成部分,对于许多机械设备的运转效果和精度起着至关重要的作用。

MATLAB可以对不同类型的机械传动系统进行仿真分析,从而帮助工程师优化设计参数和减小误差。

例如,可以利用MATLAB的信号处理工具箱对传动系统中的振动和噪音进行分析和消除,提高系统的稳定性和准确性。

此外,还可以利用MATLAB的优化工具箱对传动系统的传动比、齿轮模数等参数进行优化,以满足设计要求。

4. 机械控制系统仿真机械控制系统在现代机械设备中起着至关重要的作用。

MATLAB提供了强大的控制系统设计和仿真工具,可以帮助工程师进行各种机械控制系统的仿真分析和优化设计。

例如,可以利用MATLAB的控制系统工具箱对机械控制系统的稳定性和性能进行评估和改进。

此外,还可以利用MATLAB的仿真工具对机械控制系统进行实时仿真,通过改变输入信号,观察输出响应,从而优化控制算法和参数。

5. 系统性能优化在机械设计与动力学仿真中,系统性能优化是一个重要的目标。

机械优化设计Matlab-优化工具箱基本用法

机械优化设计Matlab-优化工具箱基本用法

Matlab 优化工具箱x = bintprog (f , A, b, Aeq, Beq , x0, options ) 0—1规划 用MATLAB 优化工具箱解线性规划命令:x=linprog(c ,A ,b ) 2、模型:命令:x=linprog(c ,A ,b ,Aeq ,beq ) 注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].min z=cX1、模型:3、模型:命令:[1]x=linprog(c,A,b,Aeq,beq,VLB,VUB)[2]x=linprog(c,A,b,Aeq,beq,VLB,VUB, X0)注意:[1] 若没有等式约束,则令Aeq=[ ],beq=[]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1 max解编写M文件小xxgh1。

m如下:c=[-0.4 —0。

28 —0.32 —0.72 -0.64 -0。

6];A=[0。

01 0.01 0.01 0.03 0。

03 0.03;0。

02 0 0 0。

05 0 0;0 0。

02 0 0 0。

05 0;0 0 0.03 0 0 0。

08];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2解: 编写M文件xxgh2.m如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表.问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。

机械优化设计MATLAB程序

机械优化设计MATLAB程序

机械优化设计MATLAB程序
1.建立目标函数和约束条件
在机械优化设计中,目标函数是需要最小化或最大化的量,可以是机械结构的重量、成本、应力等。

约束条件是指机械结构必须满足的条件,例如最大应力、最小挠度等。

在MATLAB中通过函数来定义目标函数和约束函数。

2.选择优化算法
MATLAB提供了多种优化算法,例如遗传算法、粒子群算法、模拟退火算法等。

根据实际情况选择合适的优化算法。

3.设计参数和变量范围
机械结构的优化设计通常涉及到多个参数和变量,如尺寸、材料等。

在MATLAB中通过定义参数和变量范围来限制优化过程中的空间。

4.编写优化程序
在MATLAB中,可以使用优化工具箱的相关函数来编写机械优化设计程序。

程序的基本结构包括定义目标函数、约束函数、参数和变量范围,并选择合适的优化算法进行求解。

5.运行优化程序
在编写完成程序后,可以通过运行程序来开始优化过程。

MATLAB会根据设定的目标函数和约束条件进行,并最终得到最优解。

6.分析优化结果
优化程序运行完成后,可以通过MATLAB提供的分析工具对优化结果进行评估。

可以通过绘制图表、计算相关指标等方式对结果进行分析和比较。

7.进一步优化和改进
根据优化结果,可以对机械结构进行进一步优化和改进。

可以调整参数和变量范围,重新运行优化程序,直到得到满意的结果。

总之,以上是一种用MATLAB编写机械优化设计程序的基本流程。

通过合理地利用MATLAB提供的工具和函数,可以帮助工程师进行机械结构的优化设计,提高设计效率和准确性。

机械优化设计MATLAB程序-无删减范文

机械优化设计MATLAB程序-无删减范文

机械优化设计MATLAB程序机械优化设计MATLAB程序引言机械优化设计是现代工程领域中的重要课题,通过采用数值方法和优化算法,可以实现对机械产品设计的自动化和优化。

MATLAB 作为一种功能强大的科学计算软件,为机械优化设计提供了丰富的工具和函数。

本文将介绍如何使用MATLAB编写机械优化设计程序,并讨论如何应用MATLAB进行机械优化设计。

MATLAB的优势与其他科学计算软件相比,MATLAB具有许多优势:1. 丰富的工具箱:MATLAB包含了各种各样的工具箱,涵盖了数值计算、优化、曲线拟合、数据可视化等领域,这些工具箱为机械优化设计提供了强大的支持。

2. 简单易用的编程语言:MATLAB使用的编程语言是一种高级语言,语法简单易懂,对于初学者而言非常友好。

即使没有编程经验,用户也能够快速上手。

3. 丰富的函数库:MATLAB拥有丰富的函数库,用户可以直接调用这些函数来完成各种任务,无需从零开始编写代码。

4. 广泛的应用领域:MATLAB在工程、科学、金融等领域得到了广泛的应用,拥有一个庞大的用户社区。

用户可以通过查看官方文档、参与用户社区等途径获取帮助和支持。

机械优化设计的步骤机械优化设计一般包括以下几个步骤:1. 建立数学模型:首先需要建立机械系统的数学模型,该模型可以基于物理原理或实验数据。

通过建立数学模型,可以将机械系统的性能指标与设计变量进行数学描述。

2. 确定优化目标:根据机械系统的需求和限制条件,确定优化目标。

优化目标可以是多个,如最小化能量损失、最小化材料使用量等。

3. 选择优化算法:基于问题的性质选择合适的优化算法。

常用的优化算法包括遗传算法、粒子群算法、梯度下降算法等。

4. 编写MATLAB代码:根据以上步骤,编写MATLAB代码实现机械优化设计。

MATLAB提供了丰富的工具箱和函数来辅助编写优化算法的代码。

编写机械优化设计MATLAB程序的步骤以下是编写机械优化设计MATLAB程序的一般步骤:1. 导入必要的工具箱和函数库:```% 导入优化工具箱import optim.% 导入其他必要的函数库import matlab.```2. 建立数学模型:根据机械系统的特点和要求,建立相应的数学模型。

matlab机械优化设计应用实例

matlab机械优化设计应用实例
案例如图有一块边长为6m的正方形铝板四角截去相等的边长为x的方块并折转造一个无盖的箱子问如何截法x取何值才能获得最大容器的箱子只写出这一优化问题的数学模型
一维优化问题
一维优化问题的数学模型为:
min
具体的调用格式如下: 调用格式1:
f ( x)
x1 x x2
在matlab中,一维优化问题,也就是一维搜索问题的实现是由函数fminbnd 来实现的。
调用方式二: 在命令窗口中输入: [x,fval]=fminsearch(@demfun1,[0,0]) 得到的结果 X= 1.0016 0.8335 Fval= -3.3241
约束优化问题
1.线性规划
f=[-7;-5]; A=[3,2;4,6;0,7]; b=[90;200;210]; lb=zeros(2,1); 调用linprog函数 [x,fval]=linprog(f,A,b,[],[],lb)
方法二:在MATLAB的M编辑器中建立函数文件用来保存所要 求解最小值的函数:
function f=demfun1(x) f= 2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2; 保存为demfun1.m。
然后,在命令窗口中调用该函数,这里有两种调用方式:
调用方式一: 在命令窗口中输入: [x,fval]=fminsearch('demfun1',[0,0])
调用格式2:[X,FVAL]=fminunc(FUN,X0) 这种格式的功能是:同时返回解x和在点x处的目标函数值。
1. 求函数F=sin(x)+3的最小值点。
function f=demfun(x) f=sin(x)+3 然后,在命令窗口中输入: X=fminunc(@demfun,2)

matlab在机械优化设计中的应用

matlab在机械优化设计中的应用

matlab在机械优化设计中的应用一、引言随着科技的不断发展,机械优化设计在工程领域中得到了广泛的应用。

而在机械优化设计中,matlab作为一款强大的数学软件,在优化算法的实现和结果分析等方面具有很大的优势。

本文将探讨matlab在机械优化设计中的应用。

二、matlab在机械优化设计中的基础知识1. matlab基础知识Matlab是一种交互式数值计算环境和编程语言,可用于科学计算、数据分析和可视化等多个领域。

Matlab有着丰富的函数库和工具箱,可进行各种数学运算、统计分析、图像处理、信号处理等操作。

2. 机械优化设计基础知识机械优化设计是指通过运用数学模型和计算方法对机械结构进行全面分析和综合考虑,以达到最佳性能指标或最小成本等目标。

其中包括了多目标规划、遗传算法、神经网络等多种方法。

三、matlab在机械优化设计中的应用1. 优化算法实现Matlab提供了各种常见的数值计算方法和最优化方法,如线性规划、非线性规划、遗传算法等。

通过Matlab的函数库和工具箱,可以轻松地实现各种优化算法,并且可以根据具体需求进行自定义编程。

2. 结果分析Matlab在结果分析方面也有很大的优势。

通过Matlab的图形界面,可以绘制各种图表,如散点图、折线图、柱状图等。

同时,Matlab还提供了多种统计分析方法,如方差分析、回归分析等,可以对优化结果进行全面的统计分析。

3. 机械结构设计Matlab还可以用于机械结构设计。

通过建立机械结构模型,并运用Matlab中的有限元分析工具箱进行模拟计算,可以得到机械结构在不同载荷下的应力和变形情况。

这些数据可以进一步用于优化设计和结构改进。

4. 案例应用以一台压缩机为例,利用Matlab进行机械优化设计。

首先建立压缩机的数学模型,并根据实际需求设置相关参数和目标函数。

然后采用遗传算法对压缩机进行优化设计,并得到最佳设计方案。

最后利用Matlab中的有限元分析工具箱对最佳设计方案进行模拟计算,并得到应力和变形等数据。

机械优化设计MATLAB程序

机械优化设计MATLAB程序

机械优化设计MATLAB程序正文:⒈前言⑴研究背景机械优化设计是一种在机械工程领域中被广泛应用的方法,旨在通过使用数学模型和优化算法来改进机械系统的性能。

MATLAB是一种强大的数值计算和编程工具,可以用于开发机械优化设计程序。

⑵目的和范围⒉问题描述⑴设计需求在开始编写机械优化设计程序之前,需要明确设计需求,即需要实现的机械系统的性能指标或目标。

这些需求可以包括系统的功率、效率、噪声、振动等方面。

⑵优化目标根据设计需求,确定最终优化目标。

例如,通过调整机械系统的参数来最大化系统的效率、最小化系统的振动等。

⒊数学模型⑴设计变量设计变量是机械系统中可以调整的参数。

需要对设计变量进行定义和范围设定,以确保优化算法能够在合理的范围内搜索最优解。

⑵约束条件约束条件是在进行优化时必须满足的条件。

这些条件可以包括设计变量的边界条件、约束函数等。

在编写MATLAB程序时,需要将这些约束条件作为输入参数。

⒋算法选择与实现⑴优化算法选择根据优化目标和系统的特点,选择合适的优化算法。

常见的优化算法包括遗传算法、粒子群优化算法、模拟退火算法等。

⑵优化算法实现根据选择的优化算法,编写MATLAB程序实现优化过程。

程序应包括目标函数的定义、算法的参数设置、迭代过程和终止条件等。

⒌算法验证与结果分析⑴数据采集与处理在进行机械优化设计实验时,需要采集相应的实验数据,并对数据进行处理。

这些数据可以包括设计变量的调整情况、系统性能指标的变化等。

⑵结果分析基于采集到的数据,分析和比较不同优化算法的性能。

可以绘制图表展示优化过程和结果的变化,以便于进一步分析和优化。

⒍结论与展望总结机械优化设计MATLAB程序的设计过程和结果,对实验结果进行分析,并提出未来改进和研究的方向。

1、本文档涉及附件:附件1:MATLAB程序代码示例附件2:数据采集记录表2、本文所涉及的法律名词及注释:机械优化设计:指利用数学模型和优化算法改善机械系统性能的方法。

轴承 优化算法 matlab 程序

轴承 优化算法 matlab 程序

轴承优化算法 matlab 程序轴承优化算法的Matlab程序在机械领域中,轴承是一种用于减少摩擦和支撑转动运动的重要元件。

轴承的性能直接影响到机械设备的运行效率和寿命。

为了提高轴承的性能,并解决实际工程问题,优化算法是一种常用的工具。

本文将介绍一种使用Matlab编写的轴承优化算法程序。

轴承优化算法的设计目标是通过调整设计参数以达到最佳性能。

优化算法基于数学模型和计算机算法,通过迭代寻找最佳的解。

对于轴承而言,常见的设计参数包括几何尺寸、材料、润滑方式等。

首先,我们需要创建一个Matlab函数来定义轴承的数学模型。

例如,我们可以使用Reynolds方程来描述轴承的润滑情况。

根据Reynolds方程,轴承的载荷和润滑剂的粘度将影响到摩擦和热平衡。

函数的输入参数可以包括轴承的几何参数、载荷、转速和润滑剂的粘度等。

接下来,我们可以选择一个适当的优化算法来解决轴承的优化问题。

常见的优化算法包括遗传算法、粒子群算法、模拟退火算法等。

对于大规模优化问题,遗传算法通常是较好的选择。

在Matlab中,可以使用Global Optimization Toolbox来实现这些算法。

以遗传算法为例,需要定义目标函数、约束条件和遗传算法的参数。

然后,我们可以使用Matlab编写主程序来调用上述的函数和算法。

主程序负责设置优化问题的目标函数和约束条件,以及调用遗传算法进行求解。

在每次迭代之后,程序将输出当前的最佳解以及对应的目标函数值。

在轴承优化算法程序中,还可以加入一些其他的功能和模块,以提高其实用性和可扩展性。

例如,可以添加一个用户界面模块,使用户可以方便地输入轴承的参数和运行优化算法。

还可以添加一个结果分析模块,用于评估不同参数组合的性能,并提供可视化的结果展示。

最后,需要对程序进行验证和优化。

可以通过比较优化算法的结果和现有的经验数据来验证程序的正确性。

如果发现程序存在性能问题,可以通过调整参数或改进算法来进行优化。

二次插值法机械优化设计matlab.wps

二次插值法机械优化设计matlab.wps

一维无约束优化算法——二次插值法二次插值法亦是用于一元函数在确定的初始区间内搜索极小点的一种方法。

它属于曲线拟合方法的范畴。

一、基本原理在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。

如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。

常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。

这里我们主要介绍二次插值法的计算公式。

假定目标函数在初始搜索区间中有三点、和,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。

利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式,式中、、为待定系数。

图1根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得(2)为求插值多项式的极小点,可令其一阶导数为零,即(3)解式(3)即求得插值函数的极小点(4)式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得:(5)(6)将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式:(7)把取作区间内的另一个计算点,比较与两点函数值的大小,在保持两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述方法进行三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为的近似极小值点。

上述求极值点的方法称为三点二次插值法。

为便于计算,可将式(7)改写为(8)式中:(9)(10)二.程序框图)/()(3211212212131a a c a a y y c a a y y c ----←--←)/(5.02131c c a a a p -+←)(p p a f y ←?22ε<-y y y p?0)(2>-h a a p ?2p y y <pp y y a a ←←**2*2*y y a a ←←结束?2p y y <?2p y y ≥pp y y a a y y a a ←←←←222121pp y y a a ←←33pp y y a a y y a a ←←←←222323pp y y a a ←←11否否否否否是 是是 是是给定hy y y a a a ,,,,,,313,212ε开始三.例题及其程序代码1.用二次差值法求f(α)=sinα在4≤α≤5上的极小值2.程序(1) function y=f(x)y=sin(x); …………………….%定义f文件(2)c1=(y3-y1)/(x3-x1);c2=((y2-y1)/(x2-x1)-c1)/(x2-x3);ap=0.5*(x1+x3-c1/c2);yp=f(ap);……………………%定义f1文件(3)x1=4;x2=4.5;x3=5;e=0.001;y1=f(x1);y2=f(x2);y3=f(x3); ………………%确定初始差值节点h=0.1;c1=(y3-y1)/(x3-x1);c2=((y2-y1)/(x2-x1)-c1)/(x2-x3);ap=0.5*(x1+x3-c1/c2);yp=f(ap);…% 计算二次插值函数极小点while (abs((y2-yp)/y2)<e)....%判断迭代终止if ((ap-x2)*h>0) 条件if(y2>=yp)x1=x2;y1=y2;x2=ap;y2=yp;f1;elsex3=ap;y3=yp;f1;endelseif (y2>=yp)x3=x2;y3=y2;x2=ap;y2=yp;f1;elsex1=ap;y1=yp;f1;…………………..%缩短搜索区间endendif (y2<yp)xo=x2;yo=y2;elsexo=ap;yo=yp;endxoyo二次插值法四结果分析经过MA TLAB运算,结果如上,与解析法运算结果相同,说明二次差值的效果很好。

优化设计Matlab实例解析

优化设计Matlab实例解析

优化设计Matlab实例解析MATLAB是一种基于矩阵运算的高级编程语言和环境,被广泛应用于各个领域的科学计算和工程问题。

在实际应用中,我们经常面临优化设计的任务,即在给定的限制条件下,寻找最优的解决方案。

优化设计可以应用于诸如控制系统设计、信号处理、图像处理、机器学习等问题中。

下面我们以一个简单的例子来说明如何使用MATLAB进行优化设计。

假设我们有一个矩形花园,每边有一定的长度,我们希望找到一个长和宽使得花园的面积最大化。

令矩形花园的长和宽分别为x和y,由于边长有限制条件,即x的范围为0到20,y的范围为0到10,同时花园的长度之和不得超过30。

我们的目标是找到一组合适的x和y,使得面积A 最大。

在MATLAB中,我们可以使用优化工具箱中的函数fmincon来求解这个问题。

以下是具体的实现步骤:1.创建目标函数首先,我们需要定义一个目标函数来评估每组x和y的解决方案。

在这个例子中,我们的目标是最大化矩形花园的面积,因此我们的目标函数可以简单地定义为A=x*y。

```matlabfunction A = objective(x)A=-x(1)*x(2);%最大化面积,取负号end```2.设置限制条件接下来,我们需要定义限制条件。

在这个例子中,我们需要考虑两个限制条件,即x和y的范围以及长度之和的限制。

我们可以使用函数fmincon提供的constr函数来定义这些限制条件。

```matlabfunction [c, ceq] = constr(x)c=[x(1)-20;%x的上限x(2)-10;%y的上限x(1)+x(2)-30];%长度之和的限制ceq = []; % 无等式限制end```3.求解问题有了目标函数和限制条件,我们可以使用fmincon函数来求解问题。

```matlabx0=[10,5];%初始猜测lb = [0, 0]; % x和y的下限ub = [20, 10]; % x和y的上限options = optimoptions('fmincon', 'Display', 'iter'); % 设置选项```在这里,我们使用了初始猜测x0、x和y的上下限lb和ub以及其他选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2 机床加工情况表
机床类 型
单位工作所需加工台时数 工件1 工件2 工件3
单位工件的加工费用 工件1 工件2 工件3
可用 台时数

0.4
1.1
1.0
13
9
10
700

0.5
1.2
1.3
11
12
8
800
设在甲机床上加工工件1、2和3的数量分别为x1、x2和x3,在乙机床上加工 工件1、2和3的数量分别为x4、x5和x6。根据三种工种的数量限制,有
令生产产品甲的数量为x1,生产产品乙的数量为x2。由题意可以 建立下面的模型: 该模型中要求目标函数最大化,需要按照Matlab的要求进行转换,即 目标函数为 首先输入下列系数:
f = [-7;-5]; A = [3 2
46 0 7];
现代设计理论与方法 浙师大工学院机械系 15
1.3线性规划及其优化函数
有约束的非线性最小化 二次规划
fgoalattain
多目标达到问题
现代设计理论与方法 浙师大工学院机械系 3
1.2有边界非线性最小化
[函数] fminbnd 功能:找到固定区间内单变量函数的最小值。 [格式] x = fminbnd(fun,x1,x2) x = fminbnd(fun,x1,x2,options)
现代设计理论与方法 浙师大工学院机械系 10
1.3线性规划及其优化函数
[说明] f: 是优化参数x的系数矩阵; lb,ub: 设置优化参数x的上下界; fval: 返回目标函数在最优解x点的函数值; exitflag:返回算法的终止标志; output: 返回优化算法信息的一个数据结构。 lambda:解x的Lagrange乘子
现代设计理论与方法 浙师大工学院机械系 13
1.3线性规划及其优化函数
[代码]f = [-5; -4; -6]; A = [1 -1 1;3 2 4;3 2 0]; b = [20; 42; 30]; lb = zeros(3,1); [x,fval] = linprog(f,A,b,[],[],lb)
1.2有界非线性最小化
[说明] fun 是目标函数 x1,x2 设置优化变量给定区间的上下界 options 设置优化选项参数 fval 返回目标函数在最优解x点的函数值 exitflag 返回算法的终止标志 output是一个返回优化算法信息的结构 该参数包含下列优化信息:
1. output.iterations – 迭代次数。 2. output.algorithm – 所采用的算法。
现代设计理论与方法 浙师大工学院机械系 12
1.3线性规划及其优化函数
[应用举例] 求使函数 f (x) 5x1 4x2 6x3 取最小值的x值, 且满足约束条件:
x1 x2 x3 20
3x1 2x2 4x3 42
3x1 2x2 30
x1 0, x2 0, x3 0
y =-2.0000
所以水槽的最大容积为2.0000m3。
现代设计理论与方法 浙师大工学院机械系 8
1.3线性规划及其优化函数
线性规划问题是目标函数和约束条件均为线性函数的问题, MATLAB解决的线性规划问题的标准形式为 :
f xmin x Rn sub.to:A x b
Aeq x beq
function f = myfun(x)
f = -(3-2*x).^2 * x;
然后调用fminbnd函数(磁盘中M文件名为opt21_3.m):
x = fminbnd(@opt21_3o,0,1.5)
得到问题的解:
x = 0.5000
即剪掉的正方形的边长为0.5m时水槽的容积最大。
水槽的最大容积计算:
[例四] 生产计划的最优化问题 某工厂生产A和B两种产品,它们需要经过三种设备的加工,其工时
如表9-16所示。设备一、二和三每天可使用的时间分别不超过12、10和8 小时。产品A和B的利润随市场的需求有所波动,如果预测未来某个时期 内A和B的利润分别为4和3千元/吨,问在那个时期内,每天应安排产品A、 B各多少吨,才能使工厂获利最大?
b = [90; 200; 210]; lb = zeros(2,1); 然后调用linprog函数: [x,fval,exitflag,output] = linprog(f,A,b,[],[],lb) x=
14.0000 24.0000 fval = -218.0000 exitflag =
1 output =
现代设计理论与方法 浙师大工学院机械系 2
1.1 优化工具箱中的函数
优化工具箱中的函数包括下面几类: 最小化函数
函数
描述
fminbnd
有边界的标量非线性最小化
linprog
线性规划
fminsearch, fminunc fminimax fmincon quadprog
无约束非线性最小化 最大最小化
[x,fval] = fminbnd(…) [x,fval,exitflag] = fminbnd(…) [x,fval,exitflag,output] = fminbnd(…) [应用背景]给定区间x1<x<x2,求函数f(x)的最小值。X可以 是多元向量
现代设计理论与方法 浙师大工学院机械系 4
iterations: 5 cgiterations: 0 algorithm: 'lipsol' 由上可知,生产甲种产品14吨、乙种产品24吨可使创建的总经济价值 最高。最高经济价值为218万元。exitflag=1表示过程正常收敛于解x 处。
现代设计理论与方法 浙师大工学院机械系 16
1.3线性规划及其优化函数
-1.0000
现代设计理论与方法 浙师大工学院机械系 7
[例二] 对边长为3m的正方形铁板,在四个角处剪去相等的正
方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?
假设剪去的正方形的边长为x,则水槽的容
积为
现在要求在区间(0,1.5)上确定一个x,使 最大化。
首先编写M文件opt21_3o.m:
[结果] x = 0.0000 15.0000 3.0000
fval = -78.0000
现代设计理论与方法 浙师大工学院机械系 14
1.3线性规划及其优化函数
应用实例 [ [例三] 生产决策问题 某厂生产甲乙两种产品,已知制成一吨产品甲需用资源A 3吨,资源B 4m3;制成一吨产品乙需用资源A 2吨,资源B 6m3,资源C 7个单位。 若一吨产品甲和乙的经济价值分别为7万元和5万元,三种资源的限制 量分别为90吨、200m3和210个单位,试决定应生产这两种产品各多少 吨才能使创造的总经济价值最高?
现代设计理论与方法 浙师大工学院机械系 6
1.2有边界非线性最小化
1.2.1 应用实例 [例一] 在区间(0,2π)上求函数sin(x)的最小值: x = fminbnd(@sin,0,2*pi) x=
4.7124 所以区间(0,2π)上函数sin(x)的最小值点位于 x=4.7124处。 最小值处的函数值为: y = sin(x) y=
现代设计理论与方法 浙师大工学院机械系 19
x1+x4=300 (对工件1) x2+x5=500 (对工件2) x3+x6=400 (对工件3) 再根据机床甲和乙的可用总台时限制,可以得到其它约束条件。 以总加工费用最少为目标函数,组合约束条件,可以得到下面的数 学模型: 首先输入下列系数: f = [13;9;10;11;12;8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [700; 800]; Aeq=[1 0 0 1 0 0 010010 0 0 1 0 0 1]; beq=[300 500 400]; lb = zeros(6,1);
3. output.funcCount – 函数评价次数。
现代设计理论与方法 浙师大工学院机械系 5
1.2有边界非线性最小化
算法: fminbnd是一个M文件。其算法基于黄金分割法和二次插 值法。 局限性: 1.目标函数必须是连续的。 2.fminbnd函数可能只给出局部最优解。 3.当问题的解位于区间边界上时,fminbnd函数的收敛 速度常常很慢。此时,fmincon函数的计算速度更快,计 算精度更高。 4.fminbnd函数只用于实数变量。
MATLAB机械优化设计 实例指导教程
现代设计理论与方法 浙师大工学院机械系 1
概述
利用Matlab的优化工具箱,可以求解线性规 划、非线性规划和多目标规划问题。具体而言, 包括线性、非线性最小化,最大最小化,二次规 划,半无限问题,线性、非线性方程(组)的求 解,线性、非线性的最小二乘问题。另外,该工 具箱还提供了线性、非线性最小化,方程求解, 曲线拟合,二次规划等问题中大型课题的求解方 法,为优化方法在工程中的实际应用提供了更方 便快捷的途径。
现代设计理论与方法 浙师大工学院机械系 11
1.3线性规划及其优化函数
说明: 若exitflag>0表示函数收敛于解x, exitflag=0表示超过函数估值或迭代的最大数字, exitflag<0表示函数不收敛于解x;若lambda=lower 表示下界lb,lambda=upper表示上界ub, lambda=ineqlin表示不等式约束,lambda=eqlin表示 等式约束,lambda中的非0元素表示对应的约束是有 效约束;output=iterations表示迭代次数, output=algorithm表示使用的运算规则, output=cgiterations表示PCG迭代次数。
表1 生产产品工时表
产品
设备一 设备二 设备三
相关文档
最新文档