回归模型的函数形式
回归函数的定义
回归函数的定义回归函数是统计学中的一个基础概念,广泛应用于各个领域,如经济学、工程学、医学等等。
本文将详细阐述回归函数的定义,特点及其应用。
回归函数是一种通过观测数据找出变量之间关系的统计工具。
在统计学中,回归分析的目标是确定一个因变量和一个或多个自变量之间的关系。
在一次典型的回归分析中,研究人员收集数据,然后用回归函数分析这些数据,以确定因变量和自变量之间的关系。
该关系可用一条线或平面等函数形式表示,使得我们可以利用该函数对未知自变量的取值进行预测和估计。
回归函数的一般形式为:y=f(x)+εy为因变量,x为自变量,f(x)为函数,ε为误差项,表示因变量与自变量之间的差异。
回归函数可以使用不同的方法来估计,例如最小二乘法等。
通常,回归函数的目标是最小化误差项ε。
1. 易于理解和应用。
回归函数是一种比较简单的统计工具,易于掌握和应用。
它可以帮助人们理解因变量和自变量之间的关系,以及预测未来的结果。
2. 适用范围广。
回归函数可以适用于许多不同的学科和领域,如经济学、医学、心理学等等。
3. 有效性高。
回归函数可以提供比其他统计方法更准确的预测结果。
4. 可解释性强。
回归函数可以帮助人们了解因变量和自变量之间的关系,以及各个变量的影响因素。
5. 假设条件要求较高。
回归函数的应用需要满足一定假设条件,如线性关系、常数方差和无自相关等要求。
因此在应用时需要谨慎选择变量和检验假设条件。
1. 预测和估计。
回归函数可以通过已知的自变量来预测因变量的值。
我们可以用回归函数来预测一个人的收入、体重、房价或者销售额等。
2. 相关性分析。
回归函数可以用来确定自变量和因变量之间的关系及其程度。
经济学家可以使用回归函数来确定利率、通货膨胀率和失业率之间的关系。
3. 研究影响因素。
回归函数可以用来分析自变量对因变量的影响因素。
医生可以使用回归函数来分析患者的健康状况,找到影响健康的因素。
4. 数据挖掘。
回归函数可以用来挖掘数据中的潜在关系,了解数据背后的含义。
计量经济学第五讲---模型函数形式
Prob. 0.0000 0.0000 5.468946 0.086294 -9.94267 -9.84926 81786.04 0.000000
ˆ 5.317 0.0098t ln Y t
斜率0.0098表示,平均而言, se (0.000608 )(0.0000343 ) Y的年增长率为0.98%。
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章
经济学的弹性:
以价格弹性为例: 价格弹性的准确定义是需求量变动的百分比除以价格变动的百分 比。 价格变动一个百分点,引起需求量变动超过一个百分点,则该物 品就富有价格需求弹性;需求变动量不到一个百分点,则缺乏价 格需求弹性;需求变动量等于一个百分点,则该物品拥有单位需 求价格弹性。
S.D. dependent var
Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
20.51101
2.260832 2.354245 23141.80 0.000000
S.E. of regression Sum squared resid Log likelihood
2642.152 134.6207
Mean dependent var S.D. dependent var
S.E. of regression
Sum squared resid Log likelihood Durbin-Watson stat
回归模型的其他函数形式
四、回归模型的其他函数形式(一)对数线性模型iu i i eX Y 2 1 b b = 对数线性模型的优点在于:斜率系数 2 b 度量了 Y 对 X 的弹性,也就是当解释变量X 变 化 1%时,Y 变化的百分比。
由于在线性回归模型中, 2 b 是一个常数,因此,对数线性模型假定 Y 与 X 之间的弹 性系数 2 b 在整个研究范围内保持不变,所以称为不变弹性模型。
(二)半对数模型1.线性到对数模型tt u t LnY + + = 2 1 b b 式中,Y t =要研究的经济现象,t =时间变量。
t 时间变量的使用,主要是研究被解释变量在时间上的变动规律。
式中,被解释变量为对数形式,解释变量为线性形式,称为线性到对数的半对数模型。
通用形式为tt t u X LnY + + = 2 1 b b 式中,斜率系数 2 b 的含义为:解释变量X 绝对量改变一个单位时,被解释变量 Y 的相对改 变量。
即XYY X Y D D ==/ 2 的绝对改变量 的相对改变量 b 2.对数到线性模型tt t u LnX Y + + = 2 1 b b 我们称上式为对数到线性模型。
模型中斜率系数 2 b 的含义为解释变量X 相对量改变 1 个单 位时,被解释变量 Y 的绝对变化量。
XX Δ YΔ X Y / 2 ==的相对变化量 的绝对变化量 bXX Y / 2 D × = D b (5.66)当 X X / D =0.01=1%时, 2 01 . 0 b = D Y ,即当解释变量 X 增加 1%时,被解释变量 Y 增加 的绝对量为 0.01 2 b 。
(三)倒数模型当解释变量以倒数形式出现时的模型称为倒数模型或双曲线模型。
t tt u X Y + + = 121 b b 式中,Y 对 X 是非线性,但对参数 1 b ,2 b 而言是线性,Y 对 X1也是线性的。
此模型的特点 为当 X 值趋向于无穷大时, 2b X1趋向于 0,Y 趋向于 1 b 。
回归模型的函数形式
回归模型的函数形式回归模型是一种描述自变量和因变量之间关系的数学模型。
它可以用来预测因变量的值,基于给定的自变量值。
回归模型可以是线性的或非线性的,具体选择哪种形式取决于数据的特点和研究的目标。
以下是一些常见的回归模型的函数形式:1.线性回归模型:线性回归模型假设因变量与自变量之间存在线性关系。
最简单的线性回归模型称为简单线性回归模型,可以使用一条直线来描述自变量和因变量之间的关系:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示Y截距,β1表示X的系数,ε表示误差项。
2.多元线性回归模型:多元线性回归模型用于描述多个自变量与因变量之间的线性关系。
它的函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,Xi表示第i个自变量,βi表示Xi的系数,ε表示误差项。
3.多项式回归模型:多项式回归模型用于描述自变量和因变量之间的非线性关系。
它可以通过引入自变量的幂次项来逼近非线性函数:Y=β0+β1X+β2X^2+...+βnX^n+ε4.对数回归模型:对数回归模型适用于自变量与因变量之间存在指数关系的情况。
它可以将自变量或因变量取对数,将非线性关系转化为线性关系:ln(Y) = β0 + β1X + ε5. Logistic回归模型:Logistic回归模型用于描述分类变量的概率。
它的函数形式是Sigmoid函数,将自变量的线性组合映射到0和1之间的概率值:P(Y=1,X)=1/(1+e^(-β0-β1X))以上是几种常见的回归模型的函数形式。
回归模型的选择取决于数据的特征和研究的目标,需要考虑线性或非线性关系、自变量的数量、相关性等因素。
根据实际情况,可以选择合适的模型进行建模和预测。
第九章回归模型的函数形式非线性回归模型的估计-PPT文档资料
L 52783 54334 55329 63909 64799 65554 66373 67199 67947 68850 69600 69957 71394 72085 73025 73740 74432
K 3791.7 4753.8 4410.4 4517.0 5594.5 8080.1 13072.3 17042.1 20199.3 22913.5 24941.1 28406.2 29854.7 32917.7 37213.5 43499.9 55566.6
,称这类模型为可线性化模型。
1.对数模型(或对数-对数模型) 模型形式:
lnY=b0+b1lnX+u (对数-对数模型)
lnY=b0+b1lnX+u (对数-对数模型)
对数-对数模型特点: b1表示当X每变动1个相对量时
(而X变动1个相对量,用符号表达就是ΔX/X,用数
据表达就是 1% ), Y将变动一个相对量,这个相对
L K
2.半对数模型
在对经济变量的变动规律研究中,测定其增长率或衰减率是一个重要 方面。在回归分析中,我们可以用半对数模型来测度这些增长率。 模型形式:
lnY=b0+b1X+u (对数-线性模型) Y=b0+b1lnX+u (线性-对数模型)
lnY=b0+b1X+u (对数-线性模型)
对数-线性模型特点: b1表示当X每变动1个绝对量单 位时(而X变动1个单位,用符号表达就是 ΔX),Y 将变动一个相对量,这个相对量用 ΔY/Y表示。然后,
第九章 回归模型的函数形式 (可线性化的非线性模型的估计)
典型的可线性化的非线性模型
• • • • 1.倒数模型 2.多项式模型 3.半对数模型: 4.双(边)对数模型
回归模型的数学表达式
回归模型的数学表达式回归模型是一种常见的统计分析方法,用于研究变量之间的关系。
它通过建立数学表达式,来预测一个或多个自变量与因变量之间的关系。
回归模型的数学表达式可以写成如下形式:y = β0 + β1x1 + β2x2 + ... + βnxn + ε其中,y表示因变量,x1, x2,..., xn表示自变量,β0, β1, β2, ..., βn 表示回归系数,ε表示误差项。
回归模型的目标是找到最佳的回归系数,使得模型能够最好地拟合数据。
回归模型的数学表达式可以分为线性回归模型和非线性回归模型。
线性回归模型是最简单的回归模型,假设自变量与因变量之间存在线性关系。
非线性回归模型则假设自变量与因变量之间存在非线性关系。
在线性回归模型中,回归系数表示自变量对因变量的影响程度。
例如,β1表示x1每变动一个单位对y的影响,β2表示x2每变动一个单位对y的影响,以此类推。
回归系数的正负号表示自变量与因变量之间的正向或负向关系,而系数的大小表示影响的强度。
在非线性回归模型中,回归系数的解释与线性回归模型类似,但由于存在非线性关系,解释起来相对复杂。
非线性回归模型通常需要依赖于特定的函数形式,如指数函数、对数函数、幂函数等。
回归模型的数学表达式可以通过最小二乘法来求解。
最小二乘法是一种常用的参数估计方法,通过最小化观测值与回归模型预测值之间的误差平方和,来确定最佳的回归系数。
最小二乘法可以通过求解正规方程组或使用迭代算法来实现。
对于回归模型的数学表达式,我们可以根据具体的研究问题和数据特点,选择合适的自变量和函数形式,来构建回归模型。
在建立模型后,我们可以通过拟合优度和显著性检验等指标来评估模型的拟合程度和统计显著性。
回归模型的数学表达式是一种描述自变量与因变量关系的工具,通过建立数学模型,我们可以预测因变量的变化,并了解自变量对因变量的影响。
回归模型的数学表达式可以通过最小二乘法来求解,并根据具体问题选择合适的自变量和函数形式。
4 回归模型的函数形式b
多元双对数模型: 多元双对数模型:两个实例
P185
ln Yi = B1 + B2 ln X 2i + B3 ln X 3i + ui
B2:保持X3不变,X2每变化1%,Y变化B2* 1% B3:保持X2不变,X3每变化1%,Y变化B3* 1% 偏弹性。 它们分别度量了Y对 X2和X3变化的偏弹性 偏弹性
B2度量了Y对X的弹性: 的弹性: 度量了 对 的弹性 X变化 ,Y将变化 2×1% 变化1%, 将变化 将变化B 变化
关于弹性
d ln Y dY / Y Y / Y X E= = = = (斜率) ( ) d ln X dX / X X / X Y
当E的绝对值大于1,Y对X有弹性 有弹性 当E的绝对值小于1,Y对X缺乏弹性 缺乏弹性 当E的绝对值等于1,Y对X有单位弹性 有单位弹性
若B2+B3 >1,规模报酬递增 (increasing returns to scale) 若B2+B3 <1,规模报酬递(decreasing) 若B2+B3 =1,规模报酬不变(constant) 表9-2:墨西哥生产函数(1955-1974) :墨西哥生产函数( - )
例9-3 OECD国家的能源需求 国家的能源需求
P191,9.5
关键:解释斜率系数B 关键:解释斜率系数B2的含义
ln Yi = B1 + B2 X i + ui
d ln Y Y / Y B2= = dX X
log-lin:X变化一单位,Y会变(100×B2)%
Yi = B1 + B2 ln X i + ui
dY Y B2= = d ln X X / X
虽然双对数模型改变了变量xy的函数形式但由于仍是参数线性模型模型的参数估计假设检验tfp值预测等都与第67章介绍的方法类似可直接套用
计量经济学课件 第5章 回归模型的函数形式
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
logistic回归模型方程
logistic回归模型方程Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在这篇文章中,我们将介绍Logistic回归模型方程的基本概念和应用。
Logistic回归模型方程是一种基于概率的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
这个S形函数被称为Logistic 函数,它的形式如下:$$P(y=1|x)=\frac{1}{1+e^{-\beta_0-\beta_1x_1-\beta_2x_2-...-\beta_px_p}}$$其中,$P(y=1|x)$表示当输入变量为$x$时,输出变量为1的概率。
$\beta_0,\beta_1,\beta_2,...,\beta_p$是模型的参数,$x_1,x_2,...,x_p$是输入变量。
Logistic回归模型的训练过程是通过最大化似然函数来确定模型参数的。
似然函数是一个关于模型参数的函数,它描述了给定模型参数下观察到数据的概率。
在Logistic回归模型中,似然函数的形式如下:$$L(\beta)=\prod_{i=1}^{n}P(y_i|x_i;\beta)^{y_i}(1-P(y_i|x_i;\beta))^{1-y_i}$$其中,$n$是样本数量,$y_i$是第$i$个样本的输出变量,$x_i$是第$i$个样本的输入变量。
最大化似然函数的过程可以使用梯度下降等优化算法来实现。
Logistic回归模型可以应用于许多分类问题,例如垃圾邮件分类、疾病诊断等。
在这些问题中,我们需要将输入变量映射到输出变量,以便进行分类。
Logistic回归模型可以通过学习输入变量和输出变量之间的关系来实现这一目标。
Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
回归模型的函数形式
图5-2数学S.A.T分数的双对数模型散点图
9-12
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归过程
9-13
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归结果
ˆ InYi 4.887712773 0.1258045149InX i se (0.1573)(0.0148) t (31.0740)(8.5095) p (0.0000)(0.0000)
第5章 回归模型的函数形式
Essentials of Econometrics
第5章回归模型的函数形式
本章讨论以下几种形式的回归模型
(1) 双对数线性模型或不变弹性模型 (2) 半对数模型 (3) 倒数模型 (4) 多项式回归模型 (5) 过原点的回归模型,或零截距模型
9-2
5.1 如何度量弹性:双对数模型
ˆ ˆ ˆ B B B 1 2 ˆ Y e L K 3
9-28
5.3 多元对数线性回归模型
例5-2 excel原始数据表
9-29
5.3 多元对数线性回归模型
例5-2 取对数后Eviews数据表
9-30
5.3 多元对数线性回归模型
例5-2 C-D函数Eviews回归过程
9-31
5.3 多元对数线性回归模型
令变量 Yi ln Yi , X ki ln X ki
* *
, B1 LnA 则回归函数可变为:
* Yi* B1 B2 X * B X ui 3 2i 3i
根据解释变量的观测值,进行OLS估计,得到:
ˆ* B ˆ B ˆ X* B ˆ X ˆ* Y 1 2 3 i 2i 3i
回归模型的函数形式
回归模型的函数形式回归模型是一种用于研究变量之间关系的统计模型。
它可以帮助我们理解自变量和因变量之间的关系,并用于预测未来的观测值。
回归模型的函数形式通常包括线性回归和非线性回归两种。
一、线性回归模型线性回归模型是回归分析中最常见的一种模型,它假设自变量和因变量之间存在线性关系。
线性回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是回归系数,ε是误差项。
线性回归模型假设误差项ε服从正态分布,且均值为0,方差为常数σ^2、回归系数β表示自变量对因变量的影响程度,其值越大表示影响越大。
二、非线性回归模型当自变量和因变量之间的关系不是简单的线性关系时,我们可以使用非线性回归模型。
非线性回归模型的函数形式可以是各种形式的非线性函数,常见的形式包括指数函数、幂函数、对数函数等。
例如,指数函数形式的非线性回归模型可以表示为:Y=β0+β1e^(β2X)+ε幂函数形式的非线性回归模型可以表示为:Y=β0+β1X^β2+ε对数函数形式的非线性回归模型可以表示为:Y = β0 + β1ln(X) + ε需要注意的是,非线性回归模型的参数估计一般不像线性回归模型那样可以用最小二乘法直接求解,通常需要使用迭代算法。
三、多元回归模型多元回归模型用于研究多个自变量对因变量的影响。
多元回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是多个自变量,β0,β1,β2,...,βn是对应的回归系数,ε是误差项。
多元回归模型可以通过估计回归系数,来衡量每个自变量对因变量的影响。
通过比较不同自变量的回归系数,我们可以判断它们之间的影响大小。
总结:回归模型是一种用于研究变量关系的统计模型。
线性回归模型假设自变量和因变量之间存在线性关系,可以用线性函数表示。
Logistic回归模型
Logistic 回归模型一、 分组数据的Logistic 回归模型针对0-1型因变量产生的问题,我们对回归模型应该作两个方面的改进。
第一, 回归函数应该用限制在[0,1]区间内的连续曲线,而不能再沿用沿用直线回归方程。
限制在[0,1]区间内的连续曲线很多,例如所有连续变量的分布函数都符合要求,我们常用的是Logistic 函数与正如分布函数,Logistic 函数的形式为:()1xxe f x e =+Logistic 函数的中文名称逻辑斯蒂函数,简称逻辑函数 第二、因变量y 本身只取0、1两个离散值,不适合直接作为回归模型中的因变量,由于回归函数01()i i i E y x πββ==+表示在自变量为i x 的条件下i y 的平均值,而i y 是0-1型随机变量,因而()i i E y π=就是在自变量为i x 的条件下i y 等于1的比例.这就提示我们可以用i y 等于1的比例代替i y 本身作为因变量.二,例子 在一次住房展销会上,与房地产商签订初步购房意向书的共有325n =名顾客,在随后的3个月的时间内,只有一部分顾客确实购买了房屋.购买了房屋的顾客记为1,没有购买房屋的顾客记为0,以顾客的年家庭收入为自变量x,对下面表所示的数据,序号年家庭收入(万元)x 签订意向书人数n 实际购房人数m 实际购房比例p逻辑变换p′=ln(p/(1-p))权重w=np(1-p)1 1.52580.32-0.7537718 5.442 2.532130.40625-0.37948967.718753 3.558260.448276-0.207639414.344834 4.552220.423077-0.310154912.692315 5.543200.465116-0.139761910.697676 6.539220.5641030.257829119.58974477.528160.5714290.287682076.85714388.521120.5714290.287682075.14285799.515100.6666670.693147183.333333建立Logistic 回归模型:c i x x p i i i,,2,1,)exp(1)exp(1010 =+++=ββββ,其中,c 为分组数据的组数,本例中c=9.将以上回归方程作线性变换,令)1ln(iii p p p -=' 该变换称为逻辑变换,变换后的线性回归模型为 i i i x p εββ++='10该式是一个普通的一元线性回归模型。
第9章回归的函数形式
第9章回归的函数形式在统计学和机器学习中,回归是一种预测任务,目标是找到输入变量与输出变量之间的关系。
回归问题中,输入变量通常被称为特征,输出变量通常被称为目标变量。
在回归的函数形式中,我们试图找到一个可以预测目标变量的函数。
这个函数可以是线性的,也可以是非线性的。
在本章中,我们将介绍几种常见的回归函数形式,包括线性回归、多项式回归和非线性回归。
线性回归是回归问题中最简单的形式之一、在线性回归中,我们假设目标变量是输入变量的线性组合加上一个误差项。
我们可以使用最小二乘法来找到最佳的线性拟合。
线性回归模型的形式如下:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是目标变量,X1,X2,...,Xn是输入变量,β0,β1,β2,...,βn是回归系数,ε是误差项。
我们的目标是找到最佳的回归系数,使得预测值与观测值之间的残差平方和最小化。
多项式回归是线性回归的一种变形,它将输入变量的幂次作为特征。
多项式回归可以更好地拟合非线性关系。
多项式回归模型的形式如下:Y = β0 + β1X1 + β2X2 + ... + βnXn + β11X1^2 + β22X2^2 + ... + βnnXn^n + ε其中,X1, X2, ..., Xn是输入变量的幂次,β0, β1, β2, ..., βn是回归系数,β11, β22, ..., βnn是多项式回归的系数。
非线性回归是回归问题中最灵活的形式之一,它不限制目标变量与输入变量之间的关系。
非线性回归可以采用各种不同的函数形式,如指数函数、对数函数、幂函数等。
非线性回归模型的形式如下:Y=f(X1,X2,...,Xn;β)+ε其中,Y是目标变量,X1,X2,...,Xn是输入变量,β是回归系数,f 是一个非线性函数,ε是误差项。
我们的目标是找到最佳的回归系数,使得预测值与观测值之间的残差平方和最小化。
在实际应用中,选择适当的回归函数形式非常重要。
线性回归模型及其函数形式
S
总体回归函数和样本回归函数
o 总体回归函数的另一种表述
o 误差(error)的来源 ❖其他解释变量的影响 ❖测量误差 ❖人类行为的随机性
总体回归函数和样本回归函数
o 总体回归函数图解
Wi E(W|Si)
A
ui
PRF C
Si
总体回归函数和样本回归函数
样本回归函数(sample regression function,SRF) o 样本:从上述总体中随机抽取了100人 o 问题:根据样本数据估计总体中工资W与受教育年限S的关系
variable
variable
回归分析中的常用术语
相关与回归(co目r的relation变&量r间eg的r关es系sion变)量的性质 指标
相关分析 分析变量之间 对称的
都是随机变量 相关系数
(correlation 的线性关联程 analysis) 度
回归分析 根据自变量的 不对称的
因变量是随机 回归系数
variable variable
Exogenous Predictor variable
Regressor
因变量
被解释变量 响应变量 内生变量
预测子
回归子
Dependent Explained Response Endogenous Predictand Regressand
variable
variable
o 请用最小二乘法估计出以D为因变量的样本回归方程 o 计算回归标准误和回归系数估计量的标准误
年份 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
P 0.77 0.74 0.72 0.73 0.76 0.75 1.08 1.81 1.39 1.20 1.17 D 2.57 2.50 2.35 2.30 2.25 2.20 2.11 1.94 1.97 2.06 2.02
第五章回归模型的函数形式
第五章回归模型的函数形式1.引言回归分析是统计学中一种重要的数据分析方法,用于研究自变量与因变量之间的关系。
在回归分析中,我们需要确定一个合适的函数形式来描述变量之间的关系,这个函数形式即为回归模型的函数形式。
本章将介绍回归模型的函数形式的基本概念和常用的函数形式。
2.线性回归模型线性回归模型是最简单的回归模型之一,其函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,Xi是自变量,βi是参数,ε是误差项。
线性回归模型假设自变量与因变量之间的关系是线性的,并且误差项服从正态分布。
3.多项式回归模型多项式回归模型是线性回归模型的一种扩展形式,其函数形式为:Y=β0+β1X+β2X^2+...+βnX^n+ε多项式回归模型允许自变量的幂次大于1,通过引入幂项和交互项,可以更好地拟合非线性关系。
4.对数回归模型对数回归模型是一种特殊的回归模型,其函数形式为:ln(Y) = β0 + β1X1 + β2X2 + ... + βnXn + ε对数回归模型适用于因变量为正数且取值范围较广的情况,通过取对数可以将因变量的范围缩小,使得模型更易拟合。
5.非线性回归模型除了线性回归模型和多项式回归模型外,还存在许多其他形式的非线性回归模型。
非线性回归模型的函数形式通常不容易直接确定,需要通过试验和拟合来确定参数。
常见的非线性回归模型包括指数模型、幂函数模型、对数模型等。
在实际应用中,选择适当的函数形式是回归分析的一个重要问题。
选择不合适的函数形式可能导致模型的预测效果较差。
为了选择适当的函数形式,可以通过观察变量之间的散点图、拟合曲线图、残差图等进行初步判断,然后利用统计方法进行模型的比较和选择。
7.总结回归模型的函数形式是回归分析的基础,选择合适的函数形式对于模型的拟合和预测效果至关重要。
线性回归模型、多项式回归模型、对数回归模型和非线性回归模型是常用的函数形式。
选择适当的函数形式需要综合考虑变量之间的实际关系和统计分析的要求,可以通过观察图形和利用统计方法进行模型的比较和选择。
(李子奈计量经济学配套课件)3.5 回归模型的其他函数形式
中国城镇居民消费支出( 表 3.5.1 中国城镇居民消费支出(元)及价格指数
X X1 GP FP XC (1990年价) 646.1 659.1 672.2 690.4 772.6 826.6 899.4 1085.5 1262.5 1278.9 1344.1 1459.7 1694.7 2118.4 2474.3 2692.0 2775.5 2758.9 2723.0 2744.8 2764.0 Q (1990年价) 318.3 325.0 337.0 350.5 408.4 437.8 490.3 613.8 702.2 693.8 731.3 809.5 943.1 1265.6 1564.3 1687.9 1689.6 1637.2 1566.8 1529.2 1539.9 P0 (1990=100) 70.7 71.5 75.3 81.0 87.1 96.7 98.3 101.7 95.9 100.0 108.2 114.5 124.6 134.6 143.0 145.6 150.8 157.0 169.5 182.1 192.1 P1 (1990=100) 132.1 132.9 137.7 146.7 86.1 95.7 96.5 92.4 94.0 100.0 107.0 109.3 112.2 112.4 112.9 112.8 115.0 117.7 123.3 128.1 130.8
半对数模型( 半对数模型(2)
在线性模型中,B2表示X增加一个单位,Y的绝 对量的平均增量,即Y增加B2个单位。 在半对数模型中,B2表示X增加一个单位,Y的 相对量的平均增量,即Y增加100*B2 %。
半对数模型( 半对数模型(3)
例:以时间t作为解释变量模型—增长模型 我们来研究一下在货币、银行及金融等课程中 介绍过的复利计算公式:
logistic回归拟合优度检验
logistic回归拟合优度检验Logistic回归是一种经典的统计方法,用于建立线性回归模型。
它主要用于二分类问题,通过将线性回归方程应用到一个S形函数(称为逻辑函数或sigmoid函数)中,以预测两个二元响应变量之一的概率。
在使用Logistic回归模型进行分类时,一个重要的问题是如何评估该模型的拟合优度。
一、Logistic回归模型回顾Logistic回归模型是用于解决二分类问题的机器学习模型。
它的数学表达形式如下:其中,P表示事件发生的概率,X是预测变量的线性函数,β是模型的参数。
为了使预测变量的线性函数映射到(0,1)之间,我们使用逻辑函数作为映射函数。
二、拟合优度检验拟合优度检验是用来评估模型对数据的拟合程度的一种统计方法。
在Logistic回归模型应用时,拟合优度检验可以通过以下两种方法进行。
1. 最大似然比检验最大似然比是常用的拟合优度检验方法之一。
在Logistic回归模型中,我们可以计算一个似然比统计量(LR statistic),然后通过显著性检验来判断模型是否拟合良好。
最大似然比统计量的计算公式如下:其中,L1表示对空模型拟合的似然函数值,L2表示对备拟合的似然函数值。
接下来,我们计算似然比统计量的值,然后将其与临界值进行比较。
如果似然比统计量的值大于临界值,我们可以拒绝虚无假设(即模型不拟合)。
2. Hosmer-Lemeshow检验Hosmer-Lemeshow检验是另一种常用的拟合优度检验方法,它通过比较观察到的事件发生率和模型预测的事件发生率来评估模型的性能。
Hosmer-Lemeshow检验的计算步骤如下:1)根据模型预测的事件发生概率,将数据划分为十个等分。
2)计算每个等分内观察到的事件发生数和预测的事件发生数之和。
3)根据观察到的事件发生数和预测的事件发生数之和,计算卡方值。
4)比较计算得到的卡方值与临界值,从而判断模型是否拟合良好。
三、总结Logistic回归模型的拟合优度检验是评估该模型性能的重要方法。
回归模型的函数形式
如果用符号 Y 代表Y的一个微小变动,X 代表X的一个微 小变动,则弹性E定义为:
E Y 变动的百分数 Y / Y •100 Y • X slop( X )
X变动的百分数 X / X •100 X Y
Y
从图形上看,变量线性的回归模型的图形是一条直线,而 双对数模型的图形是一条曲线,并且对于不同的X值来说, 都具有相同的弹性。所以,双对数模型又称为不变弹性模 型。
倒数模型的一个显著特征是,随着X 的无限增大,(1/ Xi ) 趋于零,Y 接近渐进值或极限值 B1 。因此,当变量 X 无限增大 时,倒数模型中的应变量的取值将逐渐靠近其渐进线或极值。
下图描绘了倒数模型的一些曲线形状: 倒数模型:Yi B1 B2 (1/ X i )
上图a)中,若Y表示生产的平均固定成本(AFC),X代表产出,则 根据经济理论,随着产出的不断增加,平均固定成本将逐渐降低,最 终接近产出轴。
4.线性-对数模型:解释变量是对数形式
考虑如下例子:个人总消费支出与服务支出的关系 (1993.1~1998.3,1992年美元价,10亿美元),数据见下表:
1993.1~1998.3个人总消费支出与各类支出的季度数据(10亿美元)
以个人总消费支出X与服务支出Y的关系为例,得到线性- 对数模型如下:
Variable Coefficient
C
0.420412
DASSET 0.054930
Std. Error t-Statistic 0.012858 32.69715 0.022099 2.485610
Prob. 0.0000 0.0322
R-squared
0.381886
Adjusted R-squared 0.320075
计量经济学实验报告
武汉轻工大学经济与管理学院实验报告> ¹éÄ£Ðͺ¯ÊýÐÎʽ°¸Àý£¨ÃÀ¹úÈË¿Ú£©.dta", clear . use "C:\Documents and Settings\Administrator\×ÀÃæ\¼ÆÁ¿¾¼ÃѧÉÏ»ú°¸Àýdta Îļþ\»Ø. clear. g lny=ln(y)clear_cons 1506.244 188.0096 8.01 0.000 1080.937 1931.552income .0589824 .0061174 9.64 0.000 .0451439 .072821sex -228.9868 107.0582 -2.14 0.061 -471.1694 13.19576food Coef. Std. Err. t P>|t| [95% Conf. Interval]Total 4018118.25 11 365283.477 Root MSE = 178.77Adj R-squared = 0.9125Residual 287626.106 9 31958.4562 R-squared = 0.9284Model 3730492.14 2 1865246.07 Prob > F = 0.0000F( 2, 9) = 58.36Source SS df MS Number of obs = 12. reg food sex income . g incomesex=incomereg food sex income sexincome 实验表明:差别截距与差别斜率都不是显著的。
回归模型的函数形式
回归模型的函数形式回归模型是一种用于预测连续变量的统计模型。
它通过建立自变量与因变量之间的关系来进行预测。
回归模型的函数形式通常有以下几种:线性回归、多项式回归、对数回归等。
线性回归是最基本的回归模型之一、它假设自变量与因变量之间存在线性关系,即因变量可以表示为自变量的线性组合。
线性回归的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是因变量,X1、X2、..、Xp是自变量,β0、β1、β2、..、βp是待估计的回归系数,ε是随机误差项。
多项式回归是线性回归的一种推广形式。
它将自变量的高次幂引入回归模型中,以适应自变量与因变量之间的非线性关系。
多项式回归的函数形式可以表示为:Y=β0+β1X1+β2X1^2+...+βpX1^p+ε其中,Y是因变量,X1是自变量,β0、β1、β2、..、βp是待估计的回归系数,ε是随机误差项。
对数回归是一种广义线性回归模型,适用于因变量为非负数且呈现指数增长或指数衰减的情况。
ln(Y) = β0 + β1X1 + β2X2 + ... + βpXp + ε其中,Y是因变量,X1、X2、..、Xp是自变量,β0、β1、β2、..、βp是待估计的回归系数,ε是随机误差项。
此外,还有其他形式的回归模型,如非线性回归、广义可加模型等。
非线性回归假设自变量与因变量之间存在非线性关系,其函数形式通常较为复杂,可以采用曲线拟合等方法进行求解。
广义可加模型是一种将线性回归和广义线性回归相结合的模型,可以适应不同类型的因变量分布。
以上是回归模型的几种常见函数形式,它们在实际应用中根据数据的特征和问题的需求选择合适的形式进行建模和预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双变量模型R^2=0.974
二次多项式模型:R^2=0.990
三次多项式模型:R^2=0.998
所以从拟合优度来看,三次多项式模型拟合优度最好,最接近1.
其次,比较散点图:三次多项式模型的散点图弯曲度比其他两个模型都好。
所以综上:三次多项式模型最好。
二、建立双变量模型:输入ls y c x得到如图:并命名为eq01
建立二次多项式模型,输入ls y c x x1,回车得到模型如图,并命名为eq02:
建立三次多项式模型,输入ls y c x x^3,并命名为EQ03
散点图:双变量模型散点图
二次多项式模型散点图:
三次多项式散点图:
对比图:
四、实验结果及分析(将本问题的回归模型写出,并作出比较哪种模型最好)
306.8
306.4
1997
352.3
370.3
1998
397.3
418.1
1999
435.5
458.3
2000
488.3
501.2
2001
552
556
2002
646
648
2003
898
760
二、实验目的
1、掌握几种典型的的非线性模型、对其进行线性化处理的原理,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)
表1给出了厦门市贷款总额Loan与GDP的数据(1990-2003),试分析Loan与GDP的关系,并建立厦门市贷款总额模型。
表1
obs
LOAN
GDP
1
78
62
1992
112.7
97.7
1993
151.8
132.3
1994
209.6
187
1995
260.8
250.6
1996
双变量模型:Y = -5.480547774 + 1.046727923*X
二次多项式模型;Y = 55.88143168 + 0.5504428913*X + 0.000661681574*X1
三次多项式模型;Y = -16.43211696 + 1.568241077*X - 0.002462988255*X1 + 2.591075621e-006*X^3
《计量经济学》实验报告回归模型的函数形式(三)
开课实验室:2016年月日
姓名
任会
成绩
年级专业
财务与管理系
学号
1423319
课程名称
计量经济学
实验名称
实验小组成员
指导教师
侯艳红
教师评语
教师签名:
年月日
一、实验内容
1、利用数学公式生成新序列,也就是利用普通的数学符号对已有序列进行变换。如生成log(Y)、X^2、1/X等序列。
1、生成log(Y)、X^2、1/X;
2、建立厦门市贷款总额模型,分别建立双变量模型、二次多项式模型、三次多项式模型。
一、生成log(Y)输入genr lny=log(Y)回车生成,如下表:
2、生成X^2输入genr x1=x^2回车生成,如下表:
3、生成1/x输入genr x2=1/x回车生成,如下表: