九年级数学课件 弧长和扇形面积[上学期] 华师大版
九年级数学弧长和扇形面积
所以:r R
360
(2)因为圆锥的母线长=扇形的半径 所以圆锥的高h为:h R2 r2
R2 ( R )2
360
例2、一个圆锥形零件的母线长为a,底面的半径 为r,求这个圆锥形零件的侧面积和全面积.
解 圆锥的侧面展开后是一个扇形,该扇
形的半径为a,扇形的弧长为2πr,所以
一、弧长的计算公式
l n 2r nr
360
180
二、扇形面积计算公式
s
n r 2
360
或s
1 lr 2
圆锥的高
圆锥
我们把连接圆锥的顶点S和底 面圆上任一点的连线SA,SB 等叫做圆锥的母线
连接顶点S与底面圆的圆心O S 的线段叫做圆锥的高
母线 A
Or
思考:圆锥的母线和圆 锥的高有那些性质?
圆锥的全面积就是它的侧面积与它的底 面积的和。
例1:如图所示的扇形中,半径R=10,圆心角θ=144° 用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高(精确到0.1) A
C
B
O
解:(1)因为此扇形的弧长=它所 围成圆锥的底面圆周长 所以有 2 r R
l
图 23.3.6
思考与探索:
将一个圆锥的侧面沿它的一 条母线剪开铺平,思考圆锥中的 各元素与它的侧面展开图中的各 元素之间的关系
圆锥的侧面积
圆锥的侧面展开图
圆锥的侧面展开图 是一个什么图形?
扇形
扇形的半径是什么? 圆锥的母线长
扇形的弧长是什么? 圆锥底面圆的周长
这个扇形的面 积如何求?
圆锥的侧面积就是弧长为圆锥底面的周 长、半径为圆锥的一条母线的长的扇形 面积。
数学九上《弧长和扇形面积》ppt课件
弧长和扇形面积的计算方法
CATALOGUE
03
弧长是指圆弧的长度,是圆周长的部分。
弧长的定义
弧长的计算公式
弧长的应用
弧长 = (圆心角/360°) × 圆的周长。
弧长常用于计算圆的周长、圆的面积、扇形面积等。
03
02
01
根据弧长的定义,弧长是圆周长的部分,因此可以通过圆周长的公式推导出弧长的公式。
扇形面积的计算公式为:扇形面积 = (圆心角(弧度) / 2π) × π × 半径^2。
这个公式是通过将扇形分割成若干个小三角形,再求和得出的。
扇形面积是指由圆弧和两条半径围成的图形面积。
弧长和扇形面积都是描述圆或圆弧属性的量,它们之间存在一定的关系。
当圆心角相同时,弧长越长,扇形面积越大;反之,当弧长相同时,圆心角越大,扇形面积也越大。
THANKS
感谢观看
根据扇形面积的定义,扇形面积是圆面积的部分,因此可以通过圆面积的公式推导出扇形面积的公式。
扇形面积公式的推导
弧长公式的推导
弧长和扇形面积的应用
CATALOGUE
04
弧长公式是计算圆或扇形周长的重要工具,常用于计算几何图形的周长。
弧长公式
扇形面积公式是计算扇形面积的基础,对于计算几何图形的面积和比例关系具有重要意义。
掌握弧长和扇形面积的计算公式。
理解弧长和扇形面积的几何意义。
能够运用所学知识解决实际问题,提高数学应用能力。
弧长和扇形面积的基本概念
CATALOGUE
02
弧长是指圆弧的长度,可以通过圆心角和半径计算得出。
弧长的计算公式为:弧长 = 圆心角(弧度) × 半径。
华师大版数学九年级下册《弧长和扇形的面积》说课稿2
华师大版数学九年级下册《弧长和扇形的面积》说课稿2一. 教材分析华师大版数学九年级下册《弧长和扇形的面积》是本节课的主要内容。
这部分内容是在学生已经掌握了圆的性质、三角函数等知识的基础上进行学习的。
本节课的主要目标是让学生了解弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。
教材通过引入实际问题,引导学生探究弧长和扇形面积的计算公式,从而培养学生的探究能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质和三角函数有一定的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生通过探究活动,自己发现并理解弧长和扇形面积的计算公式。
同时,学生对于实际问题的解决能力还需要进一步的培养。
三. 说教学目标本节课的教学目标有三点:1.让学生了解弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。
2.培养学生的探究能力和解决问题的能力。
3.通过对实际问题的解决,培养学生的应用意识和实践能力。
四. 说教学重难点本节课的重难点是弧长和扇形面积的计算方法的推导和应用。
学生需要通过探究活动,自己发现并理解弧长和扇形面积的计算公式。
同时,学生还需要学会如何运用这些公式解决实际问题。
五. 说教学方法与手段在本节课的教学过程中,我将采用探究式教学法和情境教学法。
通过引导学生参与探究活动,让学生自己发现并理解弧长和扇形面积的计算公式。
同时,我还将运用多媒体教学手段,以形象直观的方式展示弧长和扇形面积的计算过程,帮助学生更好地理解和掌握这些知识。
六. 说教学过程1.导入:通过引入实际问题,激发学生的学习兴趣,引导学生思考如何计算弧长和扇形面积。
2.探究活动:引导学生通过实验、观察、讨论等方式,发现并理解弧长和扇形面积的计算公式。
3.讲解与示范:对弧长和扇形面积的计算方法进行讲解和示范,让学生明确计算步骤和注意事项。
4.练习与拓展:布置一些实际问题,让学生运用所学知识进行解答,巩固所学内容,并进一步培养学生的应用意识和实践能力。
初三数学最新课件-弧长与扇形面积华师大版 精品
S nr 2 60 3.14 10 2 =52.33(平方厘米);
360
360
扇形的周长为
图 23.3.5
l nr 2r 60 3.1410 20 =30.47(厘米)。
180
180
如图,一块等边三角形的木版,边长为1,现将木板沿水平线翻滚两次, 那么B点从开始到结束所经过的路径长是多少?
探索
图 23.3.4
(1) 如图23.3.4,圆心角是180°,占整个周角的 180,因此 圆心角是180°的扇形面积是圆面积的_________;360
(2) 圆心角是90°,占整个周角的________,因此圆心角 是90°的扇形面积是圆面积的________; (3) 圆心角是45°,占整个周角的________,因此圆心角 是45°的扇形面积是圆面积的________; (4) 圆心角是1°,占整个周角的________,因此圆心角是 1°的扇形面积是圆面积的_________; (5) 圆心角是n°,占整个周角的________,因此圆心角是 n°的扇形面积是圆面积的_________.
上面求的是的圆心角900所对的弧长,若圆心角为n0, 如何计算它所对的弧长呢?
思考:
请同学们计算半径为 r,圆心角分别为1800、900、450、 10、n0所对的弧长。
A
O
B
图 23.3.2
探索:
180
(1)圆心角是180°,占整个周角的
_______;
180 • 2r
360
r
360,因此它所对的弧长
结论:
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么
扇形的面积为: S nr 2 nr r 1 lr
专题12 弧长和扇形面积(解析版) -2021-2022学年九年级数学之专攻圆各种类型题的解法
专题12 弧长和扇形面积1.与弧长相关的计算扇形的弧长l=π180n r;注意:用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.2.与扇形面积相关的计算(1)扇形的定义:圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.(2)扇形的面积S=2π360n r=12lr.扇形的面积与圆心角、半径有关.3.弓形的面积公式S弓形=S扇形-S三角形S弓形=S扇形+S三角形概念规律重在理解典例解析掌握方法【例题1】(2021甘肃威武定西平凉)如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为dm2.【答案】2π.【解析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.连接AC,∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=4dm,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=2dm,∴阴影部分的面积是=2π(dm2).【例题2】制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)【答案】管道的展直长度为2970mm.【解析】由弧长公式,可得弧AB的长因此所要求的展直长度l=2×700+1570=2970(mm).【例题3】如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)【答案】见解析.【解析】∵n=60,r=10cm,∴扇形的面积为扇形的周长为【例题4】如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.【答案】见解析.【解析】 ()22=24010.60.30.6336020.240.0930.91cm .OABS S ππ+=⨯+⨯⨯=+≈△弓形扇形S一、选择题1.(2021贵州毕节)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O ,点C ,D 分别在OA ,OB 上.已知消防车道半径OC =12m ,消防车道宽AC =4m ,∠AOB =120°,则弯道外边缘的长为( )A .8πmB .4πmC .πmD .πm【答案】C各种题型 强化训练【解析】根据线段的和差得到OA=OC+AC,然后根据弧长公式即可得到结论.∵OC=12m,AC=4m,∴OA=OC+AC=12+4=16(m),∵∠AOB=120°,∴弯道外边缘的长为:=(m).2.(2021成都)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【答案】D【解析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π.3.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为()A.﹣4 B.7﹣4 C.6﹣D.【答案】A【解析】∵⊙O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°﹣(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=(AB+AC+BC)•EO=AC•BC,∴EO=﹣1,∴AE2=AO2+EO2=12+(﹣1)2=4﹣2,∴扇形EAB的面积==(2﹣),△ABE的面积=AB•EO=﹣1,∴弓形AB的面积=扇形EAB的面积﹣△ABE的面积=,∴阴影部分的面积=⊙O的面积﹣弓形AB的面积=﹣(﹣)=﹣4.4.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=2,则阴影部分的面积为()A.B.C.+D.【答案】C【解析】连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S==π,扇形AOE∴S=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)阴影=﹣﹣(π﹣×1×)=π﹣π+=+.5.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【答案】A【解析】连接OC,如图所示:∵在扇形AOB 中∠AOB =90°,=, ∴∠COD =45°,∴OD =CD ,∴OC ==4,∴阴影部分的面积=扇形BOC 的面积﹣△ODC 的面积 =﹣×(2)2=2π﹣4.6.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是( )A .280cm πB .240cm πC .224cm πD .22cm π【答案】B 【解析】先证明COD △是等边三角形,求解,OC OD ,利用摆盘的面积等于两个扇形面积的差可得答案.如图,连接CD ,,60,OC OD COD =∠=︒ COD ∴是等边三角形,4,CD = 4,OC OD ∴==12,AC BD == 16,OA OB ∴==所以则图中摆盘的面积 222601660440.360360AOB CODS S cm πππ⨯⨯-=-=扇形扇形. 二、填空题 1.(2021湖北荆门)如图,正方形ABCD 的边长为2,分别以B ,C 为圆心,以正方形的边长为半径的圆相交于点P ,那么图中阴影部分的面积为 .【答案】2﹣.【解析】连接PB 、PC ,作PF ⊥BC 于F ,根据等边三角形的性质得到∠PBC =60°,解直角三角形求出BF 、PF ,根据扇形面积公式、三角形的面积公式计算,得到答案.解:连接PB 、PC ,作PF ⊥BC 于F ,∵PB =PC =BC , ∴△PBC 为等边三角形, ∴∠PBC =60°,∠PBA =30°,∴BF =PB •cos60°=PB =1,PF =PB •sin60°=,则图中阴影部分的面积=[扇形ABP 的面积﹣(扇形BPC 的面积﹣△BPC 的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.2.(2021湖北宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)【答案】(2π﹣2).【解析】图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=BD=厘米,∴△ABC的面积为BC•AD=(厘米2),S扇形BAC==π(厘米2),∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2.3.(2021湖南怀化)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是.(结果保留π)【答案】π﹣.【解析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.4.(2021四川凉山)如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,则线段AB扫过的图形(阴影部分)的面积为.【答案】。
九年级数学 弧长和扇形面积-华师大版ppt
O
π R
1 0 8
3 0 6
1 0 R 4 π 7 R π = 140°圆心角所对的弧长是多少? (4)140°圆心角所对的弧长是多少? 1 0 8 9
弧长公式
问题2.已知⊙ 半径为 半径为R, 问题 已知⊙O半径为 ,求n°圆心角所对 已知 ° 弧长. 弧长. 若设⊙ 半径为R 若设⊙O半径为R, n°的圆心角所对的弧长 为l ,则
B
O
A
如图, 如图,由组成圆心角的 两条半径和圆心角所对的 两条半径和圆心角所对的 所围成的图形叫扇形 扇形. 弧所围成的图形叫扇形. 如果设这扇子的骨柄AO=R, AB所对的圆 如果设这扇子的骨柄AO=R,弧AB所对的圆 AO=R 心角为140 140度 请同学们计算这大扇形的面积。 心角为140度,请同学们计算这大扇形的面积。
D
弓形的面积 = S扇+ S⊿
A
E
B
0
C
思考:扇形的面积公式与弧长公式有联系吗? 思考:扇形的面积公式与弧长公式有联系吗?
如果扇形的半径为R的圆中,圆心角为 如果扇形的半径为 的圆中,圆心角为no ,那么扇 的圆中 形面积的计算公式为: 形面积的计算公式为:
nπr r 1 n 2 × = lr s= ⋅π = r 180 2 2 360
扇形面积公式 若设⊙ 半径为 半径为R, 圆心角为n° 若设 ⊙ O半径为 , 圆心角为 ° 的扇形的面积 问题3 已知⊙ 半径为R 求圆心角为n 问题3.已知⊙O半径为R,求圆心角为n°的扇形 为: 的面积? 的面积?
S 扇形
nπR = 360
2
nπ 2 R 注意: 注意 (1)在应用扇形的面积公式 扇形= )在应用扇形的面积公式S 进行计 360
九年级上数学《24.4.1 弧长和扇形面积》课件
在田径二百米比赛中,每位运动员 的起跑位置相同吗?
不同
制造弯形管道时,怎样才能精确用料?
700mm
● A
B ● 700mm
● C
R=900m 100 m ° O
j
● D
教学目标
【知识与能力】
• 会计算弧长及扇形的面积. • 会计算圆锥的侧面积和全面积,并能用这些 知识解决相关问题. • 知道圆锥的侧面积和扇形面积之间的关系.
例题
某传送带的一个转动轮的半径为10cm。 (1)转动轮转一周,传送带上的物品A被传送 多少厘米? (2)转动轮转1°,传送带上的物品A被传送 多少厘米? (3)转动轮转n°,传送带上的物品A被传送 多少厘米?
解:(1)转动轮转一周,传送带上的物品A 被传送 2 10 20cm ;
20 被传送 cm ; 360 18
(2)转动轮转1°,传送带上的物品A
20 n 被传送 n cm 。 360 18
(3)转动轮转n°,传送带上的物品A
举一反三
(1)弧长公式涉及三个量, 弧长、圆心 角的度数、 弧所在的半径,知道其中两个量, 就可以求第三个量。 (2)当问题涉及多个未知量时,可考虑 用列方程组来求解
扇形 由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫扇形.
(1)如图(1),这只狗的最大活动区域 是圆的面积,即9π; (2)如图(2),狗的活动区域是扇形, 扇形是圆的一部分,360°的圆心角对应的圆 1 面积,1°的圆心角对应圆面积的 ,即
1 n 9 ,n°的圆心角对应的圆面积 n 360 40 40 40
360
课堂小结
知识要点
R 扇形面积公式 . n°
在半径为 R 的圆中,n°的圆心角所 对的扇形面积的计算公式为:
弧长和扇形的面积--华师大版
例2.
扇形AOB 的半径为12cm, AOB =120,
求AB的长(精确到0.1cm)和扇形 AOB 的面积 (精确到0.1cm2). nr 0 解:∵n=120 ,r=12厘米 ∴弧AB为 l
120 3.14 12 25.12 25.1 cm 180 1 1 ∴扇形AOB面积为 s lr 2 25.12 12 2 150.7 cm2 =150.72
900
450
n0
n 2 r 360
结论:
如果扇形面积为s,圆心角度数为n,圆半径是r, 那么 扇形面积计算公式为 Q 2
l n° r O
扇 形面 积 S
n s r 360
nr r 1 lr 180 2 2
n 1 2 s r 或s lr 360 2
小试牛刀: 1、如果扇形的圆心角是230°,那么这个扇形的 面积等于这个扇形所在圆的面积的____________; 2、扇形的面积是它所在圆的面积的 形的圆心角的度数是_________°.
2 3
,这个扇
3、扇形的面积是S,它的半径是r,这个扇形的弧 ; 长是_____________
23 答案: 36
240°,
2s r
例题讲解
例1 如图23.3.5,圆心角为60°的扇形的半径为 10厘米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为
nr 60 3.1410 S ≈52.33(平方厘米); 360 360 扇形的周长为 nr 60 3.14 10 l 2r 20 180 180 ≈ 30.47(厘米)。 图 23.3.5
900
450
n0
2019秋华师大版九年级数学上册课件:第24章 24.4 第1课时 弧长和扇形面积
A.π4cm C.72πcm
B.74πcm D.7πcm
9.(庆阳中考)如图,在△ABC 中,∠ACB=90°,AC=1,AB=2,以点 A π
为圆心、AC 的长为半径画弧,交 AB 边于点 D,则弧 CD 的长等于 3 (结
果保留 π).
10.一块等边三角形的木板,边长为 1,现将木板沿水平线无滑动翻滚(如 4
弧长公式 半径为 R,圆心角为 n°的弧长为 l=n1π8R0 . 自我诊断 1. 若扇形的半径为 6,圆心角为 120°,则此扇形的弧长是 4π .
半径为
扇形的面积公式 R,圆心角为 n°的扇形面积为
S=n3π6R02
为 l 的扇形面积为 S=12lR .
;半径为 R,扇形的弧长
自我诊断 2. (绥化中考)一个扇形的半径为 3cm,弧长为 2πcm,则此扇形的
面积为 3π cm2.
易错点 混淆弧长与面积公式中的“180”与“360”. 8π
自我诊断 3. 半径为 4cm,圆心角为 60°的扇形面积为 3 cm2.
1.一个扇形的圆心角为 60°,它所对的弧长为 2πcm,则这个扇形的半径为
(A ) A.6cm
B.12cm
C.2 3cm
D. 6cm
2.扇形的圆心角为 60°,面积为 6π,则扇形的半径是( B )
3.S 阴影=S 梯形 BCDF-S 扇形 BCF=12×(1+2)× 3-603π6·022=3 2 3-23π.
13.如图,在 Rt△ABC 中,∠C=90°,∠BAC 的平 分线 AD 交 BC 边于点 D.以 AB 上一点 O 为圆心作 ⊙O,使⊙O 经过点 A 和点 D. (1)判断直线 BC 与⊙O 的位置关系,并说明理由; (2)若 AC=3,∠B=30°. ①求⊙O 的半径; ②设⊙O 与 AB 边的另一个交点为 E,求线段 BD、BE 与劣弧 DE 所围成的 阴影部分的面积.(结果保留根号和 π)
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
最新人教版初中数学九年级上册《24.4 弧长和扇形面积 (第2课时)》精品教学课件
巩固练习
如图所示的扇形中,半径R=10,圆心角θ=144°,用这
个扇形围成一个圆锥的侧面.
(1)则这个圆锥的底面半径r= 4 .
(2)这个圆锥的高h=
A
2 21 .
r
R=10
θ
C
O
B
探究新知
素养考点 2
圆锥有关面积的计算
例2 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为
50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面
2 .一个扇形,半径为30cm,圆心角为120度,用它做成一个
10cm .
圆锥的侧面,那么这个圆锥的底面半径为_____
3.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积
2
2
是 15πcm ,全面积是 24πcm .
课堂检测
能力提升题
如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求
布 置 作 业
课后作业
1.从课后习题中选取;
2.完成练习册本课时的习题。
总结点评
同学们,我们今天的探索很成
功,但探索远还没有结束,让我们
在今后的学习生涯中一起慢慢去发
现新大陆吧!
再
见
我们把连接圆锥的顶点S和底面圆上任一点的连线SA,
SB 等叫做圆锥的母线.
圆锥有无数条母线,它们都相等.
圆锥的高
S
圆锥的高
从圆锥的顶点到圆锥底面圆心
之间的距离是圆锥的高.
母线
A
O
r
B
探究新知
要点归纳
如果用r表示圆锥底面的半径, h表示圆锥的高线长,
l表示圆锥的母线长,那么r、h、l 之间数量关系是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nr r 1 n 2 lr s r 180 2 2 360
扇形的弧长与扇形面积的关系为:
S 扇形
1 lR 2
4 , 1、已知半径为2cm的扇形,其弧长为 4 3 . 则这个扇形的面积,S扇= 3
2、一扇形的弧长是 20cm,面积为 240cm2 那么扇形的圆心角为 150度 .
(2)公式可以理解记忆(即按照上面推导过程记忆) .
1、已知扇形的圆心角为120°,半径为2,则这个 4 扇形的面积,S扇= . 3 2、已知扇形面积为 5 ,圆心角为50°,则这个 扇形的半径R=____ 6 .
例2:如图、水平放置的圆柱形排水管道的截 面半径是0.6cm,其中水面高0.3cm,求截面 上有水部分的面积。(精确到0.01cm)。
360
2
已知矩形ABCD的长AB=4,宽AD=3,按如图放置在 直线AP上,然后不滑动地转动,当它转动一周时( A A/), 顶点A所经过的路线长等于 。(04年中考题)
D
C
A
B
A/
P
再 见
如图:在△AOC中,∠AOC=900,∠C=150,以O为 圆心,AO为半径的圆交AC与B点,若OA=6, 求弧AB的长。 C
B
O
A
如图,由组成圆心角的 两条半径和圆心角所对的 弧所围成的图形叫扇形.
如果设这扇子的骨柄AO=R,弧AB所对的圆 心角为140度,请同学们计算这大扇形的面积。
扇形面积公式
O
R
180
360
140R 7R (4)140°圆心角所对的弧长是多少? 180 9
弧长公式
问题2.已知⊙O半径为R,求n°圆心角所对 弧长. 若设⊙O半径为R, n°的圆心角所对的弧长 为l,则
nR l 180
注意 : 在应用弧长公式 l
要注意公式中n的意义.n表示1°圆心角的倍数, 它是不带单位的。
n R , 进行计算时, 180
例 1 、制造弯形管道时,要先按中心线计算“展直 长度”,再下料,试计算图所示管道的展直长度 L(单位:mm,精确到1mm)
解:由弧长公式,可得弧AB 的长
l 100 900 500 1570(mm)
180
(mm) 因此所要求的展直长度 L 2 700 1570 2970 答:管道的展直长度为2970mm.
如果设这扇子的骨柄 AO=R ,弧 AB 所对的圆心角 问题 1. 已知⊙ O 半径为 R ,求 140 °圆心角所对 为140度,请同学们计算这扇子的周长? 弧长.
(1)半径为R的圆,周长是多少? C=2π R (2)圆的周长可以看作是多少度的圆心角所对的弧?
2R A B (3)1°圆心角所对弧长是多少?
弓形的面积 = S扇- S⊿
A
D
0 B
C
解:如图,连接OA、OB,过圆心O作AB的垂线,垂足为D, 交弧AB于点C. ∵OC=0.6,DC=0.3 ∴OD=OC-DC=0.3
在Rt△OAD中,OA=0.6,利用勾股定理可得:AD=0.3√3
在Rt△ OAD中,∵OD=1/2OA
∴∠ OAD=30° ∴∠A OD=60°, ∠ AOB=120° 有水部分的面积
C B
O
A
通过本节课的学习你获得了哪些知识?
课堂小结
n R 这节课你学到了什么知识? 1.探索弧长的计算公式 l
公式进行计算. ,并运用
你是用什么方法获得这些知识的?
扇形
180
1 nR 2 本节课你还有什么地方没有解决吗? 2.探索扇形的面积公式 S 或s lr
并运用公式进行计算.
若设⊙ O 半径为 R ,圆心角为 n°的扇形的面积 问题 3.已知⊙ O半径为 R,求圆心角为 n°的扇形 为: 的面积?
S扇形
nR 360
2
nR 2 注意: (1)在应用扇形的面积公式S扇形= 进行计 360
算时,要注意公式中 n 的意义. n 表示 1°圆心角的倍 数,它是不带单位的;
0 A
D
B
C
变式:如图、水平放置的圆柱形排水管道的截 面半径是0.6cm,其中水面高0.9cm,求截面 上有水部分的面积。(精确到0.01cm)。
D
弓形的面积 = S扇+ S⊿
A
E
B
0
C
思考:扇形的面积公式与弧长公式有联系吗?
如果扇形的半径为R的圆中,圆心角为no ,那么扇 形面积的计算公式为:
1、有一把折扇,已知折扇的骨柄长为30cm,折扇扇 面宽度是骨柄长的一半,折扇张开的角度为120度, 若要改用一把圆扇,则圆扇的半径应是多少才能得到 与折扇面积一样的风景。
A B O
பைடு நூலகம்
2、如图,⊙A、 ⊙B、 ⊙C、 ⊙D两两不相交,且半 径都是2cm,求图中阴影部分的面积。
B A
D
C
3、如图几7-4-3,A是半径为1的圆O外一点, 且OA=2,AB是⊙O的切线,BC//OA,连结AC, 则阴影部分面积等于 。