人教A版高中数学必修3第一章算法案例名师课件PPT

合集下载

高中数学第一章算法初步132进位制课件新人教A版必修3

高中数学第一章算法初步132进位制课件新人教A版必修3

[典例] 若 10b1(2)=a02(3),求数字 a,b 的值以及与此两数 的等值十进制数.
[ 解] 把 10b1(2)化为十进制数:10b1(2)=1×23+0×22+ b×21+1×20=2b+9,把 a02(3)化为十进制数:a02(3)=a×32+ 0×31+2×30=9a+2,所以 2b+9=9a+2.由于在二进制中,b 的值只能为 0 或 1,当 b=0 时,a=79,舍去;当 b=1 时,a= 1.所以 a=b=1,与此两数等值的十进制数为 11.
1,…,a1,a0∈N,0<an<k,0≤an-1,…,a1,a0<k). (2)十进制化为 k 进制的方法—— 除 k 取余法.
[答一答] 1.进位制是如何表示数字的? 提示:若一个数为十进制数,则其基数可以省略不写,若是 其他进位制的数,在没有特别说明的前提下,其基数必须写出, 常在数的右下角标明基数.
∴301(5)=136(7).
——本课须掌握的三大问题 1.要把 k 进制数化为十进制数,首先把 k 进制数表示成不 同位上数字与 k 的幂的乘积之和,其次按照十进制的运算规则计 算和. 2.十进制数化为 k 进制数(除 k 取余法)的步骤:
3.把一个非十进制数化为另一个非十进制数时,要先把这 个数化为十进制数,再利用“除 k 取余法”化为另一个非十进制 数.
休息时间到啦
同学们,下课休息十分钟。现在是休息时间 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
(2)312(4)化为十进制数后的个位数字是 4 . 解析:312(4)=3×42+1×41+2×40=54,个位数字是 4.
类型二 十进制数化 k 进制数
[例 2] (1)试把十进制数 136 转化为二进制数; (2)试把十进制数 1 234 转化为七进制数. [解] (1)由于 136=2×68+0, 68=2×34+0, 34=2×17+0, 17=2×8+1, 8=2×4+0, 4=2×2+0, 2=2×1+0,

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)
趣味益智游戏
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质

人教A版高中数学必修3《一章 算法初步 1.2.1 输入语句、输出语句和赋值语句 》示范课课件_21

人教A版高中数学必修3《一章 算法初步  1.2.1 输入语句、输出语句和赋值语句 》示范课课件_21
(1) 4=m×(2) x+y=1×0 (3) A=B=2×(4) N=2*√N
2、写出下列语句描述的算法的输出结果
(1) a=5
(2) a=1
b=3
b=2
c=(a+b)/2
c=a+b
d=c*c
b=a+c-b
print“d=”; d print a,b,c
d=16
1, 2, 3
小结
这节课我们主要学习了输入语句、输出语句和 赋值语句的主要功能、一般格式和相关说明,请 同学们用心掌握。
输入语句 输出语句 赋值语句 条件语句 循环语句
这节课我们先学习输入、输出、赋值语句
输入语句与程序框图中的输 入框对应,用来输入信息.
输出语句与程序框图中的输 出框对应,用来输出信息.
赋值语句与程序框图中的赋 值框对应,用来给变量赋值.
例1 :用描点法作函数 y=x3+3x2-24x+30的图象时,需

a b c.
3
程序框图
s 3
,输出y
.
程序:
开始 INPUT “Maths,Chinese,English=”;a,b,
输入a,b,c
y

a

b 3

c
输出y
结束
INPUT “Maths=”;a INPUT “Chinese=”;b
INPUT “English=”;c
y= (a+b+c)/3
PRINT “The average=”;y END
作业:课本24页练习1.2.3.4
BASIC语言中的常用运算符号
运算符
*
/ ^ >= <= <> \

高中数学 132 进位制课件 新人教A版必修3

高中数学 132 进位制课件 新人教A版必修3

最大公约数是( )
A.57
B.3
C.19
D.34
[答案] C
第十一页,共69页。
4.用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3.66x3 +6x4-5.2x5+x6在x=-1.3时的值时,令v0=a6;v1=v0x+ a5;…;v6=v5x+a0时,v3的值为( )
A.-9.8205 B.14.25 C.-22.445 D.30.9785 [答案] C
24005(7)=2×74+4×73+0×72+0×71+5=2401, 故七进制数24005(7)化成十进制数为2401.
第三十六页,共69页。
把十进制数化为k进制数 学法指导 十进制数化为k进制数(除k取余法)的步骤:
第三十七页,共69页。
(1)把十进制数89化为二进制数. (2)将十进制数21化为五进制数.
[答案] 111111(2)
第四十九页,共69页。
[解析] 将题中四个数化为十进制数. 85(9)=8×91+6×90=72+6=78; 211(6)=2×62+1×6+1=72+7=79; 1000(4)=1×43=64; 111111(2)=25+24+23+22+21+20=63.
第五十页,共69页。
[破疑点] 教材中的算法案例进一步体现了编写程序的 基本过程:
①算法分析,将解决实际问题的过程以步骤的形式用文 字语言表述出来.
②画程序框图,把算法分析用程序框和流程线的形式表 达出来.
③编写程序,将程序框图转化为算法语句即程序.
第二十四页,共69页。
以下各数有可能是五进制数的是( ) A.15 B.106 C.731 D.21340 [答案] D
第七页,共69页。

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

高中数学 算法案例(辗转相除法)课件 新人教A必修3

高中数学 算法案例(辗转相除法)课件 新人教A必修3
思考:从上述的过程你体会
完整的过程 8251=6105×1+2146
例2 用辗转相除法求225和135的最大公约数 225=135×1+90
6105=2146×2+1813
135=90×1+45
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
显然37是148和37的最大 公约数,也就是8251和 6105的最大公约数
333=148×2+37 148=37×4+0
算法2:
程序: INUPU m,n DO
r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
开始 输入m,n
r=m MOD n m=n n=r

r=0?

输出m 结束
算法1: 程序: INUPU m,n IF m<n THEN x=m m=n n=x END IF DO r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
观察求8251和6105的最大公约数的过程
第一步 用两数中较大的数除以较小的数,求得商和 余数 8251=6105×1+2146 结论: 8251和6105的公约数就是6105和2146的 公约数,求8251和6105的最大公约数,只要求出 6105和2146的公约数就可以了。 为什么呢?
第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813 的最大公约数。
较大那个除以较小那个,求得

人教A版 高中数学 必修3 第一章 1.1.2 循环结构的程序框图课件(共16张PPT)

人教A版 高中数学 必修3 第一章 1.1.2 循环结构的程序框图课件(共16张PPT)

巩固提高
1、设计一算法,求 积:1×2×3×…×100, 画出流程图
思考:该流程图与前面 的例1中求和的流程图有 何不同?
开始 i=0,S=1
i=i+1 S=S*i 否 i>=100?
是 输出S 结束
巩固提高
2、设计一算法输出1~1000以内能被3整除的整数
开始
算法:
i=0
S1:确定i的初始值为0;
开始 i=0,S=0
否 i<100? 是 i=i+1 S=S+ i
输出S 结束
思考:将步骤A和步骤B交换位 置,结果会怎样?能达到预期结果 吗?为什么?要达到预期结果,还 需要做怎样的修改?
步骤A
步骤B 答:达不到预期结果;
当i = 100时,退出循环,i 的值未能加入到S中;修 改的方法是将判断条件改 为i<101
1.1.2 程序框图与算法的基本逻辑
——————循环结构
复习回顾
1、程序框图(流程图)的概念: 2、算法的三种逻辑结构: 3、顺序结构的概念及其程序框图: 4、条件结构的概念及其程序框图:
复习回顾
i) 顺序结构
ii) 条件结构
Yp N A
A
B
B
循环结构
循环结构:在一些算法中,也经常会出现从某处开始,
小结:
4.画循环结构流程图前: ①确定循环变量和初始条件; ②确定算法中反复执行的部分,即循环体; ③确定循环的转向位置; ④确定循环的终止条件.
循环结构的三要素:
循环变量,循环体、循环的终止条件。
其中顺序结构是最简单的结构,也是最基 本的结构,循环结构必然包含条件结构,所以 这三种基本逻辑结构是相互支撑的,无论怎样 复杂的逻辑结构,都可以通过这三种结构来表 达。

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
精品PPT
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?


顺序结构

r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法

高中数学人教A版必修3课件:1.3 算法案例

高中数学人教A版必修3课件:1.3 算法案例

1.3 算法案例
题型1 辗转相除法与更相减损术
4.分别用辗转相除法和更相减损术求36和80的最大公约数.

辗转相除法:
80=36×2+8,36=8×4+4,8=4×2.
故36和80的最大公约数是4.
更相减损术:
80-36=44,44-36=8,36-8=28,28-8=20,
20-8=12,12-8=4,8-4=4.
解析
111÷2=55……1,55÷2=27……1,27÷2=13……1,13÷2=6……1, 6÷2=3……0,3÷2=1……1,1÷2=0……1, 故111(10)=1101111(2).故选C.
1.3 算法案例
题型3 进位制
11.把十进制数189化为四进制数,则末位数字是( B )
A.0
B.1
1.3 算法案例
刷基础
题型3 进位制
13.十六进制数与十进制数的对应如下表:
十 六 进 1 2 3 4 5 6 7 8 9 10 A B C D E F 制 数 十 进 制 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 数
例如:A+B=11+12=16+7=F+7=17(16),所以A+B的值用十六进制表示就等于17(16).
f(x)=anxn+an-1xn-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和
n(n 2
1)
次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计
算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算的
A.2
B.3
C.4
D.5

高中数学人教A版必修3第一章1.3算法案例课件

高中数学人教A版必修3第一章1.3算法案例课件


9- 3= 6
6 - 3 = 3 减数与差相等
3×2=6
78与36的最大公约数为6.
更相减损术
问题6.根据更相减损术的过程,设计求两个正整数m,n最 大公约数的算法,需要用到什么逻辑结构?为什么?
第一步:任意给定两个正整 算法分析:
数,判断它们是否都是偶数。第一步,给定两个正整数m,n(m>n).
更相减损术
例2. 用更相减损术求78与36的最大公约数.
解: 78与36都是偶数
“可半”
78 ÷ 2 = 39 36 ÷ 2 = 18
“可半者半之”
除 完
39 - 18 = 21 大减小 21 - 18 = 3

18 - 3 = 15

15 - 3 = 12
“更相减损”(辗转相减)

12 - 3 = 9
2 18 30 3 9 15 35
18与30的最大公约数为2 3 6 .
问题1. 求8251与6105的最大公约数. 可以使用短除法吗?
困难:两数比较大、公约数不易视察。 (辗转相除法、更相减损术)
知问
思考1:辗转相除法与更相减损术可以用来解 决什么问题? 可以解决求两个正整数最大公约数的任何问题。
《九章算术》——更相减损术
“可半者半之,不可半者,副置分母、子之数,以少 减多,更相减损,求其等也,以等数约之。”
《九章算术》
刘徽
《九章算术》其作者已不可 考,现今流传的大多是在三 国时期刘徽为《九章》所作 的注本。它是中国古代第一 部数学专著,系统总结了战 国、秦、汉时期的数学成绩, 收录了246个数学问题及其 解法,是当时世界上最简练 有效的应用数学,它的出现 标志中国古代数学形成了完 整的体系。

最新人教版高中数学必修三课件PPT

最新人教版高中数学必修三课件PPT
C.流程线无论什么方向,总要按箭头的指向执行
D.流程线是带有箭头的线,它可以画成折线
【2】具有判断条件是否成立的程序框是( C )
2021/10/31
画程序框图时应注意:
用框图表示算法比较直观、形象,容易理解,通常说
“一图胜万言”,所以用程序框图能更清楚地展现算法
的逻辑结构,在画程序框图时必须注意:
则,返回第三步.
2021/10/31
当d=0.005时,按照以上算法,可得下面表和图.
a
b
|a-b|
1
2
1
1
1.5
0.5
1.25
1.5
0.25
1.375
1.5
0.125
1.375
1.437 5
0.062 5
1.406 25
1.437 5
0.031 25
1.406 25
1.421 875
0.015 625
- 5)两点连线的方程可
先求MN的斜率,再利用点斜式方程求得。
A.1个
2021/10/31
B.2个
C.3个
D.0个
例题剖析1
设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0,
所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0,
所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0,
算法步骤:
第一步,输入三角形三条边的边长 a,b,c.
a+b+c
第二步,计算 p= 2 .
第三步,计算 S= p(pa)(pb.)(pc)
第四步,输出S.
2021/10/31
新课探究

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
89 余数
=81+18+6+1=106.
44
1
0
3
11
0
解:第一步:先把三进制数化为十进制数:
按照十进制数的运算规则计算出结果,
1
0
22
0
结果就是十进制下该数的大小了.
∴ 89=324(5)
2
1
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=1101010(2).
课堂小结
1.几进制的基数就是几,基数都是大于1的数.
89=1011001(2)
11
0
17
4
∴ 89=324(5)
十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式:
把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
ABຫໍສະໝຸດ CDEF
思考 你会把三进制数10221(3)化为二进制数吗?

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
A
B
C
D
E
F
思考 你会把三进制数10221(3)化为二进制数吗?
解:第一步:先把三进制数化为十进制数: 10221(3)=1×34+0×33+2×32+2×31+1×30
51
把89化为二进制的数.
2 89
2 44 2 22 2 11 25
22 21
0
余数
1 0 0 1 1 0 1
把算式中各步所得的余 数从下到上排列,得到
89=1011001(2) 可以用2连续去除89或所得 商(一直到商为0为止),然后 取余数---除2取余法.
这种方法也可以推广为把 十进制数化为k进制数的 算法,称为除k取余法.
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=110就是几,基数都是大于1的数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.

高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件

高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件
(2)顺序结构是任何一个算法都离不开的基本结构.故 选 A.
[答案] (1)D (2)A
程序框图的理解 框图符合标准化,框内语言简练化,框间流程方向 化.从上到下,从左到右,勿颠倒.起止框不可少,判断 框一口进,两口出.顺序结构处处有.
[活学活用] 在程序框图中,表示判断框的图形符号的是
()
解析:选 C 四个选项中的程序框依次为处理框,输入、输 出框,判断框和起止框.
()
解析:选 B 由处理框的定义知选 B. 3.在程序框图中,算法中间要处理数据或计算,可以分别
写在不同的
()
A.处理框内
B.判断框内
C.输入、输出框内
D.起、止框内
解析:选 A 处理框表示的意义为赋值、执行计算语句、
结果的传送,故选 A,其他选项皆不正确.
4.阅读如图所示的程序框图,输入 a1=3,a2=4,则输出的结
用顺序结构表示算法
[典例] 求底面边长为 4,侧棱长为 5 的正四棱锥的侧面
积及体积,为该问题设计算法,并画出程序框图. [解] 算法一:第一步,a=4,c=5.
第二步,计算
R=
2 2 a.
第三步,计算 h= c2-R2,S1=a2.
第四步,计算 V=13S1h.
第五步,计算 h′=
c2-a42.
(1)框图①中 x=4 的含义是什么? (2)框图②中 y1=x3+2x+3 的含义是什么? (3)框图④中 y2=x3+2x+3 的含义是什么? [解] (1)框图①的含义是初始化变量,令 x=4. (2)框图②中 y1=x3+2x+3 的含义:该框图是在执行① 的前提下,即当 x=4 时,计算 x3+2x+3 的值,并令 y1 等 于这个值. (3)框图④中 y2=x3+2x+3 的含义:该图框是在执行③ 的前提下,即当 x=-2 时,计算 x3+2x+3 的值,并令 y2 等于这个值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
思考2:十进制使用0~9十个数字,那么 二进制、七进制、十六进制分别使用哪 些数字?
思考3:一般地,若k是一个大于1的整数, 则以k为基数的k进制数可以表示为一串 数字连写在一起的形式:anan-1…a1a0(k). 其中各个数位上的数字an,an-1,…,a1, a0的取值范围如何?
110011(2) =1×25+1×24+0×23+0×22+1×21+1×20
1A8(16)=1×162+10×161+8×160.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
思考5:一般地,如何将k进制数 anan-1…a1a0(k)写成各数位上的数字与基 数k的幂的乘积之和的形式?
普通高中课程标准实验教科书 数学(必修3)
1.3算法案例
问题提出
1.辗转相除法和更相减损术,是求两 个正整数的最大公约数的算法,秦九韶 算法是求多项式的值的算法,将这些算 法转化为程序,就可以由计算机来完成 相关运算.
2.人们为了计数和运算方便,约定了 各种进位制,这些进位制是什么概念, 它们之间是怎样转化的?对此,我们从 理论上作些了解和研究.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
练习:完成下列进位制之间的转化: (1)10212(3)= _______(10) (2)119(10)= _______(6) (3)335(10)= _______(12) (4)412(5)= _______(8)
anan-1…a1a0(k) =an×kn+an-1×kn-1+…+a1×k1+a0×k0 . 再按照十进制数的运算规则计算出结果.
理论迁移 人教A版高中数学必修3第一章算法案例名师课件PPT【完美课件】
例1 将下列各进制数化为十进制数. (1)10302(4) ; (2)1234(5). 10302(4)=1×44+3×42+2×40=306. 1234(5)=1×53+2×52+3×51+4×50=194.
(1) 0<an<k; (2)0≤an-1,…,a1,a0<k.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
思考4:十进制数3721表示的数可以写成 3×103+7×102+2×101+1×100,依此类 比,二进制数110011(2),十六进制数 1A8(16)分别可以写成什么式子?
知识探究(三):十进制化k进制
思考:如何把89化为二进制的数. 分析:把89化为二进制的数,需想办法将89
先写成如下形式
89=an×2n+an-1×2n-1+…+a1×21+a0×20 .
89=64+16+8+1=1×26+0×25+1×24 +1×23+0×22+0×21+1×20 =1011001(2).
进位制
知识探究(一):进位制的概念
思考1:进位制是为了计数和运算方便而 约定的记数系统,约定满二进一,就是 二进制;满十进一,就是十进制;每七 天为一周,就是七进制;每十二个月为 一年,就是十二进制,每六十秒为一分 钟,每六十分钟为一个小时,就是六十 进制;等等.一般地,“满k进一”就是k 进制,其中k称为k进制的基数.那么k是 一个什么范围内的数?
但如果数太大,我们是无法这样凑出来的,怎么办?
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
பைடு நூலகம்
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
思考:如何把89化为二进制的数.
我们可以用下面的除法算式表示除2取余法:
2 89
2 44 2 22 2 11 25
22 21
0
把算式中各步所得的余数 余数 从下到上排列,得到
1
89=1011001(2).
0 可以用2连续去除89或所得
0 商(一直到商为0为止),然后
1 取余数---除2取余法.
1
0 1
这种方法也可以推广为把 十进制数化为k进制数的
算法,称为除k取余法.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
小结 人教A版高中数学必修3第一章算法案例名师课件PPT【完美课件】
1. k进制数使用0~(k-1)共k个数字,但左侧第 一个数位上的数字(首位数字)不为0. 2.用anan-1…a1a0(k)表示k进制数,其中k称为基数, 十进制数一般不标注基数.
anan-1…a1a0(k) =an×kn+an-1×kn-1+…+a1×k1+a0×k0 .
思考6:在上面的等式中如果把右边的结 果算出来,是一个几进制的数?
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
知识探究(二):k进制化十进制
k进制数转化为十进制数的方法
先把k进制的数表示成不同位上数字 与基数k的幂的乘积之和的形式,即
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
例3:把89化为五进制的数.
解:以5作为除数,相应的除法算式为:
5 89 余数
5 17
4
53
2
0
3
∴ 89=324(5).
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
3.把k进制数化为十进制数的一般算式是:
anan-1…a1a0(k)
=an×kn+an-1×kn-1+…+a1×k1+a0×k0 .
4.十进制化k进制:除k取余法(把算式中各步所 得的余数从下到上排列)
5.k进制化k进制:先k进制化十进制,再十进制 化k进制.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
例2 已知10b1(2)=a02(3),求实数a, b的值.
10b1(2)=1×23+b×2+1=2b+9. a02(3)=a×32+2=9a+2. 所以2b+9=9a+2,即9a-2b=7. 故a=1,b=1.
人教A版高中数学必修3第一章算法案 例名师 课件PPT 【完美 课件】
知识探究(四):k进制化k进制
思考:你会把三进制数10221(3)化为二进制数吗? 解:第一步:先把三进制数化为十进制数: 10221(3)=1×34+0×33+2×32+2×31+1×30
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106= 1101010(2).
相关文档
最新文档