2019届中考数学专题复习专题七类比探究题训练
中考数学压轴题之类比探究(作业及答案)
类比探究(作业)例:如图 1,在□ABCD 中,点 E 是 BC 边的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G .(1) 尝试探究:如图 1,若 AF = 3 ,则CD的值是 . EF CG(2) 类比延伸:如图 2,在原题的条件下,若 AF= m (m >0),EF则 CD的值是 (用含 m 的代数式表示),试写出解答 CG 过程.(3) 拓展迁移:如图 3,在梯形 ABCD 中,DC ∥AB ,点 E是 BC 延长线上一点,AE 和 BD 相交于点 F .若 AB= a ,CDBC = b (a >0,b >0),则 AF的值是 (用含 a ,b 的 BE EF代数式表示).【思路分析】根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,根据这些特征我们思考通过相似来传递比例关系,进而求 CD的值.CG构造相似我们采用作平行线的方法,即过中点 E 作 EH ∥AB交 BG 于点 H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,EF故 CD = 3 . CG 2类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m.CG 2照搬思路解决第三问.此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,可照搬前面思路处理,依然构造平行.过点 E 作 EH ∥ AB 交 BD 的延长线于点 H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得 BC = CD , AF = AB ,结合 AB = a , BC= b ,BE EH EF EH CD BE可知 AF = AB = a ⋅CD = ab .EF EH EH12 31.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P,边EF 与边BC 交于点Q.【探究】在旋转过程中,(1)如图2,当CE=1时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(2)如图3,当CE= 2 时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(3)根据你对(1),(2)的探究结果,试写出当CE=m时,EAEP 与EQ 满足的数量关系式为.图1图2图3,=2.如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B1C1⊥AC 于C1,交AB 的延长线于B1.(1)请你探究:AC =CD AC1 C1D 是否都成立?AB BD AB1DB1(2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC=CD一定成立吗?并证明AB BD你的判断.图1 图2 (3)如图3,在Rt△ABC 中,∠ACB=90°,AC=8,AB=40,3E 为AB 上一点且AE=5,CE 交其内角角平分线AD 于F.试求DF的值.FA3. 如图 1,将两个完全相同的三角形纸片 ABC 和 DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1) 操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空: ①线段 DE 与 AC 的位置关系是 ;②设△BDC 的面积为 S 1 ,△AEC 的面积为 S 2 ,则 S 1 与S 2 的数量关系是.图 1图 2(2) 猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3) 拓展探究如图 4 , 已知∠ ABC =60°, 点 D 是其角平分线上一点, BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F ,使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长.【参考答案】1.(1)EP=EQ,证明略(2)EP=1 EQ 2(3)EP=1 EQ m2.(1)都成立,证明略(2)结论仍然成立(3)DF=5 FA 83. (1)①DE∥AC,②S1=S2(2)证明略(3)BF 的长为或8 3 34 3 3。
2019-2020年九年级中考数学动态几何、类比探究专项训练
2019-2020年九年级中考数学动态几何、类比探究专项训练三、解答题22. (10分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A ,点D 重合),将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP ,BH .(1)求证:∠APB =∠BPH .(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论.(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.(备用图)A EBPDH GF CCFGH DPBEA备用图中考数学动态几何、类比探究专项训练(二)三、解答题22. (10分)数学课上,魏老师出示图1和下面框中条件:(1)①当点C 与点F 重合时,如图2所示,可得的值为______; ②在平移过程中,的值为__________(用含x 的代数式表示).(2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算的值.(3)将图1中的三角板ABC 绕点C 逆时针旋转度,,原题中的其他条件保持不变,如图4所示,请计算的值(用含x 的代数式表示).图3 图4中考数学动态几何、类比探究专项训练(三)三、解答题22. (10分)已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点.连接AC ,BD 交于点P .(1)如图1,当OA =OB ,且D 为OA 中点时,求的值; (2)如图2,当OA =OB ,且时,求tan ∠BPC 的值;(3)如图3,当AD :OA :OB =1:n :时,直接写出tan ∠BPC 的值.lM AB FCEDlMABF (C )ED图3图2图1PD BC OA O DC PBA O D C P BA中考数学动态几何、类比探究专项训练四)三、解答题22.(10分)如图,在矩形ABCD中,点M是AD的中点,AD=,CD=,直角∠PME绕点M进行旋转,其两边分别和BC,CD交于点P和点E,连接PE交MC于点Q.(1)判断线段MP,ME的数量关系,并进行证明;(2)当动点P,E分别在线段BC和CD上运动时,设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断PE与BM的位置关系,并说明理由.PQE M DCBA中考数学动态几何、类比探究专项训练(五)三、解答题22.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长.(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2CF2取最大值时,求tan∠DCF的值.F DCB EA中考数学动态几何、类比探究专项训练(六)三、解答题22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在线段AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量 关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.mnAF CB Emn A F E CBB CEF Anm图1 图2 图3中考数学动态几何、类比探究专项训练(七)三、解答题22. (10分)如图1,在等腰Rt △ABC 和等腰Rt △CDE (CD >BC )中,点C ,B ,D 在同一直线上,点M是AE 的中点.(1)探究线段MD ,MB 的位置及数量关系,并证明.(2)将图1中的△CDE 绕点C 顺时针旋转45°,使△CDE 的斜边CE 恰好与△ABC 的边BC 垂直,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若将图2中的△ABC 绕点C 逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. 图1 图2 图3EMD C BAE MDCBAABCDME中考数学动态几何、类比探究专项训练(八)三、解答题22. (10分)如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90°,且EF 交正方形外角∠DCG 的平分线CF 于点F . (1)求证:AE =EF .(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上除B ,C 外的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明 理由.(3)如图3,点E 是BC 延长线上除C 点外的任意一点,其他条件不变,结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由.图 1 图 2 图 3中考数学动态几何、类比探究专项训练(九)三、解答题22. (10分)问题背景(1)如图1,△ABC 中,DE ∥BC ,分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB ,交BC 于点F .请按图示数据填空:四边形DBFE 的面积S =_________,△EFC 的面积S 1=_________,△ADE 的面积S 2=__________. 探究发现(2)在(1)中,若BF =a ,FC =b ,DE 与BC 间的距离为h .请证明S 2=4S 1S 2. 拓展迁移GAB C DFE E FDC BAG E FDC B A G(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG ,△DBE ,△GFC 的面积分别为2,5,3,试利用(2)中的结论求△ABC 的面积.中考数学动态几何、类比探究专项训练(十)三、解答题22. (10分)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点,点P 从B 出发,以a厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒. (1)若a =2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形. ①若a =,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.图2图1CE DGBAFS 1S 2SF E DCBA 362P Q D CB A中考数学动态几何、类比探究专项训练(十一)三、解答题22. (10分)如图,在Rt △ABC 中,∠C =90°,AB =25cm ,AC =20cm .点P 从点A 出发,沿AB 的方向匀速运动,速度为5cm/s ;同时点M 从点C 出发,沿CA 的方向匀速运动,速度为4cm/s .过点M 作MN ∥AB ,交BC 于点N .设运动的时间为t 秒(0<t <5). (1)用含t 的代数式表示线段MN 的长.(2)连接PN ,是否存在某一时刻t ,使得四边形AMNP 为菱形?若存在,求出此时t 的值;若不存在,请说明理由.(3)连接PM ,PN ,是否存在某一时刻t ,使得点P 在线段MN 的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.(备用图)BCACBA(备用图)AC BPNM中考数学动态几何、类比探究专项训练(十二)三、解答题22.(10分)如图,在梯形A B C D中,A D∥B C,A D=3,D C=5,A B=,∠B=45°.动点M从B点出发,沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.中考数学动态几何、类比探究专项训练(一)参考答案22.(1)证明略;NM DCBA(2)△PDH的周长不发生变化,证明略;(3),当x=2时,S存在最小值,最小值为6.中考数学动态几何、类比探究专项训练(二)参考答案22.(1)①1;②;(2);(3).中考数学动态几何、类比探究专项训练(三)参考答案22.(1)=2;(2)tan∠BPC;(3)tan∠BPC.中考数学动态几何、类比探究专项训练(四)参考答案22.(1)MP=ME,证明略;(2);(3)当y取最小值时,PE∥BM,理由略.中考数学动态几何、类比探究专项训练(五)参考答案22.(1)CE=.(2)①存在,k=3;②tan∠DCF.中考数学动态几何、类比探究专项训练(六)参考答案22.(1)EF=EB,证明略;(2)不成立,此时EB=kEF;(3)EF=EB,证明略.中考数学动态几何、类比探究专项训练(七)参考答案22.(1)MD⊥MB,MD=MB,证明略;(2)不发生变化,证明略;(3)不发生变化,证明略.中考数学动态几何、类比探究专项训练(八)参考答案22.(1)证明略;(2)结论仍成立,证明略;(3)结论仍成立,证明略.中考数学动态几何、类比探究专项训练(九)参考答案22.(1)6,9,1;(2)证明略;(3)18.中考数学动态几何、类比探究专项训练(十)参考答案22.(1);(2)①PQ厘米;②不存在,理由略.中考数学动态几何、类比探究专项训练(十一)参考答案22.(1)MN=;(2)存在,;(3)存在,.可编辑修改中考数学动态几何、类比探究专项训练(十二)参考答案22.(1)BC=;(2);(3)..希望能帮到您,欢迎下载。
中考数学类比探究专题复习中考数学类比探究专题复习
F E D CG (B )AG FE D C B A D A B M N M A A B E M AB=AC D BC D'A 中考数学类比探究专题复习一:知识点睛1. 类比探究一般会围绕一个不变结构进行考查.常见结构有:平行结构、直角结构、旋转结构、中点结构.2. 类比是解决类比探究问题的主要方法.往往会类比字母、类比辅助线、类比结构、类比思路来解决类比探究问题. 3. 常见结构:①平行结构 ②直角结构 ③旋转结构④中点结构平行夹中点 (类)倍长中线 中位线二:真题演练1.(2015•潜江24.(10分))已知∠MAN=135°,正方形ABCD 绕点A 旋转.(1)当正方形ABCD 旋转到∠MAN 的外部(顶点A 除外)时,AM ,AN 分别与正方形ABCD 的边CB ,CD 的延长线交于点M ,N ,连接MN .①如图1,若BM=DN ,则线段MN 与BM+DN 之间的数量关系是 MN=BM+DN ;②如图2,若BM≠DN ,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD 旋转到∠MAN 的内部(顶点A 除外)时,AM ,AN 分别与直线BD 交于点M ,N ,探究:以线段BM ,MN ,DN 的长度为三边长的三角形是何种三角形,并说明理由.2.(2015•贵港26.(10分))已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=2;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)3、(2015•齐齐哈尔26.(8分))如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.4、(2015•黑龙江龙东地区26.8分)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.5、(2015•牡丹江26.(8分))已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.6、(2015•哈尔滨26.(10分))AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.7、(2015荆州,22.(9分))如图1,在正方形ABCD中,P是对角线BD上的一点,点E 在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.8、(2015•宿迁25.(10分))已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.9、(2015•锦州25.(12分))如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD 和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是DE+DF=AD;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.10、(2015•本溪25.(12分))如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD =∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是BD=CD+AD;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).11、(2015抚顺,25.)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)12、(2015阜新,17.)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C 顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.13、(2015•葫芦岛25.(12分))在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.14、(2015铁岭,25.)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.15、(2015•营口25.(14分))【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.。
中考数学类比探究实战演练(习题及答案).
中考数学类比探究实战演练(六)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M,点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN 上,且AE=DE.(1)如图,当∠ACB=90°时.①求证:△BCM≌△ACN;②求∠BDE的度数.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是__________(用含α的代数式表示);(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长.中考数学类比探究实战演练(七)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)已知在Rt △ABC 中,∠BAC =90°,CD 为∠ACB 的平分线,将∠ACB沿CD 所在的直线对折,使点B 落在点B′处,连接AB′,BB′,延长CD 交BB′于点E ,设∠ABC =2α(0°<α<45°).(1)如图1,若AB =AC ,求证:CD =2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连接EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示).中考数学类比探究实战演练(八)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A′,B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数.(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ 的长.(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.中考数学类比探究实战演练(九)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)问题背景:如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =21∠BAC =60°,于是23BC BD AB AB==.迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB ≌△AEC ;②请直接写出线段AD ,BD ,CD 之间的等量关系式.拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①求证:△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.图1图2图3中考数学类比探究实战演练(十)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1).求证:△AEG≌△AEF.(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2).求证:EF2=ME2+NF2.(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.中考数学类比探究实战演练(十一)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角板的一直角边与AB交于点D.在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由.【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°).旋转后三角板的一直角边与AB交于点D.在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.图1图2中考数学类比探究实战演练(十二)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF;②AE+AF=AC.(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH.(3)深入探究如图3,若AD=3AB,探究得:3AE AFAC的值为常数t,则t=_______.图1图2图3中考数学类比探究实战演练(十三)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)小华遇到这样一个问题:在菱形ABCD中,∠ABC=60°,边长为4,在菱形ABCD内部有一点P,连接PA,PB,PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC绕点C顺时针旋转60°,恰好旋转至△DEC,连接PE,BD,则BD的长即为所求.(1)请你写出在图1中,PA+PB+PC的最小值为________.(2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA,PB,PC,求PA+PB+PC的最小值.②如图3,在正方形ABCD中,AB=5,P为对角线BD上任意一点,连接PA,PC,请直接写出PA+PB+PC的最小值(保留作图痕迹).中考数学类比探究实战演练(十四)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)如图1,若点D与点C重合,AB=AC,探究线段BE与FD的数量关系.(2)如图2,若点D与点C不重合,AB=AC,探究线段BE与FD的数量关系,并加以证明.(3)如图3,若点D与点C不重合,AB=kAC,求BEFD的值(用含k的式子表示).图1图2图3中考数学类比探究实战演练(十五)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.(1)初步尝试:如图1,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1·S2=_____________.(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图2所示位置,求S1·S2的值.(3)拓展延伸:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.①如图3,当点D在线段AB上运动时,设AD=a,BD=b,求S1·S2的表达式(结果用a,b和α的三角函数表示);②如图4,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1·S2的表达式,不必写出解答过程.图1图2图3图4中考数学类比探究实战演练(十六)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)点A,B分别是两条平行线m,n上任意一点,在直线n上找一点C,使BC=kAB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF 交直线m于点F.(1)如图1,当∠ABC=90°,k=1时,判断线段EF和EB之间的数量关系,并证明.(2)如图2,当∠ABC=90°,k≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF和EB之间的数量关系.(3)如图3,当0°<∠ABC<90°,k=1时,探究EF和EB之间的数量关系,并证明.图1图2图3中考数学阅读理解问题实战演练(一)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A′BC ,连接AA′交直线BC 于点D .若点B 是△AA′C 的重心,求BC AC 的值.(3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C ,A′C 所在直线交l 2于点D ,求CD 的值.中考数学阅读理解问题实战演练(二)做题时间:_______至_______自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD 平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG= 30°,连接EG,若△EFG的面积为23,求FH的长.【参考答案】中考数学类比探究实战演练(六)22.(1)①证明略;②∠BDE的度数为90°;(2)α或(180°-α);(3)CF的长为32或43.中考数学类比探究实战演练(七)22.(1)证明略;(2)CD=2BE·tan2α;(3)12sin(45)SSα=︒-.中考数学类比探究实战演练(八)22.(1)∠ACA′的度数为60°;(2)线段PQ的长为7 2;(3)四边形P A′B′Q的最小面积为33-.中考数学类比探究实战演练(九)22.(1)①证明略;②3AD+BD=CD;(2)①证明略;②BF的长为33.中考数学类比探究实战演练(十)22.(1)证明略;(2)证明略;(3)EF2=2(BE2+DF2).中考数学类比探究实战演练(十一)22.(1)①∠EAF=120°;②DE与EF相等,理由略;(2)①∠EAF=90°;②DB2+AE2=ED2.中考数学类比探究实战演练(十二)22.(1)证明略;(2)证明略;(3)7.中考数学类比探究实战演练(十三)22.(1)43;(2)①PA+PB+PC的最小值为61;②PA +PB +PC 的最小值为56522+(523+也正确).中考数学类比探究实战演练(十四)22.(1)12BE FD =;(2)12BE FD =,证明略;(3)2BE k FD =.中考数学类比探究实战演练(十五)22.(1)12;(2)S 1·S 2的值为12;(3)①22121()sin 4S S ab α⋅=;②22121()sin 4S S ab α⋅=.中考数学类比探究实战演练(十六)22.(1)EF =EB ,证明略;(2)不成立,1EF EB k=;(3)EF =EB ,证明略.中考数学阅读理解问题实战演练(一)22.(1)△ABC 是“等高底”三角形,理由略;(2)132AC BC =;(3)CD 的值为2103,22或2.中考数学阅读理解问题实战演练(二)22.(1)图略;(2)证明略;(3)FH 的值为22.。
初中数学 《类比、拓展、探究》第二课时训练题
几何探究题《类比、拓展、探究》第二课时训练相似类1、(10分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整。
原题:如图1,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF的延长线交射线CD 于点G.若EF AF =3,求CGCD 的值。
(1)尝试探究在图1中,过点E 作EH ∥AB 交BG 于点H,则AB 和EH 的数量关系是___,CG 和EH的数量关系是___,CGCD 的值是___. (2)类比延伸如图2,在原题的条件下,若EF AF =m(m>0),则CGCD 的值是___(用含有m 的代数式表示),试写出解答过程。
(3)拓展迁移如图3,梯形ABCD 中,DC ∥AB,点E 是BC 的延长线上的一点,AE 和BD 相交于点F. 若b BE BC a CD AB ==,(a>0,b>0),则EFAF 的值是___(用含a 、b 的代数式表示).全等类2、(10分)(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时线段AC的长取得最大值,且最大值为(用含 a , b 的式子表示)(2)应用点A为线段B除外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由.②直接写出线段BE长的最大值.(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标。
参考答案1、(10分)【解答】(1)依题意,过点E 作EH ∥AB 交BG 于点H ,如右图1所示。
则有△ABF ∽△EHF , ∴,3==EF AFEH AB,∴AB=3EH.∵▱ABCD,EH ∥AB ,∴EH ∥CD ,又∵E 为BC 中点,∴EH 为△BCG 的中位线,∴CG=2EH.2323===EH EHCG AB CG CD故答案为:AB=3EH;CG=2EH;23.(2)如右图2所示,作EH ∥AB 交BG 于点H,则△EFH ∽△AFB. ∴,m EF AFEH AB==∴AB=mEH.∵AB=CD ,∴CD=mEH.∵EH ∥AB ∥CD ,∴△BEH ∽△BCG. ∴2==BEBC EH CG , ∴CG=2EH. ∴22m EH mEH CG CD ==. 故答案为:2m . (3)ab.2、(10分)【解析】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由如下:∵△ABD 和△ACE 都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∴△CAD ≌△EAB (SAS ),∴DC=BE②BE 长的最大值是4.(3)AM 的最大值为3+,点P 的坐标为(2-,)【提示】如图3,构造△BNP ≌△MAP,则NB=AM,由(1)知,当点N 在BA 的延长线上时,NB 有最大值(如备用图)。
类比探究专题(学习资料)
类比探究专题例1 如图1,在等腰直角△ABC 和等腰直角△CDE 中,CD>BC ,点C ,B ,D 在同一直线上,M 是AE 的中点,易证MD ⊥MB ,MD=MB .(1)如图2,将图1中的△CDE 绕点C 顺时针旋转45°,使△CDE 的斜边CE 恰好与△ABC 的边BC 垂直,题干中的其他条件不变,则上述结论是否仍然成立?(2)将图2中的△ABC 绕点C 逆时针旋转大于0°且小于45°的角,如图3所示,请直接写出你的结论.MDBA图2ABC DE M图1图3ABDM例2 如图1,在ABC △中,AC BC =,120C ∠=︒,D 在BC 边上。
BDE △为等边三角形,连接AE ,F 为AE 中点,连CF DF ,。
⑴请直接写出CF DF 、的关系,不必说明理由;⑵若将图1中的DBE △绕点B 顺时针旋转90︒,其它条件不变,请作出相应图形,并直接给出结论,不必说明理由。
⑶将图中的DBE △绕点B 顺时针旋转α(0°<α<60°),其它条件不变,如图2,试回答⑴中的结论是否成立?并说明理由。
图1AB C DEFFDCBA图2例3 (1)操作发现:如图1,在矩形ABCD 中,E 是BC 的中点,将△ABE 沿AE 折叠后得到△AFE ,点F 在矩形ABCD 内部,延长AF 交CD 于点G .猜想线段GF 与GC 有何数量关系?并证明你的结论. (2)类比探究:如图2,将(1)中的矩形ABCD 改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.GCFAFBA图1 图2例4 已知:如图所示,直线MA NB MAB ∠∥,与NBA ∠的平分线交于点C ,过点C 作一条直线l 与两条直线MA NB 、分别相交于点D E 、.(1)如图1所示,当直线l 与直线MA 垂直时,猜想线段AD BE AB 、、之间的数量关系,请直接写出结论,不用证明;(2)如图2所示,当直线l 与直线MA 不垂直且交点D E 、都在AB 的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)当直线l 与直线MA 不垂直且交点D E 、在AB 的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD BE AB 、、之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.ABMCC NMBAABCDEMNl lMEDCB A图1 图2 备用图 备用图例5 在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =12∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F .(1)当AB =AC 时(如图1), ①∠EBF =_______°;②探究线段BE 与FD 的数量关系,并加以证明;(2)当AB =kAC 时(如图2),求BEFD 的值(用含k 的式子表示).。
中考数学压轴题之几何类比探究问题综合训练
中考数学压轴题之几何类比探究问题综合训练1.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,∠MON=90°,点A为边OM上一定点,点B为边ON上一动点,以AB为一边在∠MON的内部作正方形ABCD,过点C作CF⊥OM,垂足为点F(在点O、A之间),交BD于点E,试探究△AEF的周长与OA的长度之间的等量关系.该兴趣小组进行了如下探索.【动手操作,归纳发现】(1)通过测量图1、2、3中线段AE、AF、EF和OA的长,他们猜想△AEF的周长是OA长的倍.请你完善这个猜想.【推理探索,尝试证明】为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C作CG⊥ON,垂足为点G,则∠CGB=90°,∴∠GCB+∠CBG=90°.又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO.在△CBE与△ABE中,……【类比探究,拓展延伸】(3)如图5,当点F在线段OA的延长线上时,直接写出线段AE、EF、AF与OA长度之间的等量关系为.2.小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边△ABC外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够得到AD与DE的数量关系.(1)AD与DE相等吗?请你说明理由;【类比探究】(2)当点D是线段BC上(不与点B,C重合)任意一点时,其它条件不变,如图2,试猜想AD与DE之间的数量关系,并证明你的结论;【拓展应用】(3)当点D在BC的延长线上,且满足CD=BC,连接AE,其它条件不变,如图3,若AD=6,求DE的长.3.已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B 作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.4.如图1,△ABC为等边三角形,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转60°得到线段CN,连接BN,直线BN交射线AE 于点D.(1)直接写出直线BD与射线AE相交所成锐角的度数;(2)如图2,当射线AE与AC的夹角∠EAC为钝角时,其他条件不变,(1)中结论是否发生变化?如果不变,加以证明;如果变化,请说明理由;(3)如图3,在等腰Rt△ABC中,∠ACB=90°,射线AE交BC于点H,∠EAC=15°,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,连接BN,直线BN交射线AE于点D.G,F分别是AH,AB 的中点.求证:CD=GF.5.【问题探索】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC 边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.探索BE与MN的数量关系.聪明的小华推理发现PM与PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的BE与MN的数量关系是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【解决问题】若CB=8,CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D三点在一条直线上时,求MN的长度.6.已知:△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,把线段CP绕着点C逆时针旋转90°得到CQ,连接PQ,探究并解决下列问题:(1)如图1,若点P在线段AB上,请直接写出P A2,PB2,PQ2三者之间的数量关系:;(2)如图2,若点P在线段AB的延长线上,(1)中的结论是否仍然成立,若成立请给予证明;若不成立请说明理由;(3)若动点P满足=,求的值.7.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.8.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE、DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF 的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB的中点,点P为直线BC 上的动点(不与点B点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)观察猜想:如图①,线段BQ与CP的数量关系是;∠CBQ=;(2)探究证明:如图②,当点P在CB的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.10.已知△ABC和△ADE,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD,CE.(1)如图1,当点E在AB边上时,试判断线段BD,CE之间的关系是.(2)将图1中的△ADE绕点A旋转至如图2所示位置时,探究线段BD,CE之间的关系,并说明理由;(3)将图1中的△ADE绕点A旋转至DE与直线AC垂直,直线BD交直线CE于点F,若AB=15,AD=5,请直接写出线段BF的长度.11.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图1,试猜想线段BD和CE的数量关系是;位置关系是.(2)将图1中的△ADE绕点A顺时针旋转α角,(0°<α<90°),如图2,(1)中的结论是否成立,若成立,请给出证明;若不成立说明理由.12.如图1,在△ABC中,已知∠ACB=90°,AC=BC,点D,E分别在边AC,BC上,且CD=CE,此时显然AD=BE,AD⊥BE成立.若保持△ABC不动,将△DCE绕点C 逆时针旋转,旋转角为α.(Ⅰ)如图2,当0°<α<90°时,问:AD=BE,AD⊥BE是否成立?若成立,请证明,若不成立,请说明理由;(Ⅱ)如图3,当α=45°时,延长BE交AD于点F,若CE=,BC=3,则线段EF =(直接写出结果即可).13.已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE.∠DAE=∠BAC.【初步感知】(1)特殊情形:如图①.若点D,E分别在边AB,AC上,则DB EC.(填“>”、“<”或“=”)(2)发现证明:如图②,将图①中的△ADE绕点A旋转,当点D在△ABC外部,点E 在△ABC内部时,求证:DB=EC.【深入探究】(1)如图③,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB 的度数为线段CE,BD之间的数量关系为;(2)如图④,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E在同一直线上,AM为△ADE中DE边上的高.则∠CDB的度数为;线段AM.BD,CD之间的数量关系为;【拓展提升】如图⑤,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A逆时针旋转,连接BE、CD.当AB=5.AD=2时,在旋转过程中,△ADE与△ADC的面积和的最大值为.14.已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.尝试探究:(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系,BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=7,CE=5,直接写出线段ED的长.15.已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.尝试探究:(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段ED的长.16.已知Rt△ABC中,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题:如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系,位置关系;②线段CE、CD、BC之间的关系是;(2)尝试探究:如图②,当点D在边BC的延长线上且其他条件不变时,(1)中CE、CD、BC之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸:如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.17.在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,将Rt△DCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.(1)观察猜想如图1,当点D与点A重合时,CF与CG的数量关系是,位置关系是;(2)类比探究当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt△DCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.18.综合与实践动手操作如图1,在Rt△ABC中,∠C=90°,将△ABC绕点A逆时针旋转90°得到△AED.延长ED分别交CB于点F,交AB于点G,连接AF.思考探究(1)∠CAF=°,∠EAG=°;(2)若BC=(+1)AC,则①∠DAG=°;②=,请证明你的结论;开放拓展(3)如图2,若改变旋转角,已知AC=3,BC=4,当∠EAF=90°时,△AFB的面积为.19.如图,已知在△ABC和△DCE中,∠ACB=∠DCE,且满足==k,将△DEC绕点C旋转.连接BD,F,G,H分别是AB,BD,DE的中点,连接FG,GH.(1)当k=1时,①如图(1),点D在AC边上时,判断FG,GH的数量关系是;②如图(2),点D不在AC边上时,①中的结论是否成立,并说明理由;(2)如图(3),当k=时,探索FG,GH的数量关系.直接写出探究结论,不需证明.20.如图1,已知△ABC和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点D在线段AC上,点F为AB的中点,点M为BE的中点,点N为AD的中点.(1)如图1,请直接写出∠FMN的大小以及FM和MN之间的数量关系.(2)如图2,将△DCE绕点C顺时针旋转,此时(1)中的结论是否成立?若成立,请证明,若不成立,请写出相应正确的结论.(3)如图3,若AB=4,CE=2,在将△DCE绕点C顺时针旋转360°过程中,直线BD,AE交于点G,△ABG的面积的最小值为.21.在△ABC和△DEC中,∠ACB=∠DCE=90°,△DEC绕点C逆时针旋转,连接BD,F,G,H分别是AB,BD,DE的中点,连接FG,FH,HG.(1)如图1,当∠A=∠EDC=45°,点D在AC边上时,直接猜想FG,HG的数量关系和位置关系是;(2)如图2,当∠A=∠EDC=45°,点D不在AC边上时,(1)猜想的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)如图3,当∠A=∠EDC=30°时,猜想FG,HG的数量关系和位置关系,请直接写出猜想结论.。
中考数学类比探究型几何综合题专题训练(含答案与解析)
中考数学类比探究型几何综合题专题训练【类型1】通过位置变化(图形变换)进行类比探究〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当旋转角β为何值时,OC∥AB,并说明理由;③当A、C、D三点共线时,直接写出线段BD的长.〖例2〗现有与菱形有关的三幅图,如图:(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.〖尝试练习〗1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =14BC,请求出OC的长.3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.求证:①BE=DG;②BE⊥DG;(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.【类型2】通过形状变化进行类比探究〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.(1)求证:CE=BD;(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.(1)求证:∠PCD=∠PED;(2)连接EC,求证:EC=√2AP;(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.〖尝试练习〗4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.【自主反馈】7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.(1)求∠DFC的度数;(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.①补全图形(图2中完成);②用等式表示线段BE与CQ的数量关系,并证明.8.已知△ABC是等腰三角形.(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图②,B'E与AC交于点F,DB'∥BC.①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;(3)如图③,则△CEF的周长为.11.已知正方形ABCD,以CE为边在正方形ABCD外部作正方形CEFG,连AF,H是AF的中点,连接BH,HE.(1)如图1所示,点E在边CB上时,则BH,HE的关系为;(2)如图2所示,点E在BC延长线上,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请给出新的结论并证明.(3)如图3,点B,E,F在一条直线上,若AB=13,CE=5,直接写出BH的长.12.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.13.我们知道,平行四边形的对边平行且相等,利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且DE=12DF,又可证图中的四边形为平行四边形,可得BC与DF的关系是,于是推导出了“DE∥BC,DE=12BC”.寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=√2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.直接写出CF与BE的数量关系.类比探究型几何综合题专题训练(不用相似)答案与解析〖例1〗解:(1)如图1,∵△AOB是等边三角形,∴AO=BO=AB,∠AOB=60°,∵将OC绕点O顺时针旋转,使点C落到OB边的点D处,∴OC=OD,∠COD=∠AOB=60°=α,∴△COD是等边三角形,答案为:60°,等边;(2)①∵△COD是等边三角形,∴OC=OD,∠COD=∠AOB=60°,∴∠AOC=∠BOD,又∵AO=BO,∴△AOC≌△BOD(SAS),∴AC=BD;②如图2,当点C在点O的上方时,若OC∥AB,∴∠AOC=∠OAB=60°=β,如图2﹣1,当点C在点O的下方时,若OC∥AB,∴∠ABO=∠BOC=60°,∴β=360°﹣60°﹣60=240°,综上所述:β=60°或240°;③如图3,当点D在线段AC上时,过点O作OE⊥AC于E,∵等边△AOB的边长为4,点C为OA 中点,∴AO=AB=OB=4,OC=OD=CD=2,∵∠AOB=∠COD=60°,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∵OE⊥CD,OC=OD,∴CE=DE=1,∴OE=√OC2−CE2=√3,∴AE=√OA2−OE2=√13,∴AC=AE+CE=1+√13=BD;如图4,当点C在线段AD上时,过点O作OF⊥AD于F,同理可求DF=CF=1,AF=√13,∴AC=BD=√13﹣1,综上所述:BD=√13+1或√13﹣1.〖例2〗解:(1)感知:∵四边形ABCD是菱形,∴BC=CD=AB=2,∵E,F分别是边BC,CD的中点,∴CE=12BC,CF=12CD=1,∴CE+CF=2.故答案为:2.(2)探究:如图,连结AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.∵∠EAF=60°,∴∠BAC﹣∠CAE=∠EAF﹣∠CAE.∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA).∴BE=CF.∴CE+CF=BC=2.(3)应用:如图所示:∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠CAD=∠B=60°.∵∠EAF=60°,∴∠CAD﹣∠DAE=∠EAF ﹣∠DAE.∴∠CAE=∠DAF.∵∠ACE=∠ADF,AC=AD∴△ACE≌△ADF(ASA).∴CE=DF,AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∵EF⊥BC,∠ECF=60°,∴CF=2CE,∵CD=BC=2,∴CE=2,∴EF=√CF2−CE2=2√3,∴△AEF的周长为6√3.〖尝试练习〗1.解:(1)AD=CE,理由:∵△ABC与△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD =∠CBE , ∴△ABD ≌△CBE (SAS ),∴AD =CE ;(2)如图2,过点B 作BH ⊥AD 于H ,在Rt △BHD 中,BD >BH ,∴当点D ,H 重合时,BD =BH ,∴BH ≤BD ,∴当BD ⊥AD 时,点B 到直线AD 的距离最大,∴∠EDP =90°﹣∠BDE =30°,同(1)的方法得,△ABD ≌△CBE (SAS ),∴∠BEC =∠BDA =90°,EC =AD ,在Rt △ABD 中,BD =2,AB =2√2, 根据勾股定理得,AD =√AB 2−BD 2=2, ∴CE =2,∵∠BEC =90°,∠BED =60°, ∴∠DEP =90°﹣60°=30°=∠EDP , ∴DP =EP ,如图2﹣1,过点P 作PQ ⊥DE 于Q , ∴EQ =12DE =1,在Rt △EQP 中,∠PEQ =30°, ∴EP =EQ cos∠DEP =2√33,∴PC =2−2√33; (3)①当点D 在AE 上时,如图3,∴∠ADB =180°﹣∠BDE =120°,∴∠BDE =60°, 过点B 作BF ⊥AE 于F ,在Rt △BDF 中,∠DBF =30°,BD =2, ∴DF =1,BF =√3,在Rt △ABF 中,根据勾股定理得,AF =√AB 2−BF 2=√5,AD =AF ﹣DF =√5﹣1,∴CE =AD =√5﹣1; ②当点D 在AE 的延长线上时,如图4,同①的方法得,AF =√5,DF =1,∴AD =AF +DF =√5+1,∴CE =AD =√5+1, 即满足条件的CE 的长为√5+1和√5﹣1. 2.解:(1)①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 又∵AB=AC ,∴△DAB ≌△FAC (SAS ),∴∠ABC =∠ACF ,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ACB +∠ACF ═45°+45°=90°, 即BC ⊥CF ;②△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD , ∴BC =CF +CD ;故答案为:BC =CF +CD ;(2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC .理由如下:∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,又∵AB=AC , ∴△DAB ≌△FAC (SAS ),∴∠ABD =∠ACF , ∵∠BAC =90°,AB =AC , ∴∠ACB =∠ABC =45°.∴∠ABD =180°﹣45°=135°,∴∠BCF =∠ACF ﹣∠ACB =135°﹣45°=90°,∴CF ⊥BC . ∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .(3)过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N , ∵∠BAC =90°,AB =AC =2√2, ∴BC =4,∴CD =14BC =1,∴BD =5, 由(2)同理可证得△DAB ≌△FAC ,∴BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴OD =OF ,∵∠DCF =90°, ∴DF =√CD 2+CF 2=√26,∴OC =√262.3.证明:(1)如图2,延长DG交BE于H,∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,AG=AE,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE(SAS),∴BE=DG,∠ADG=∠ABE,∵∠C+∠CBA+∠ABE+∠BHD+∠CDH=360°,∴90°+90°+∠ADG+∠CDH+∠BHD=360°,∴∠BHD=90°,∴DG⊥BE;(2)如图3,连接BD,∵正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,∴BD=√2AD=8,GE=√2AE=6,∵BD2=DE2+BE2,∴64=(6+BE)2+BE2,∴BE=√23﹣3.〖例3〗证明:(1)∵将线段AD绕点A逆时针旋转α,∴AD=AE,∠DAE=α,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴BD=CE;(2)AC=CD+CE,理由如下:∵AB=AC,∠BAC=60°∴△ABC是等边三角形,∴AC=BC,由(1)可知:BD=CE,∴BC=BD+CD=CE+CD,∴AC=CD+CE;(3)∠ACE=45°,BD2+CD2=2AD2,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△BAD≌△CAE∴∠ACE=∠ABC=45°,∴∠BCE=∠ACE+∠ACB=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2,∴BD2+CD2=2AD2.〖例4〗(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP=45°,又∵PD=PD,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,AP=CP,∵PC=PE,∴AP=PE,∴∠PAD=∠PED,∴∠PCD=∠PED;(2)证明:∵四边形ABCD是正方形,∴∠ADC=∠EDF=90°,由(1)知,∠PCD=∠PED,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠CFP﹣∠PCD=180°﹣∠EFD﹣∠PED,即∠CPF=∠EDF=90°,∵PC=PE,∴△CPE是等腰直角三角形,∴EC=√2CP,由(1)知,AP=CP,∴EC=√2AP;(3)解:AP=CE;理由如下:∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC,∠ABP=∠CBP =60°,∠BAD=∠BCD,∠EDC=∠DAB=60°,又∵PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PC=PE,∴PA=PE,∴∠DAP=∠AEP,∴∠DCP=∠AEP,∵∠CFP=∠EFD,∴180°﹣∠CFP﹣∠PCF=180°﹣∠EFD﹣∠AEP,即∠CPF=∠EDF=60°,∴△EPC是等边三角形,∴PC=EC,∴EC=AP,〖尝试练习〗4.解:(1)AE=CG,理由如下:∵四边形ABCD和四边形DEFG都是菱形,∴DA=DC,DE=DG,又∵∠ADE=∠CDG,∴△DAE≌△DCG(SAS),∴AE=CG;(2)成立,理由如下:∵∠ADC=∠EDG,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,即∠ADE=∠CDG,又∵DA=DC,DE=DG,∴△DAE≌△DCG(SAS),∴AE=CG;(3)AE ⊥CG ,理由如下:延长线段AE 、GC 交于点H ,∵AD ∥BC ,∴∠CEH =∠DAE , 由(2)可知,△DAE ≌△DCG ,∴∠DAE =∠DCG ,∴∠CEH =∠DCG ,∵四边形ABCD 是菱形,∠ADC =90°, ∴四边形ABCD 是正方形,∴∠BCD =90°,∴∠ECH +∠DCG =90°,∴∠ECH +∠CEH =90°,∴∠CHE =90°,∴AE ⊥CG . 5.(1)证明:由折叠的性质得:△ABC ≌△△ AEC ,∴∠ACB =∠ACE ,BC =EC ,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴EC =AD ,∠ACB =∠CAD ,∴∠ACE =∠CAD ,∴OA =OC ,∴OD =OE ,∴∠ODE =∠OED ,∵∠AOC =∠DOE ,∴∠CAD =∠ACE =∠OED =∠ODE ,∴AC ∥DE ;(2)解:∵平行四边形ABCD 中,∠B =90°,∴四边形ABCD 是矩形,∴∠CDO =90°,CD =AB =√3,AD =BC =√6,由(1)得:OA =OC ,设OA =OC =x ,则OD =√6﹣x ,在Rt △OCD 中,由勾股定理得:(√3)2+(√6﹣x )2=x 2,解得:x =3√64,∴OA =3√64,∴△OAC 的面积=12OA ×CD =12×3√64×√3=9√28;(3)解:分两种情况:①如图3,当∠EAD =90°时,延长EA 交BC 于G ,∵AD =BC ,BC =EC ,∴AD =EC , ∵AD ∥BC ,∠EAD =90°,∴∠EGC =90°, ∵∠B =30°,AB =2√3,∴∠AEC =30°, ∴GC =12EC =12BC ,∴G 是BC 的中点, 在Rt △ABG中,BG =√32AB =3,∴BC =2BG =6;②如图4,当∠AED =90°时∵AD =BC ,BC =EC ,∴AD =EC ,由折叠的性质得:AE =AB ,∴AE =CD ,又∵AC=AC ,∴△ACE ≌△CAD (SSS ), ∴∠ECA =∠DAC ,∴OA =OC ,∴OE =OD , ∴∠OED =∠ODE ,∴∠AED =∠CDE , ∵∠AED =90°,∴∠CDE =90°,∴AE ∥CD , 又∵AB ∥CD ,∴B ,A ,E 在同一直线上, ∴∠BAC =∠EAC =90°, ∵Rt △ABC 中,∠B =30°,AB =2√3, ∴AC =√33AB =2,BC =2AC =4;综上所述,当△AED 是直角三角形时,BC 的长为4或6.6.证明:(1)∵AF 平分∠BAD ,∴∠BAF =∠DAF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴CE =CF , 又∵四边形ECFG 是平行四边形, ∴四边形ECFG 为菱形;(2)△BDG 是等边三角形,理由如下:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,AD ∥BC ,∵∠ABC =120°,∴∠BCD =60°,∠BCF =120°,由(1)知,四边形CEGF 是菱形,∴CE =GE ,∠BCG =12∠BCF =60°, ∴CG =GE =CE ,∠DCG =120°,∵EG ∥DF , ∴∠BEG =120°=∠DCG ,∵AE 是∠BAD 的平分线,∴∠DAE =∠BAE ,∵AD ∥BC , ∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴BE =CD ,∴△BEG ≌△DCG (SAS ),∴BG =DG ,∠BGE =∠DGC ,∴∠BGD =∠CGE ,∵CG =GE =CE ,∴△CEG 是等边三角形, ∴∠CGE =60°,∴∠BGD =60°,∵BG =DG , ∴△BDG 是等边三角形;(3)如图2中,连接BM ,MC ,∵∠ABC =90°,四边形ABCD 是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD=√AB2+AD2=26,∴DM=√22BD=13√2.【自主反馈】7.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠B=∠ACB=60°,又∵BD=AE,∴△ABD≌△CAE(SAS),∴∠BAD=∠ACE,∵∠BAD+∠DAC=60°,∴∠DFC=∠ACE+∠DAC=60°;(2)①根据题意补全图形如图2所示:②线段BE与CQ的数量关系为:CQ=12BE;理由如下:∵CE绕着点C逆时针旋转120°,得到CP,∴CE=CP,∠ECP=120°,∵∠DFC=60°,∴AD∥CP,∴∠ADC=∠DCP,∵△ABD≌△CAE,∴CE=AD,∴AD=CP,∴△ADQ≌△PCQ(AAS),∴CQ=DQ=12CD,∵AB=BC,BD=AE,∴BE=CD,∴CQ=12BE.8.解:(1)∵△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS);(2)①∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,由旋转知,AC=AD,∠CAD=90°,∴AB=AD,∠BAD=∠BAC+∠CAD=150°,∴∠D=12(180°﹣∠BAD)=15°,∵AE是∠BAC的平分线,∴∠CAE=12∠BAC=30°,∴∠DAE=∠CAD+∠CAE=120°,∴∠AED=180°﹣∠D﹣∠DAE=45°;②BD=2CE+√2AE;证明:如图,∵△ABC是等边三角形,∴AB=AC,∵AE是∠BAC的角平分线,∴∠BAE=∠CAE,∵AE=AE,∴△BAE≌△CAE(SAS),∴BE=CE,过点A作AF⊥AE交DE于F,∴∠EAF=90°,由旋转知,∠CAD=90°,∴∠CAE=∠DAF,由①知,∠AED=45°,∴∠AFE=45°=∠AEF,∴AE=AF,∴EF=√2AE,∵AC=AD,∴△ACE≌△ADF(SAS),∴DF=CE,∴BD=BE+EF+DF=CE+√2AE+CE =2CE+√2AE.9.解:(1)∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=75°,∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)连接BF,∵点F是边AC中点,∴BF=AF=12AC,∵∠BAC=30°,∴BC=12AC,∴∠FBA=∠BAC=30°,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,CB =DE ,∠DEA =∠ABC =90°, ∴DE =BF ,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°, ∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形,∴DF =BE ; (3)∵点B 、C 的坐标分别是(0,0),(0,2), ∴BC =2,∵∠ABC =90°,∠BAC =30°, ∴AC =4,AB =2√3,若∠QMA =90°,CQ =MQ 时,如图3,设CQ =QM =x ,∠CAB =30°,∴AQ =2x ,AM =√3x , ∴AC =x +2x =3x =4,∴x =43,∴AM =43√3,∴BM =AB ﹣AM =2√3﹣4√33=2√33,∴点M (2√33,0);若∠AQM =90°,CQ =QM 时,如图4, 设CQ =QM =x ,∠CAB =30°, ∴AQ =√3x ,AM =2x , ∴AC =x +√3x =4,∴x =2√3﹣2,∴AM =4√3﹣4, ∴BM =2√3﹣(4√3﹣4)=4﹣2√3, ∴点M (4﹣2√3,0);综上所述:M (2√33,0)或(4﹣2√3,0).10.(1)解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴CD =12AB =5(2)①证明:由折叠的性质得:B 'D =BD ,B 'E =BE ,∠B 'DE =∠BDE ,∵DB '∥BC ,∴∠B 'DE =∠BED ,∴∠BDE =∠BED ,∴BD =BE ,∴B 'D =BE ,∴四边形BDB 'E 是平行四边形,又∵B 'D =BD ,∴四边形BDB 'E 为菱形;②解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,∴CD =12AB =BD , 由折叠的性质得:B 'D =BD ,∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∵∠ACB =90°,∴AC ⊥BC ,∵DB '∥BC ,∴DB '⊥AC ,∴∠ACB '=90°﹣∠DB 'C ,由①得:四边形BDB 'E 为菱形, ∴AB ∥B 'E ,∵CD ⊥AB ,∴CD ⊥B 'E , ∴∠EB 'C =90°﹣∠DCB ',∴∠ACB '=∠EB 'C , ∴FB '=FC ,即△B 'FC 为等腰三角形;(3)解:连接B 'C ,如图③所示:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴BC =√22AB =5√2,∠B =45°,CD =12AB =BD ,∠ACD =12∠ACB =45°,由折叠的性质得:B 'D =BD ,∠B '=∠B =45°, ∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∴∠FCB '=∠FB 'C ,∴CF =B 'F ,∴△CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =5√2; 11.解:(1)BH ⊥HE ,BH =HE ;理由如下: 延长EH 交AB 于M ,如图1所示: ∵四边形ABCD 和四边形CEFG 是正方形,∴AB ∥CD ∥EF ,AB =BC ,CE =FE ,∠ABC =90°,∴∠AMH =∠FEH ,∵H 是AF 的中点,∴AH =FH ,∴△AMH ≌△FEH (AAS ), ∴AM =FE =CE ,MH =EH ,∴BM =BE ,∵∠ABC=90°,∴BH⊥HE,BH=12ME=HE;(2)结论仍然成立.BH⊥HE,BH=HE.理由如下:延长EH交BA的延长线于点M,如图2所示:∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ABE=∠BEF=90°,AB=BC,AB∥CD∥EF,CE=FE,∴∠HAM=∠HFE,∴△AHM≌△FHE(ASA),∴HM=HE,AM=EF=CE,∴BM=BE,∵∠ABE=90°,∴BH⊥EH,BH=12EM=EH;(3)延长EH到M,使得MH=EH,连接AH、BH,如图3所示:同(2)得:△AMH≌△FEH(SAS),∴AM=FE=CE,∠MAH=∠EFH,∴AM∥BF,∴∠BAM+∠ABE=180°,∴∠BAM+∠CBE=90°,∵∠BCE+∠CBE=90°∴∠BAM=∠BCE,∴△ABM≌△CBE(SAS),∴BM=BE,∠ABM=∠CBE,∴∠MBE=∠ABC=90°,∵MH=EH,∴BH⊥EH,BH=12EM=MH =EH,在Rt△CBE中,BE=√CB2−CE2=12,∵BH=EH,BH⊥EH,∴BH=√22BE=6√2.12.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=94.∴GC=94;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.13.解:(1)∵AE=CE,DE=EF,∠AED=∠CEF,∴△AED≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC,(2)证明:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°,即∠ABE+∠CBE=90°∵△BEH是等腰直角三角形,∴EH=2BE=2BH,∠BEH=∠BHE=45°,∠EBH=90°,即∠CBH+∠CBE=90°∴∠ABE=∠CBH,∴△ABE≌△CBH(SAS),∴AE=CH,∠AEB=∠CHB,∴∠CHE=∠CHB﹣∠BHE=∠CHB﹣45°=∠AEB﹣45°,∵四边形AEFG是正方形,∴AE=EF,∠AEF=90°,∴EF=HC,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=225°﹣∠AEB,∴∠CHE+∠FEH=∠AEB﹣45°+225°﹣∠AEB=180°,∴EF∥HC且EF=HC,∴四边形EFCH是平行四边形,∴CF=EH=√2BE;(3)CF=√3BE,如图,过点B作BH,使∠EBH=120°,且BH=BE,连接EH、CH,则∠BHE=∠BEH=30°,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH,∵AB=BC,BE=BH,∴△AEB≌△CHB(SAS),∴CH=AE=EF,∠CHB=∠AEB,∵∠CHE=∠CHB﹣∠BHE=∠AEB﹣30°,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=210°﹣∠AEB,∴∠CHE+∠FEH=180°,∴CH∥EF且CH=EF,∴四边形EFCH是平行四边形,∴CF=EH,过B作BN⊥EH于N,在△EBH中,∠EBH=120°,BH=BE,∴∠BEN=30°,EH=2EN,BE,∴EN=√32∴EH=√3BE,∴CF=EH=√3BE.。
2019年中考数学专题复习类比探究(习题及答案)
1类比探究(习题)例题示范例 1:如图 1,在□ABCD 中,点 E 是 BC 边的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G .(1)尝试探究:如图 1,若 AF = 3 ,则 CD的值是 .EF CG解答过程.(3)拓展迁移:如图 3,在梯形 ABCD 中,DC ∥AB ,点 E是 BC 延长线上一点,AE 和 BD 相交于点 F .若 AB= a ,CDBC = b (a >0,b >0),则 AF的值是 (用含 a ,b 的代 BE EF 数式表示).2ADGF C AD GFC【思路分析】① 根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG 于点 H ,可得“A ”字型相似△BEH ∽△BC G ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故BEF CD = 3. 图1CG 2② 类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m . B ③ 照搬思路解决第三问.CG 2 图2虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,3E PB Q 巩固练习1.如图 1,一副直角三角板满足 AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°.【操作】将三角板 DEF 的直角顶点 E 放置于三角板 ABC 的斜边 AC 上,再将三角板 DEF 绕点 E 旋转,并使边 DE 与边 AB 交于点 P ,边 EF 与边 BC 交于点 Q . 【探究】在旋转过程中(3)根据你对(1),(2)的探究结果,试写出当 CEm 时,EAEP 与 EQ 满足的数量关系式为 .A (D )FBC (E )图1 AEP BQC DF图2 ADF C图34DF(3)如图 3,在 Rt △ABC 中,∠ACB =90°,AC =8,AB = 40,3E 为 AB 上一点且 AE =5,CE 交其内角角平分线 AD 于F .试 求 DF 的值. FACE B图352.如图1,将两个完全相同的三角形纸片ABC 和D EC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空: ①线段 DE 与 AC 的位置关系是 ; ②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是 .B (E )EA (D ) C图 1 图 2B(2)猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3)拓展探究如图 4 ,已知∠ABC =60°,点 D 是其角平分线上一点,BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F ,使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长. 图4A BME思考小结总结类比探究问题中的常见结构①旋转结构AD'D C始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构AEB M CC D F平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构A DFB始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构AFEB所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.7【参考答案】巩固练习1.(1)EP=EQ,证明略;(2)EP =1EQ ,证明略;2(3)EP =1EQ .m2.(1)都成立,证明略;(2)一定成立,证明略;(3)DF=5.FA 83. (1)①DE∥AC;②S1=S2.(2)证明略;(3)BF 的长为433或833.8。
数学试卷类比探究几何压轴题(2019)
如图- ,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.
的值为; 直线 与直线 的位置关系为;
类比延伸
如图 ,若将图 中的 绕点 顺时针旋转,连接 ,则在旋转的过程中,请判断 的值及直线 与直 线的位置关系,并说明理由;
拓展运用
若 ,在旋转过程中,当 三点在同一直线上时,请直接写出此时线段 的长.
(2)【类比探究】如图2,在线段BC上存在点E,F,连接AF,DE交于点H,若∠ABC=∠AHD=∠ECD,求证:AB·CD=BF·CE;
(3)【解决问题】如图3,在等腰△ABC中,AB=AC=4,E为AB中点,D为AE中点,过点D作直线DM∥BC,在直线DM上取一点F,连接BF交CE于点H,使∠FHC=∠ABC,问:DF·BC是否为定值?若是,请求出,若不是,请说明理由.
(Ⅱ)【类比探究】
如图2,在等边 中,若点 是 延长线上的任意一点(不含端点 ),其它条件不变,则 是否还成立?若成立,请说明理由;若不成立,请写出 , , 三者间的数量关系,并给予证明.
(Ⅲ)【拓展延伸】
如图3,在等腰 中, ,点 是 上的任意一点(不含端点),连结 ,以 为边作等腰 ,使 ,试探究 与 的数量关系,并说明理由.
为利用已知条件,不妨把 绕点 顺时针旋转 得 ,连接 ,则 的长为_______;在 中,易证 ,且 的度数为________,综上可得 的度数为_______;
(2)类比迁移
如图,点 是等腰 内的一点, , , , .求 的度数;
(3)拓展应用
如图,在四边形 中, , , , ,请直接写出 的长.
8.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。
中考数学专题之类比探究实战演练(含答案)
三、解答题22. (10分)问题背景:如图1,在四边形ADBC 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,并且△CDE 是等腰直角三角形,所以CECD ,从而得出结论:AC +BCCD .图1图2 简单应用:(1)在图1中,若AC ,BC =CD =__________.(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长.拓展延伸:(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长(用含m ,n 的代数式表示).图4图5(4)如图5,∠ACB =90°,AC =BC ,点P 为AB 的中点,若点E 满足AE = 13AC ,CE =CA ,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是_____. DC BADCBBAE DCBA三、解答题22. (10分)如图1,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D ,E 分别在AC ,BC 边上,DC =EC ,连接DE ,AE ,BD ,点M ,N ,P 分别是AE ,BD ,AB 的中点,连接PM ,PN ,MN . (1)BE 与MN 的数量关系是___________;(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6,CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B ,E ,D 三点在一条直线上时,请直接写出MN 的长.中考数学类比探究实战演练(三)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若AB =13,CE =5,请画出图形,并直接写出MF 的长.图1PNM EDCBA图2PNME D CBA备用图E DCBA中考数学类比探究实战演练(四)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,连接EF.(1)探究发现:如图1,若n=1,点E在线段AC上,则tan∠EFD=____.(2)数学思考:①如图2,若点E在线段AC上,则tan∠EFD=_______(用含n的代数式表示).②当点E在直线AC上运动时,①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.从“点E是线段AC延长线上的任意一点”或“点E是线段AC反向延长线上的任意一点”中,任选一种情况,在图3中画出图形,给予相应的证明或理由.(3)拓展应用:若ACBC=DF=CE的长.图1ABCDE FGM图2MGF EDCBA图1E DCBA图2E DA图3DCBAABCD备用图【参考答案】中考数学类比探究实战演练(一)22.(1)3;(2)CD的长为2;(3)CD的长为)2n m-;(4AC=AC=.中考数学类比探究实战演练(二)22.(1)BE MN;(2)成立,理由略;(3)MN11.中考数学类比探究实战演练(三)23.(1)DM=EM,DM⊥EM;(2)(1)中的结论仍成立,证明略;(3)MF,图形略.中考数学类比探究实战演练(四)22.(1)1;(2)①1n;②成立,证明略;(3)CE或中考数学类比探究实战演练(五)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在菱形ABCD中,∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图1,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA 三条线段之间的数量关系;(2)如图2,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=CF=1时,请直接写出BE的长.图1F ENM (O )D C B A图2FENMO DC BA备用图DCBA【参考答案】22.(1)CA=CE+CF;(2)CF-CE=43AC,理由略;(3)BE的长为3,5或1.中考数学类比探究实战演练(六)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M,点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM 交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时.①求证:△BCM≌△ACN;②求∠BDE的度数.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是__________(用含α的代数式表示);(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长.B C DAEM N GBA GC备用图1备用图2AB CG中考数学类比探究实战演练(七)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知在Rt △ABC 中,∠BAC =90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连接AB′,BB′,延长CD 交BB′于点E ,设∠ABC =2α(0°<α<45°). (1)如图1,若AB =AC ,求证:CD =2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连接EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12SS (用含α的式子表示).中考数学类比探究实战演练(八)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题图1ABCDEB′图22αABCD E B′B′E D CB A2α图3OF22. (10分)在Rt △ABC 中,∠ACB =90°,AB,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C (点A ,B 的对应点分别为A′,B′),射线CA′,CB′分别交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数.(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长.(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形P A′B′Q 的面积是否存在最小值.若存在,求出四边形P A′B′Q 的最小面积;若不存在,请说明理由.图1QmB′A′ (P )BC AM图2A′AC B P B′mQ备用图AC Bm中考数学类比探究实战演练(九)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)问题背景:如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D为BC 的中点,∠BAD =21∠BAC =60°,于是2BC BDAB AB==迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD . ①求证:△ADB ≌△AEC ;②请直接写出线段AD ,BD ,CD 之间的等量关系式.拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①求证:△CEF 是等边三角形; ②若AE =5,CE =2,求BF 的长.图1图2图3D B AEDBA FEMDCBA中考数学类比探究实战演练(十)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF =∠CEF =45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG (如图1). 求证:△AEG ≌△AEF .(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N (如图2). 求证:EF 2=ME 2+NF 2.(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.中考数学类比探究实战演练(十一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日图1G FE D CB A N图2M FE D CB A 图3FED CBA三、解答题22. (10分)【操作发现】(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =30°,连接AF ,EF . ①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由. 【类比探究】(2)如图2,△ABC 为等腰直角三角形,∠ACB =90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于45°).旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =45°,连接AF ,EF .请直接写出探究结果:①∠EAF 的度数;②线段AE ,ED ,DB 之间的数量关系.图1图2中考数学类比探究实战演练(十二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD =120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段AB ,AD 于点E ,F (不包FDE CBAABCEF D括线段的端点). (1)初步尝试如图1,若AD =AB ,求证:①△BCE ≌△ACF ;②AE +AF =AC . (2)类比发现如图2,若AD =2AB ,过点C 作CH ⊥AD 于点H ,求证:AE =2FH . (3)深入探究如图3,若AD =3AB ,探究得:3AE AFAC的值为常数t ,则t =_______.图1 图2 图3F EDC B A HF EDBAF EDCB A三、解答题22. (10分)小华遇到这样一个问题:在菱形ABCD 中,∠ABC =60°,边长为4,在菱形ABCD 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC 绕点C 顺时针旋转60°,恰好旋转至△DEC ,连接PE ,BD ,则BD 的长即为所求.(1)请你写出在图1中,PA +PB +PC 的最小值为________. (2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC 中,∠ACB =30°,BC =6,AC =5,在△ABC 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.②如图3,在正方形ABCD 中,AB =5,P 为对角线BD 上任意一点,连接PA ,PC ,请直接写出PA +PB +PC 的最小值(保留作图痕迹).图1PADBECB CPA图2P图3DCBA三、解答题22.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)如图1,若点D与点C重合,AB=AC,探究线段BE与FD的数量关系.(2)如图2,若点D与点C不重合,AB=AC,探究线段BE与FD的数量关系,并加以证明.(3)如图3,若点D与点C不重合,AB=kAC,求BEFD的值(用含k的式子表示).图1图2图3CB(D)AFECB DAFECB DAFE三、解答题22. (10分)问题背景:已知∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与A ,B 重合),DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N ,记△ADM 的面积为S 1,△BND 的面积为S 2.(1)初步尝试:如图1,当△ABC 是等边三角形,AB =6,∠EDF =∠A ,且DE ∥BC ,AD =2时,则S 1·S 2=_____________.(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使AD =4,再将∠EDF 绕点D 旋转至如图2所示位置,求S 1·S 2的值.(3)拓展延伸:当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图3,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1·S 2的表达式(结果用a ,b 和α的三角函数表示);②如图4,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1·S 2的表达式,不必写出解答过程.图1 图2 图3图4中考数学类比探究实战演练(十六)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日F三、解答题22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.图1 图2 图3中考数学阅读理解问题实战演练(一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”. (1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形,请说明理由.mnAF CB EmnA F E CBB CEF A nm(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A′BC ,连接AA′交直线BC 于点D .若点B 是 △AA′C 的重心,求BCAC的值. (3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C ,A′C 所在直线交l 2于点D ,求CD 的值.中考数学阅读理解问题实战演练(二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题 22. (10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”. 理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中,∠ABC =80°,∠ADC =140°,对角线BD 平分∠ABC .求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG = 30°,连接EG ,若△EFG的面积为FH 的长.图1ABC图2DA′AB C图3l 2l 1A′D B′ABC【参考答案】中考数学类比探究实战演练(六)22.(1)①证明略;②∠BDE的度数为90°;(2)α或(180°-α);(3)CF中考数学类比探究实战演练(七)22.(1)证明略;(2)CD=2BE·tan2α;(3)12sin(45)S Sα=︒-.中考数学类比探究实战演练(八)22.(1)∠ACA′的度数为60°;(2)线段PQ的长为72;(3)四边形P A′B′Q的最小面积为3.中考数学类比探究实战演练(九)22.(1+BD=CD;(2)①证明略;②BF的长为图1ABC图2AB CD图3EF GH中考数学类比探究实战演练(十)22. (1)证明略;(2)证明略;(3)EF 2=2(BE 2+DF 2).中考数学类比探究实战演练(十一)22. (1)①∠EAF =120°;②DE 与EF 相等,理由略;(2)①∠EAF =90°;②DB 2+AE 2=ED 2.中考数学类比探究实战演练(十二)22. (1)证明略;(2)证明略;(3.中考数学类比探究实战演练(十三)22. (1)(2)①PA +PB +PC ;②PA +PB +PC (. 中考数学类比探究实战演练(十四)22. (1)12BE FD =; (2)12BE FD =,证明略;(3)2BE k FD =.中考数学类比探究实战演练(十五)22. (1)12;(2)S 1·S 2的值为12;(3)①22121()sin 4S S ab α⋅=;②22121()sin 4S S ab α⋅=.中考数学类比探究实战演练(十六)22. (1)EF =EB ,证明略; (2)不成立,1EF EB k=;(3)EF =EB ,证明略.中考数学阅读理解问题实战演练(一)22. (1)△ABC 是“等高底”三角形,理由略;(2)2AC BC =;(3)CD的值为3,2.中考数学阅读理解问题实战演练(二)22.(1)图略;(2)证明略;(3)FH的值为.21。
河南省2019年中考数学专题复习专题七类比探究题训练201812281141
专题七 类比探究题类型一 线段数量关系问题(2018·河南)(1)问题发现如图①,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①ACBD的值为________; ②∠AMB 的度数为________; (2)类比探究如图②,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断ACBD 的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.【分析】 (1)①证明△COA≌△DOB(SAS),得AC =BD ,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则AC BD =OCOD =3,由全等三角形的性质得∠AMB 的度数;(3)正确画出图形,当点C 与点M 重合时,有两种情况:如解图①和②,同理可得△AOC∽△BOD,则∠AMB =90°,ACBD =3,可得AC 的长.【自主解答】解:(1)问题发现①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠DOB. ∵OC=OD ,OA =OB , ∴△COA≌△DOB(SAS), ∴AC=BD , ∴ACBD=1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)类比探究ACBD=3,∠AMB=90°,理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴OD OC =tan 30°=33, 同理,得OB OA =tan 30°=33,∵∠AOB=∠COD=90°, ∴∠AOC=BOD , ∴△AOC∽△BOD, ∴AC BD =OCOD=3,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△AOC∽△BOD, ∴∠AMB=90°,ACBD =3,设BD =x ,则AC =3x , 在Rt△COD 中,∵∠OCD=30°,OD =1, ∴CD=2, ∴BC=x -2.在Rt△AOB 中,∠OAB=30°,OB =7. ∴AB=2OB =27,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即( 3 x)2+(x -2)2=(27)2, 解得x 1=3,x 2=-2(舍去), ∴AC=33;②点C 与点M 重合时,如解图②,同理得:∠AMB=90°,ACBD =3,设BD =x ,则AC =3x ,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即(3x)2+(x +2)2=(27)2解得x 1=-3,解得x 2=2(舍去). ∴AC=2 3.综上所述,AC 的长为33或2 3.图①图② 例1题解图1.(2016·河南) (1)发现如图①,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于________________时,线段AC 的长取得最大值,且最大值为__________(用含a ,b 的式子表示). (2)应用点A 为线段BC 外一动点,且BC =3,AB =1,如图②所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图③,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM=90°,请直接写出线段AM 长的最大值及此时点P 的坐标.2.(2015·河南)如图①,在Rt△ABC 中,∠B=90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,AE BD =2;②当α=180°时,AE BD =2;(2)拓展探究试判断:当0°≤α<360°时,AEBD 的大小有无变化?请仅就图②的情形给出证明.(3)解决问题当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.3.(2014·河南) (1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为______________. (2)拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由. (3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD=90°,请直接写出点A 到BP 的距离.4.(2018·南阳二模)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD 的位置关系和数量关系是______________,______________;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于________度时,线段CE和BD之间的位置关系仍成立(点C,E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=32时,请直接写出线段CF的长的最大值是____.5.已知,如图①,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图①,OFEC=_______;②将△AED 绕点A 逆时针旋转45°,如图②,OFEC =_______;(2)类比延伸将图①中△AED 绕点A 逆时针旋转到如图③所示的位置,请计算出OFEC 的值,并说明理由.(3)拓展探究将图①中△AED 绕点A 逆时针旋转,旋转角为α,0°≤α≤90°,AD =2,△AED 在旋转过程中,存在△ACD 为直角三角形,请直接写出线段CD 的长.类型二 图形面积关系问题(2017·河南)如图①,在Rt△ABC 中,∠A=90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是________,位置关系是________; (2)探究证明把△AD E 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图①图② 例2题图【分析】 (1)利用三角形的中位线定理得出PM =12CE ,PN =12BD ,进而判断出BD =CE ,即可得出结论,再利用三角形的中位线定理得出PM∥CE,继而得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD =CE ,同(1)的方法得出PM =12BD ,PN =12BD ,即可得出PM =PN ,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论. 【自主解答】解:(1)∵点P ,N 是BC ,CD 的中点, ∴PN∥BD,PN =12BD.∵点P ,M 是CD ,DE 的中点, ∴PM∥CE,PM =12CE.∵AB=AC ,AD =AE , ∴BD =CE , ∴PM=PN. ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA. ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,(2)由旋转知,∠BAD=∠CAE, ∵AB=AC ,AD =AE , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD =CE.同(1)的方法,利用三角形的中位线定理,得PN =12BD ,PM =12CE ,∴PM=PN ,∴△PMN 是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC.∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD +∠DBC=∠ACB+∠ABC. ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,∴△PMN 是等腰直角三角形,例2题解图(3)如解图,同(2)的方法得,△PMN 是等腰直角三角形, ∴当MN 最大时,△PMN 的面积最大, ∴DE∥BC 且DE 在顶点A 上面, ∴MN 最大=AM +AN , 连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE=90°,在Rt△ABC 中,AB =AC =10,AN =52, ∴MN 最大=22+52=72,∴S △PMN 最大=12PM 2=12×12MN 2=14×(72)2=492.1.(2013·河南)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E =30°. (1)操作发现如图②,固定△ABC,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是______________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是______________. (2)猜想论证当△DEC 绕点C 旋转到如图③所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究已知∠ABC=60°,点D 是角平分线上一点,BD =CD =4,DE∥AB 交BC 于点E(如图④).若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出相应的BF 的长.2.已知Rt△ABC 中,BC =AC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,将∠EDF 绕点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于E ,F.当∠EDF 绕点D 旋转到DE⊥AC 于E 时,如图①所示,试证明S △DEF +S △CEF =12S △ABC .(1)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,如图②所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明理由.(2)直接写出图③中,S△DEF,S△CEF与S△ABC之间的数量关系.3.(2018·郑州模拟)如图①所示,将两个正方形ABCD和正方形CGFE如图所示放置,连接DE,BG. (1)图中∠DCE+∠BCG=__________°;设△DCE的面积为S1,△BCG的面积为S2,则S1与S2的数量关系为______________;猜想论证:(2)如图②所示,将矩形ABCD绕点C按顺时针方向旋转后得到矩形FECG,连接DE,BG,设△DCE的面积为S1,△BCG的面积为S2,猜想S1和S2的数量关系,并加以证明;(3)如图③所示,在△ABC中,AB=AC=10 cm,∠B=30°,把△ABC沿AC翻折得到△AEC,过点A作AD 平行CE交BC于点D,在线段CE上存在点P,使△ABP的面积等于△ACD的面积,请写出CP的长.4.(2018·驻马店一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想图①中,PM与PN的数量关系是______________,位置关系是______________;(2)探究证明将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G,H,判断△PMN的形状,并说明理由;(3)拓展延伸把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.参考答案类型一 针对训练1.解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b. (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC =AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. 在△CAD 和△EAB 中,⎩⎪⎨⎪⎧AD =AB ∠CAD=∠EAB AC =AE ,∴△CAD≌△EAB,∴CD=BE.②∵线段BE 长的最大值等于线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴线段BE 长的最大值为BD +BC =AB +BC =4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN ,如解图①, 则△APN 是等腰直角三角形, ∴PN=PA =2,BN =AM.∵点A 的坐标为(2,0),点B 的坐标为(5,0), ∴OA=2,OB =5,∴AB=3,∴线段AM长的最大值等于线段BN长的最大值,∴当点N在线段BA的延长线时,线段BN取得最大值,最大值为AB+AN.∵AN=2AP=22,∴线段AM的长最大值为22+3.如解图②,过点P作PE⊥x轴于点E.∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).图①图②第1题解图2.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∴AC=AB2+BC2=(8÷2)2+82=4 5.∵点D、E分别是边BC、AC的中点,∴AE=45÷2=25,BD=8÷2=4,∴AEBD=254=52.②如解图①,当α=180°时,得可得AB∥DE,∵ACAE=BCBD,∴AEBD=ACBC=458=52.(2)当0°≤α≤360°时,AEBD的大小没有变化.∵∠ECD=∠ACB, ∴∠ECA=∠DCB. 又∵EC DC =AC BC =52,∴△ECA∽△DCB, ∴AE BD =EC DC =52.图①图②图③ 第2题解图(3)①如解图②,∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵AD=BC ,AB =DC ,∠B=90°, ∴四边形ABCD 是矩形, ∴BD=AC =4 5.③如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P , ∵AC=45,CD =4,CD⊥AD,∴A D =AC 2-CD 2=(45)2-42=80-16=8, ∵点D 、E 分别是边BC 、AC 的中点, ∴DE=12AB =12×(8÷2)=12×4=2,∴AE=AD -DE =8-2=6, 由(2),可得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255. 3.解:(1)∵△ACB 和△DCE 均为等边三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=60°, ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC. ∵△DCE 为等边三角形,∴∠CDE=∠CED=60°. ∵点A ,D ,E 在同一直线上,∴∠ADC=120°, ∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°. ②∵△ACD≌△BCE,∴AD=BE. (2)∠AEB=90°,AE =BE +2CM. 理由如下:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS), ∴AD=BE ,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CD E =∠CED=45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC=135°,∴∠BEC=135°, ∴∠AEB=∠BEC-∠CED=90°. ∵CD=CE ,CM⊥DE,∴DM=ME. ∵∠DCE=90°,∴DM=ME =CM , ∴AE=AD +DE =BE +2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如解图①所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E.∵四边形ABCD是正方形,∴∠ADB=45°,AB=AD=DC=BC=2,∠BAD=90°,∴BD=2.∵DP=1,∴BP= 3.∵∠BPD=∠BAD=90°,∴点A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B,E,P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴3=2AH+1,∴AH=3-1 2;②当点P在如解图②所示位置时,连接PD、PB、PA、作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD,∴3=2AH-1,∴AH=3+1 2.综上所述,点A到BP的距离为3-12或3+12.图①图② 第3题解图4.解:(1)①∵AB=AC ,∠BAC=90°, 线段AD 绕点A 逆时针旋转90°得到AE , ∴AD=AE ,∠BAD=∠CAE, ∴△BAD≌△CAE, ∴CE=BD ,∠ACE =∠B, ∴∠BCE=∠BCA+∠ACE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (2)(1)中的结论仍然成立.证明如下: 如解图①,∵线段AD 绕点A 逆时针旋转90°得到AE , ∴AE=AD ,∠DAE=90°. ∵AB=AC ,∠BAC=90°, ∴∠CAE=∠BAD, ∴△ACE≌△ABD, ∴CE=BD ,∠ACE=∠B, ∴∠BCE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (3)45°;34.过A 作AM⊥BC 于M ,过点E 作EN⊥MA 交MA 的延长线于N ,如解图②. ∵线段AD 绕点A 逆时针旋转90°得到AE , ∴∠DAE=90°,AD =AE ,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA, ∴NE=AM.∵CE⊥BD,即CE⊥MC,∴∠MCE=90°, ∴四边形MCEN 为矩形, ∴NE=MC ,∴AM=MC , ∴∠ACB=45°. ∵四边形MCEN 为矩形,∴Rt△AMD∽Rt△DCF, ∴MD CF =AMDC,设DC =x , ∵在Rt△AMC 中,∠ACB=45°,AC =32, ∴AM=CM =3,MD =3-x ,∴3-x CF =3x ,∴CF=-13x 2+x =-13(x -32)2+34,∴当x =32时,CF 有最大值,最大值为34.故答案为45°,34;图①图② 第4题解图5.解:(1)①∵△A BC ,△AED 是两个全等的等腰直角三角形, ∴AD=BC.∵O 为BC 的中点,F 为AD 的中点, ∴AF=OC.∵∠BAC=∠AED=90°,AB =AC ,AE =DE , ∴∠DAE=∠CBA=45°, ∴AD∥BC,∴四边形AFOC 是平行四边形, ∴OF=AC =22EC ,∴OF EC =22; 故答案:22; ②∵AO=22AC ,∠BAO=∠CAO=45°,∠DAE=45°, ∴∠DAE=∠CAO.∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; 故答案:22. (2)OF =22EC. 理由:在等腰直角△ADE 中,F 为AD 的中点, ∴AF=12AD =22AE.在等腰直角△ABC 中,O 为BC 的中点, 如解图①,连接AO , ∴AO=22AC ,∠BAO=∠CAO=45°. ∴∠DAE=45°,∴∠DAE=∠CAO,即∠DAO=∠CAE. ∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; (3)∵△ABC 和△AED 是两个全等的等腰直角三角形, ∴AD=BC =2, ∴ED=AE =AB =AC =1,当△ACD 为直角三角形时,分两种情况:图①图②图③ 第5题解图①当AD 与AB 重合时,如解图②,连接CD. 当△ACD 为直角三角形时,AD⊥AC, 即将△ADE 绕点A 逆时针旋转45°. ∵AD=2,AC =1,∴由勾股定理可得CD =(2)2+12=3; ②当AE 与AC 重合时,如解图③, 当△ACD 为直角三角形时,AC⊥CD,即将△ADE 绕点A 逆时针旋转90°,此时CD =AC =1. 综上所述,CD 的长为3或1. 类型二 针对训练1.解:(1)①△DEC 绕点C 旋转到点D 恰好落在AB 边上, ∴AC=CD.∵∠BAC=90°-∠B=90°-30°=60°. ∴△ACD 是等边三角形, ∴∠ACD=60°,又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC;②∵∠B=30°,∠C=90°, ∴CD=AC =12AB ,∴BD=AD =AC ,根据等边三角形的性质,△ACD 的边AC ,AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2; (2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC =CD ,∠DCE=∠ACB=90°, ∵∠ACN+∠ACE=180°, ∴∠ACN=∠DCM.在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN=∠DCM,∠N=∠CMD=90°,AC =CD∴△ACN≌△DCM(AAS), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;第1题解图(3)如解图,过点D 作DF 1∥BE 交BA 于点F 1,易求得四边形BEDF 1是菱形,∴BE=DF 1,且BE ,DF 1边上的高相等,此时S△DCF 1=S △BDE ; 过点D 作DF 2⊥BD.∵∠ABC=60°,F 1D∥BE 交BA 于点F 2, ∴∠F 2F 1D =∠ABC=60°.∵BF 1=DF 1,∠F 1BD =12∠ABC=30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC=60° ∴△DF 1F 2是等边三角形, ∴DF 1=DF 2.∵BD=CD ,∠ABC=60°,点D 是角平分线上一点, ∴DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 2=360°-150°-60°=150°, ∴∠CDF 1=∠CDF 2. 在△CDF 1和△CDF 2中, ⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD, ∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点. ∵∠ABC=60°,点D 是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°.又∵BD=4,∴BE=12×4÷cos 30°=2÷32=433,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833.故BF 的长为433或833.2.解:当∠EDF 绕D 点旋转到DE⊥AC 时,四边形CEDF 是正方形;设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为12a ,∴S △ABC =12a 2,S 正方形CEDF =(12a)2=14a 2,即S △DEF +S △CEF =12S △ABC ;(1)上述结论成立;理由如下: 连接CD ,如解图①所示.∵AC=BC ,∠ACB=90°,D 为AB 中点,∴∠B=45°,∠DCE=12∠ACB=45°,CD⊥AB,CD =12AB =BD ,∴∠DCE=∠B,∠CDB=90° ∵∠EDF=90°, ∴∠1=∠2, 在△CDE 和△BDF 中, ⎩⎪⎨⎪⎧∠1=∠2CD =BD∠DCE=∠B, ∴△CDE≌△BDF(ASA),∴S △DEF +S △CEF =S △ADE +S △BDF =12S △ABC ;图①图② 第2题解图(2)S △DEF -S △CEF =12S △ABC ;理由如下:连接CD ,如解图②所示,同(1)得:△DEC≌△DFB,∠DCE=∠DBF =135°, ∴S △DEF =S 五边形DBFEC , S △CFE +S △DBC , =S △CFE +12S △ABC ,∴S △DEF -S △CFE =12S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是S △DEF -S △CEF =12S △ABC .3.解:(1)如解图①中,∵四边形ABCD 、EFGC 都是正方形, ∴∠BCD=∠ECG=90°.∵∠BCG+∠BCD+∠DCE+∠ECG=360°, ∴∠BCG+∠ECD=180°.图①图②图③ 第3题解图如解图①,过点E 作EM⊥DC 于点M ,过点G 作GN⊥BN 交BN 的延长线于点N , ∴∠EMC=∠N=90°.∵四边形ABCD 和四边形ECGF 均为正方形, ∴∠BCD=∠DCN=∠ECG=90°,CB =CD ,CE =CG , ∴∠1=90°-∠2,∠3=90°-∠2, ∴∠1=∠3. 在△CME 和△CNG 中, ⎩⎪⎨⎪⎧∠EMC=∠GNC ∠1=∠3EC =CG, ∴△CME≌△CNG(ASA), ∴EM=GN.又∵S 1=12CD·EM,S 2=12CB·GN,∴S 1=S 2;故答案为180°,S 1=S 2; (2)猜想:S 1=S 2,证明:如解图②,过点E 作EM⊥DC 于点M ,过点B 作BN⊥GC 交GC 的延长线于点N , ∴∠EMC=∠N=90°.∵矩形CGFE 由矩形ABCD 旋转得到的, ∴CE=CB ,CG =CD ,∵∠ECG=∠ECN=∠BCD=90°,∴∠1=90°-∠2,∠3=90°-∠2,∴∠1=∠3. 在△CME 和△CNB 中, ⎩⎪⎨⎪⎧∠EMC=∠BNC ∠1=∠3EC =CB, ∴△CME≌△CNB(AAS). ∴EM=BN.又∵S 1=12CD·EM,S 2=12CG ·BN ,∴S 1=S 2;(3)如解图③,作DM⊥AC 于M ,延长BA ,交EC 于N , ∵AB=AC =10 cm ,∠B=30°, ∴∠ACB=∠ABC=30°, ∴∠BAC=120°,根据翻折的性质,得∠ACE=∠ACB=30°, ∵AD∥CE,∴∠DAC=∠ACE=30°, ∴∠BAD=90°,DM =12AD ,∴BN⊥EC.∵AD=tan∠ABD·AB,AB =10 cm , ∴AD=tan 30°×10=103 3 (cm),∴DM=12×1033=533(cm).∵S △ABP =12AB·PN,S △ADC =12AC·DM,S △ABP =S △ADC ,AB =AC ,∴PN=DM =533.在Rt△ANC 中,∠ACN=30°,AC =10 (cm), ∴NC=cos∠ACN·AC=cos 30°×10=53(cm). ∵在EC 上到N 的距离等于533的点有两个,∴P′C=103 3 cm ,P ″C =203 3 cm.∴CP 的长为103 3 cm 或203 3 cm.4.解:(1)PM =PN ,PM⊥PN,理由如下: 如解图①,延长AE 交BD 于O , ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠ACB=∠ECD=90°. 在△ACE 和△BCD 中, ⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD=90°,CE =CD ,∴△ACE≌△BCD(SAS), ∴AE=BD ,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO, ∴∠CBD+∠BEO=90°, ∴∠BOE =90°,即AE⊥BD,∵点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点, ∴PM=12BD ,PN =12AE ,∴PM=PN.∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°, ∴∠MPN=90°, 即PM⊥PN.图①图② 第4题解图(2)△PMN 为等腰直角三角形,理由如下: 如解图②,设AE 交BC 于点O. ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠AC B =∠ECD=90°, ∴∠ACB+∠BCE=∠ECD+∠BCE, ∴∠ACE=∠BCD, ∴△ACE≌△BCD, ∴AE=BD ,∠CAE =∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°.∵点P ,M ,N 分别为AD ,AB ,DE 的中点, ∴PM=12BD ,PM∥BD,PN =12AE ,PN∥AE,∴PM=PN ,∴∠MGE+∠BHA=180°, ∴∠MGE=90°, ∴∠MPN=90°,∴PM⊥PN,即△PMN 为等腰直角三角形.(3)由(2)可知△PMN 是等腰直角三角形,PM =12BD ,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大, ∴当B ,C ,D 共线时,BD 的最大值为BC +CD =6, ∴PM=PN =3,∴△PMN 面积的最大值为12×3×3=92.。
河南省2019年中考数学专题复习专题七类比探究题训练(含答案)
专题七类比探究题类型一线段数量关系问题(20 (2018河南)(1)问题发现如图①,在4 OAB 和^OCD 中,OA = OB, OC=OD, Z AOB = Z COD = 40°,连接AC, BD 交于点M.填空:①黑的值为_________ ;BD②/ AMB的度数为;(2)类比探究如图②,在^ OAB 和^OCD 中,Z AOB = Z COD =90°, / OAB = / OCD = 30°,连接AC 交BD 的延长线于点M.请判断需的值及/ AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将^ OCD绕点O在平面内旋转,AC, BD所在直线交于点M,若OD = 1 , OB=<7,请直接写出当点C与点M重合时AC的长.图①图②备用图例1题图【分析】(1)①证明△ COA^A DOB(SAS),得AC = BD,比值为1;②由△COA^^DOB,得/CAO = /DBO,根据三角形的内角和定理,得/ AMB = 180° — (/DBO + / OAB + Z ABD)=180° —140 =40°;.................................................. AC OC(2)根据两边的比相等且夹角相等可得△AOC S^BOD,则BD=OD=M3,由全等二角形的性质得/ AMB的度数;⑶正确画出图形,当点C与点M重合时,有两种情况:如解图①和②,同理可得^ AOCs^ BOD,则/ AMB = 90°, AC=43,可得AC 的长.BD【自主解答】 解:(1)问题发现①1【解法提示】AOB = Z COD =40°, ・ ./ COA=Z DOB. OC= OD, OA = OB,・ .△ COA^A DOB(SA§, AC= BD , . AC =1"BD -②40°【解法提示】△ COA^A DOB , ・ ./ CAO = Z DBO. ・ ••/ AOB = 40 , ・ ./ OAB + Z ABO = 140 ,在△ AMB 中,ZAMB=180 -(ZCAO+Z OAB + Z ABD) = 180 - ( Z DBO + Z OAB + Z ABD) = 180° - 140=40 . (2)类比探究^-= >/3, Z AMB= 90 ,理由如下:在 RtA OCD 中,Z DCO =30 , Z DOC = 90 ,OD—=tan 30 OC同理,得器=tan30 =*,AOB = Z COD = 90 ,A AOC^A BOD,••.Z AMB = 180 -Z CAO-Z OAB —MBA= 180,—(/DAB + / MBA+Z OBD)= 180 - 90 = 90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△ AOC^A BOD,.-.Z AMB = 90 , —在 RtA COD 中,・ . / OCD= 30°, OD = 1 , CD= 2,. AC = QC = BD OD 7L CAO = Z DBO.BC=x—2.在Rt^AOB 中,/OAB=30°, OB = yj7.・. AB = 2OB= 2卡,在RtAAMB中,由勾股定理,得AC2+BC2=AB2,即(3 x)2+ (x- 2)2= (2 7)2,解得Xi=3, X2= —2(舍去),・•. AC=373;②点C与点M重合时,如解图②,同理得:/ AMB =90°, AC=W,设BD = x,则AC=43x,在RtAAMB中,由勾股定理,得AC2+BC2=AB2,即(淄x)2+(x+2)2= (277)2解得xi=- 3,解得x2=2(舍去).AC=2V3.综上所述,AC的长为3^3或273.1.(2016 河南)(1)发现如图①,点A为线段BC外一动点,且BC=a, AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a, b的式子表示).2 (2015河南)如图①,在RtAABC中,/ B=90°, BC=2AB=8,点D, E分别是边BC, AC的中点,连接口£.将4 EDC绕点C按顺时针方向旋转,记旋转角为 a (1)问题发现(2)应用点A 为线段BC 外一动点,且 等边三角形 ACE,连接CD, BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段 BE 长的最大值.(3)拓展如图③,在平面直角坐标系中,点 A 的坐标为(2,PA=2, PM = PB, / BPM =90°,请直接写出线段BC=3, AB=1,如图②所示,分别以 AB, AC 为边,作等边三角形 ABD 和0),点B 的坐标为(5, 0),点P 为线段AB 外一动点,且 AM 长的最大值及此时点 P 的坐标.(3)解决问题当4EDC旋转至A, D, E三点共线时,直接写出线段BD的长.图①3.(2014 河南)(1)问题发现如图①,△ ACB和4DCE均为等边三角形,点A, D, E在同一直线上,连接BE.填空:①/ AEB的度数为;②线段AD, BE之间的数量关系为 .(2)拓展探究如图②,△ ACB和4DCE均为等腰直角三角形,/ ACB = / DCE=90°,点A, D, E在同一直线上,CM 为4DCE中DE边上的高,连接BE,请判断/ AEB的度数及线段CM, AE, BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD = <2,若点P满足PD=1,且/ BPD=90°,请直接写出点A到BP的距4.(2018南阳二模)在△ ABC中,/ACB是锐角,点D在射线BC上运动,连接AD ,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB = AC, /BAC = 90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是 , ;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB+C, /BACW90;点D在线段BC上运动,试探究:当锐角/ ACB等于度时,线段CE和BD之间的位置关系仍成立(点C, E重合除外)?此时若作DFLAD交线段CE于点F,且当AC =3位时,请直接写出线段CF的长的最大值是.图①图②图③5.已知,如图①,△ ABC, AAED是两个全等的等腰直角三角形(其顶点B, E 重合),/BAC = /AED = 90°,。
中考数学专项训练:类比探究与拓展应用
专项训练1.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC △中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△111A B C 中,118A B =,11160A B C ∠=︒,11175B AC ∠=︒,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75︒,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.2.在图1,2,3中,已知ABCD ,120ABC ∠=︒,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且120EAG ∠=︒.(1)如图1,当点E 与点B 重合时,CEF ∠= ︒;(2)如图2,连接AF .①填空:FAD ∠ EAB ∠(填“>”,“ <”,“=” );②求证:点F 在ABC ∠的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BC AB的值.3.【问题探究】(1)如图1,ABC △和DEC △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系: ;②若10AC BC ==,2DC CE ==,则线段AD 的长为 ;【拓展延伸】(2)如图2,ABC ∆和DEC ∆均为直角三角形,90ACB DCE ∠=∠=︒,21AC =,7BC =,3CD =,1CE =.将DCE △绕点C 在平面内顺时针旋转,设旋转角BCD ∠为(0360)αα︒<︒,作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.4.如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且2AB BC=,取EF的中点M,连接MD,MG,MB.(1)试证明DM MG⊥,并求MBMG的值.(2)如图2,将图1中的正方形变为菱形,设2(090)EABαα∠=<<︒,其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.5.如图1,菱形ABCD 的顶点A ,D 在直线上,60BAD ∠=︒,以点A 为旋转中心将菱形ABCD 顺时针旋转(030)αα︒<<︒,得到菱形AB C D ''',B C ''交对角线AC 于点M ,C D ''交直线l 于点N ,连接MN .(1)当//MN B D ''时,求α的大小.(2)如图2,对角线B D ''交AC 于点H ,交直线l 与点G ,延长C B ''交AB 于点E ,连接EH .当HEB '△的周长为2时,求菱形ABCD 的周长.6.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD AB ∥交AP 的延长线于点D ,此时测得200CD =米,那么A ,B 间的距离是米.思维探索:(2)在ABC △和ADE △中,AC BC =,AE DE =,且AE AC <,90ACB AED ∠=∠=︒,将ADE △绕点A 顺时针方向旋转,把点E 在AC 边上时ADE △的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当ADE △在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;②如图3,当90α=︒时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当150α=︒时,若3BC =,1DE =,请直接写出2PC 的值.7.综合与实践动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一条直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME .如图5,图中的虚线为折痕.问题解决:(1)在图5中,BEC 的度数是,AE BE的值是 . (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .8.如图,在直角坐标系中,直线132y x=−+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC△相似?若存在,求出点Q的坐标;若不存在,请说明理由.题9.已知抛物线2342y ax x =++的对称轴是直线3x =,与x 轴相交于A ,B 两点(点B 在点A 右侧),与y 轴交于点C .(1)求抛物线的解析式和A ,B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当3MN =时,求点M 的坐标.10.如图,抛物线2542y mx mx =−−与x 轴交于1(A x ,0),2(B x ,0)两点,与y 轴交于点C ,且21112x x −=. (1)求抛物线的解析式;(2)若1(P x ,1)y ,2(Q x ,2)y 是抛物线上的两点,当12a x a +,292x 时,均有12y y ,求a 的取值范围;(3)抛物线上一点(1,5)D −,直线BD 与y 轴交于点E ,动点M 在线段BD 上,当BDC MCE ∠=∠时,求点M 的坐标.11.如图,抛物线2y ax bx c =++经过(3,0)A −,(1,0)B ,(0,3)C 三点.(1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若PAC △面积为3,求点P 的坐标;(3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与ABC △相似?若存在,求点M 的坐标;若不存在,请说明理由.12.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B −,且过点(2,2)C −.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S =△,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.13.综合与探究如图,抛物线26y ax bx =++经过点(2,0)A −,(4,0)B 两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点(2,3)D −−和点(3,2)E ,点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点(0,1)F ,连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且22MN =,动点Q 从点P 出发,沿P M N A →→→的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.15.如图1,在平面直角坐标系中,抛物线233373848y x x =+−与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM △与1DD A △相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?。
中考数学类比探究专题复习
G F E D C B A D A B M C N M C B A A B C E FM AB=AC D B C D'A 中考数学类比探究专题复习一:知识点睛1.类比探究一般会围绕一个不变结构进行考查.常见结构有:平行结构、直角结构、旋转结构、中点结构.2.类比是解决类比探究问题的主要方法.往往会类比字母、类比辅助线、类比结构、类比思路来解决类比探究问题.3.常见结构:①平行结构 ②直角结构 ③旋转结构④中点结构 平行夹中点 (类)倍长中线 中位线二:真题演练 (2015?潜江1.24.(10分))已知∠MAN=135°,正方形ABCD 绕点A 旋转. (1)当正方形ABCD 旋转到∠MAN 的外部(顶点A 除外)时,AM ,AN 分别与正方形ABCD 的边CB ,CD 的延长线交于点M ,N ,连接MN .①如图1,若BM=DN ,则线段MN 与BM+DN 之间的数量关系是 MN=BM+DN ;②如图2,若BM≠DN ,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD 旋转到∠MAN 的内部(顶点A 除外)时,AM ,AN 分别与直线BD 交于点M ,N ,探究:以线段BM ,MN ,DN 的长度为三边长的三角形是何种三角形,并说明理由.2.(2015?贵港26.(10分))已知:△ABC 是等腰三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰三角形PCQ ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P 在线段AB 上,且AC=1+,PA=,则:①线段PB= ,PC= 2 ;②猜想:PA 2,PB 2,PQ 2三者之间的数量关系为 ;(2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P 满足=,求的值.(提示:请利用备用图进行探求)3、(2015?齐齐哈尔26.(8分))如图1所示,在正方形ABCD 和正方形CGEF 中,点B 、C 、G 在同一条直线上,M 是线段AE 的中点,DM 的延长线交EF 于点N ,连接FM ,易证:DM=FM ,DM ⊥FM (无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.4、(2015?黑龙江龙东地区26.8分)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.5、(2015?牡丹江26.(8分))已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M 在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.6、(2015?哈尔滨26.(10分))AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan∠D=,求线段AH的长.7、(2015荆州,22.(9分))如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.8、(2015?宿迁25.(10分))已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA?EC=EB?ED;(2)如图2,若=,AD是⊙O的直径,求证:AD?AC=2BD?BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.9、(2015?锦州25.(12分))如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是DE+DF=AD;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.10、(2015?本溪25.(12分))如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD=∠ABD (填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是BD=CD+AD;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).11、(2015抚顺,25.)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)12、(2015阜新,17.)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.13、(2015?葫芦岛25.(12分))在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.14、(2015铁岭,25.)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.15、(2015?营口25.(14分))【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.。
2019青海中考数学考前专题复习-类比、拓展探究题
类比、拓展综合训练1.如图①,在矩形ABCD中,AB=16,BC=8,在AD边上取一点E,使AE=3,点F是AB边上的一个动点,以EF为一边作菱形EFMN,使点N 落在CD上,点M落在矩形ABCD内或其边上,连接BM.(1)当四边形EFMN是正方形时,求AF的长;(2)设△BFM的面积为S,AF=x.①写出S与x之间的函数关系式;②在图②、图③中分别画出S取得最大值和最小值时相应的图形,当S由最大值变到最小值时,求点M运动的路线长.第1题图解:(1)在正方形EFMN中,∠FEN=90°,EF=EN;∴∠DEN+∠AEF=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∴∠DEN=∠AFE,在△DEN与△AFE中,∠D=∠A,∠DEN=∠AFE,EN=FE,∴△DEN≌△AFE(AAS).∴AF=DE=8-3=5,∴AF的长为5;(2)①如解图①,过点M 作MH ⊥AB 于点H ,连接NF .第1题解图①在矩形ABCD 中, ∵AB ∥CD , ∴∠DNF =∠NFB . ∵四边形EFMN 是菱形, ∴NE ∥MF ,NE =MF , ∴∠ENF =∠MFN ,∴∠DNF -∠ENF =∠NFB -∠MFN , 即∠DNE =∠MFB , 在△DEN 与△HMF 中,∠D =∠MHF =90°,∠DNE =∠MFB ,EN =MF , ∴△DEN ≌△HMF (AAS ), ∴MH =DE =5, 又∵BF =16-x ,∴S =12BF ·MH =12(16-x )×5=-52x +40;②当点D 与N 重合时,S 最大(如解图②),第1题解图②第1题解图③此时DE =EF =5,由勾股定理得AF =4, 当点M 落在BC 上时,S 最小(如解图③),由①得MB =DE =5,∵点M 到AB 的距离是定值5,∴点M 运动的路径是一条线段21M M (如解图④),第1题解图④∴21M M =B F 1=16-4=12. ∴点M 运动的路线长为12.2.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE . 特殊发现:如图①,若点E ,F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图①中的△AEF 绕着点A 顺时针旋转.(1)如图②,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记BCAC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出k 的值,不必说明理由)第2题图解:(1)PC =PE 成立.证明:如解图①,过点P 作PM ⊥CE 于点M ,第2题解图①∵EF ⊥AE ,BC ⊥AC , ∴EF ∥MP ∥CB , ∴PB FP MC EM , ∵点P 是BF 的中点, ∴EM =MC , 又∵PM ⊥CE , ∴PC =PE ; (2)PC =PE 成立.证明:如解图②,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,由旋转性质可得∠DAF =∠EAF ,第2题解图②∵∠FDA =∠FEA =90°, 在△DAF 和△EAF 中,∠DAF =∠EAF ,∠FDA =∠FEA ,AF =AF , ∴△DAF ≌△EAF (AAS ), ∴AD =AE ,在△DAP 和△EAP 中,AD =AE ,∠DAP =∠EAP ,AP =AP , ∴△DAP ≌△EAP (SAS ), ∴PD =PE ,∵FD ⊥AC ,PM ⊥AC ,BC ⊥AC , ∴FD ∥PM ∥BC , ∴PB FP MC DM , ∵点P 是BF 的中点, ∴DM =MC , 又∵PM ⊥AC , ∴PC =PD , ∴PC =PE ; (3)33. 【解法提示】如解图③,第2题解图③∵△CPE 总是等边三角形,∴将△AEF 绕着点A 顺时针旋转180°,△CPE 仍是等边三角形,∵∠BCF =∠BEF =90°,点P 是BF 的中点,∴点C ,E 在以点P 为圆心,BF 为直径的圆上,∵△CPE 是等边三角形,∴∠CPE =60°,根据圆周角定理,可得∠CBE =12∠CPE =30°,即∠ABC =30°,在Rt △ABC 中,BCAC =k =tan 30°,∴k =33,即当k 为33时,△CPE 总是等边三角形.3.(1)阅读理解:如图①,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系. 解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)问题解决:如图③,AB ∥CF ,AE 与BC 交于点E ,BE ∶EC =2∶3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.第3题图解:(1)AB +CD =AD . 【解法提示】∵AB ∥CD , ∴∠BAE =∠CFE ,∵E 是CB 的中点,∴BE =CE ,∵∠AEB =∠FEC ,∴△ABE ≌△FCE (AAS ),∴CF =AB , ∵AE 平分∠BAD ,∴∠DAE =∠BAE , ∴∠DAE =∠DF A , ∴AD =DF ,∴AD =CD +CF ,即AD =AB +DC ; (2)AF =AB -CF .证明如下:如解图①,延长DF 交AE 延长线于点M ,第3题解图①∵AB ∥DC ,∴∠ABE =∠MCE ,∠BAE =∠CME , ∵E 是BC 的中点,∴BE =CE , ∴△ABE ≌△MCE (AAS ),∴CM =AB , ∴FM =CM -CF =AB -CF , ∵AE 平分∠BAF , ∴∠BAE =∠F AE ,∴∠F AE =∠M ,∴F A =FM , ∴AF =AB -CF ; (3)AB =23(CF +DF ).证明如下:如解图②,延长CF ,AE 相交于M ,第3题解图②∵AB ∥CF ,∴∠BAE =∠CME ,∠ABE =∠MCE , ∴△ABE ∽△MCE ,∴CE BE MC AB =23,∴CM =32AB ,∵∠EDF =∠BAE , ∴∠FDM =∠FMD ,∴FD =FM ,∴CF +DF =CM =32AB ,∴AB =23(CF +DF ).4.在四边形ABCD 中,∠B +∠D =180°,对角线AC 平分∠BAD . (1)如图①,若∠BAD =120°,且∠B =90°,试探究边AD 、AB 与对角线AC 的数量关系并说明理由;(2)如图②,若将(1)中的条件“∠B =90°”去掉,(1)中的结论是否成立?请说明理由;(3)如图③,若∠BAD =90°,探究边AD 、AB 与对角线AC 的数量关系并说明理由.第4题图解:(1)AC =AD +AB .理由如下: 由题意知∠B =90°, ∴∠D =90°,∵∠DAB =120°,AC 平分∠DAB , ∴∠DAC =∠BAC =60°, ∴∠ACB =∠ACD =30°, ∴AB =12AC ,AD =12AC ,∴AC =AD +AB ;(2)(1)中的结论成立,理由如下:如解图①,以C 为顶点,AC 为一边作∠ACE =60°,∠ACE 的另一边交AB 的延长线于点E ,第4题解图①∵∠BAC =12∠BAD =12×120°=60°,∴△AEC 为等边三角形, ∴AC =AE =CE ,∵∠D +∠ABC =180°,∠DAB =120°, ∴∠DCB =60°, ∴∠DCA +∠ACB =60°, 又∵∠BCE +∠ACB =60°,∴∠DCA=∠BCE,∴△DAC≌△BEC(ASA),∴AD=BE,∴AE=AB+BE=AB+AD,∴AC=AD+AB;(3)AD+AB=2AC.理由如下:如解图②,过点C作CE⊥AC交AB的延长线于点E,第4题解图②∵∠D+∠ABC=180°,∠DAB=90°,∴∠BCD=90°,∵∠ACE=90°,∴∠DCA=∠BCE.又∵AC平分∠DAB,∴∠CAB=45°,∠E=45°,∴AC=CE.又∵∠D+∠ABC=180°, ∠D=∠CBE,∴△CDA≌△CBE(AAS).∴AD=BE,∴AE=AB+BE=AB+AD.在Rt△ACE中,∠CAB=45°,∴AE=2AC,∴AD+AB=2AC.5.我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(<︒0α︒<180)得到'AB,把AC绕点A逆时针旋转β得到'AC,连接''CB.当α+β=180°时,我们称''CAB△是△ABC的“旋补三角形”.''CAB△边''CB上的中线AD 叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②、图③中,''CAB△是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________;猜想论证(2)在图①中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.第5题图解:(1)①12;② 4;【解法提示】①由旋转可得到AB=AB′=AC=AC′=BC,∵∠BAC=60°,∠B′AB+∠C′AC=︒180,∴∠B′AC′=120°,即∠AB′C′=30°,又∵AD 为B ′C ′上的中线,∴AD =12AB ′=12AB =12BC ; ②由“旋补三角形”定义可得:∠''AC B =90°,又由旋转得AB =AB ′,AC =AC ′,∴△''C AB ≌△ABC ,∴''C B =BC ,∴AD =12BC =4.第5题解图(2)猜想:AD =12BC . 证明:如解图①,延长AD 至E ,使DE =AD ,连接B ′E ,EC ′.∵AD 是△ABC 的“旋补中线”,∴D B '=D C ',∴四边形AB ′EC ′是平行四边形,∴'EC ∥A B ',EC ′=A B ',∴∠E AC '+∠''AC B =180°.由定义可知∠''AC B +∠BAC =180°,A B '=BA ,AC =AC ′,∴∠E AC '=∠BAC ,'EC =BA ,∴△E AC '≌△CAB ,∴AE =BC ,∵AD =12AE ,∴AD =12BC ; 6.问题背景如图①,在正方形ABCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形.类比探究如图②,在正△ABC 的内部,作∠BAD =∠CBE =∠ACF ,AD ,BE ,CF 两两相交于D ,E ,F 三点(D ,E ,F 三点不重合).(1)△ABD ,△BCE ,△CAF 是否全等?如果是,请选择其中一对进行证明;(2)△DEF 是否为正三角形?请说明理由;(3)进一步探究发现,△ABD 的三边存在一定的等量关系,设BD =a ,AD =b ,AB =c ,请探索a ,b ,c 满足的等量关系.第6题图解:(1)△ABD ≌△BCE ≌△CAF .证明:∵△ABC 是正三角形,∴∠CAB =∠ABC =∠BCA =60°,AB =BC ,∵∠ABD =∠ABC -∠2,∠BCE =∠ACB -∠3,又∵∠2=∠3,∴∠ABD =∠BCE ,∵∠1=∠2,∴△ABD ≌△BCE (ASA );(2)△DEF 是正三角形.理由:∵△ABD ≌△BCE ≌△CAF ,∴∠ADB =∠BEC =∠CF A ,∴∠FDE =∠DEF =∠EFD ,∴△DEF 是正三角形;(3)如解图,作AG ⊥BD 交BD 延长线于点G ,第6题解图由△DEF 是正三角形得到∠ADG =60°,∴在Rt △ADG 中,DG =12b ,AG =32b , ∵在Rt △ABG 中,AB 2=BG 2+AG 2,且BG =BD +DG ,即c 2=(a +12b )2+(32b )2, ∴c 2=a 2+ab +b 2. 7.有公共顶点B 的正方形ABCD 与等腰直角三角形BEF 叠放在一起,∠EBF =90°,AB >BE ,探究线段AE 与CF 之间的数量关系及位置关系. 独立思考 (1)请解答老师提出的问题.如图①,当等腰直角三角形的边BE ,BF 分别在正方形ABCD 的边BA ,BC 上时,你发现线段AE 与CF 之间的数量关系是,位置关系是 .拓展探究(2)将图①中的△BEF绕点B顺时针旋转一个锐角得到图②,则(1)中的两个结论是否仍然成立?作出判断并说明理由.拓展延伸(3)在图①中,连接DF,分别取DF,EF的中点M,N,连接MN,MC,得到图③,则线段MC与MN有何数量关系及位置关系?并说明理由.问题提出(4)“创新”小组在“拓展探究”的启发下,提出了如下问题:将图③中的△BEF绕点B顺时针旋转一个锐角得到图④,这时“拓展延伸”中的两个结论是否仍然成立?作出判断并说明理由.第7题图解:(1)AE=CF,AE⊥CF;(2)(1)中的两个结论仍然成立,理由:如解图①,延长AE,交CF于点G,交BC于点H,在正方形ABCD中,AB=BC,∠ABC=90°,在等腰直角三角形BEF中,BE=BF,∠EBF=90°,∴∠ABC =∠EBF ,∴∠ABC −∠EBC =∠EBF −∠EBC ,即∠ABE =∠CBF ,∴△ABE ≌△CBF ,∴AE =CF ,∠BAE =∠BCF ,∵∠BAE +∠AHB =90°,∠AHB =∠CHG ,∴∠BCF +∠CHG =90°,∴AE ⊥CF ;(3)MC =MN ,MC ⊥MN .理由:如解图②,连接DE ,在正方形ABCD 中,∠A =∠ADC =∠BCD =90°,AB =BC =AD =DC , 在等腰直角三角形BEF 中,BE =BF ,∴AB −BE =BC −BF ,即AE =CF ,∴△ADE ≌△CDF ,∴DE =DF ,∠CDF =∠ADE ,∵点M ,N 分别是DF ,EF 的中点,∴MN =21DE ,MN ∥DE , ∴∠NMF =∠EDF ,在Rt △DCF 中,点M 是DF 的中点,∴CM =21DF =DM , ∴MC =MN ,∠MDC =∠MCD ,∵∠CMF 是△DMC 的一个外角,∴∠CMF =∠MDC +∠MCD =2∠MDC =2∠CDF =∠CDF +∠ADE ,∴∠CMN =∠NMF +∠CMF =∠EDF +∠CDF +∠ADE =∠ADC =90°,∴MC ⊥MN ;第7题解图①第7题解图②(4)“拓展延伸”中的两个结论仍然成立.理由:如解图③,连接AE ,DE ,连接FC 并延长到点G ,使CG =FC ,连接DG ,在正方形ABCD 中,∠BAD =∠ADC =∠BCD =∠ABC =90°,AB =BC =AD =DC ,在等腰直角三角形BEF 中,BE =BF ,∠EBF =90°,∴∠ABC −∠EBC =∠EBF −∠EBC ,即∠ABE =∠CBF ,∴△ABE ≌△CBF ,∴AE =CF ,∠BAE =∠BCF ,∵CG =FC ,∴AE =CG ,∵∠DAE =90°−∠BAE , 且∠DCG =180°−∠BCD −∠BCF =90°−∠BCF ,∴∠DAE =∠DCG ,∴△DAE ≌△DCG ,∴DE =DG ,∠ADE =∠CDG ,∴∠EDG =∠CDG +∠EDC =∠ADE +∠EDC =90°,∴DE ⊥DG ,在△FED 中,点M ,N 分别是DF ,EF 的中点,∴MN =21DE ,MN ∥DE ,同理,MC =21DG ,MC ∥DG ,∴MC =MN ,MC ⊥MN .8.提出问题如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =BC ,点E 、F 分别在AC 、BC 上,∠EDF =90°,则DE 与DF 的数量关系为;第7题解图③解决问题(2)如图②,AC =BC ,延长BC 到点F ,沿CA 方向平移线段CF 到EG ,且点G 在边BA 的延长线上,求证:DE =DF ,DE ⊥DF ;延伸问题(3)如图③,∠B =30°,延长BC 到点F ,沿CA 方向平移线段CF 到EG ,且点G 在边BA 的延长线上,直接写出线段DE 与DF 的位置关系和数量关系.第8题图(1)解:DE =DF ;【解法提示】∵∠EDC +∠CDF =∠EDF =90°,∠CDF +∠FDB =90°,∠EDC =∠FDB ,∵AC =BC ,CD ⊥AB ,∠ACB =90°,∴∠ECD =∠B =45°,CD =BD .在△EDC 和△FDB 中,,⎪⎩⎪⎨⎧∠=∠=∠=∠FDB EDC BD CD B ECD ∴△EDC ≌△FDB ,∴DE =DF . (2)证明:∵∠ACB =90°,AC =BC ,CD ⊥AB .∴DA =DB =DC ,∠ABC =∠BAC =∠ACD =∠BCD =45°,∴∠DAE =∠DCF =135°,由平移可知CF =EG ,EG ∥CF ,∵EG ∥CF ,∠ACB =90°,∴∠GEC =∠BCE =90°,且∠GAE =∠CAD =45°,∴EG =AE =CF ,在△DAE 和△DCF 中,AE CF DAE DCFDA DC =⎧⎪∠=∠⎨⎪=⎩∴△DAE ≌△DCF ,∴DE =DF ,∠ADE =∠CDF ,∴∠ADE +∠ADF =∠CDF +∠ADF =90°.∴∠FDE =∠CDA =90°.∴DE ⊥DF ;(3)解:DE ⊥DF ,DF =DE 3.【解法提示】由CD ⊥AB ,∠ACB =90°,∠B =30°,可得∠ACD =30°,则有ADCD =3,由平移可知∠FGE =90°,FC =GE .CE ∥GF ,则有∠CAB =∠GAE =60°,∠AGE =90°−60°=30°,AE CF AE GE ==3.∴ADCD AE CF ==3,又∵∠FCD = ∠EAD =120°,∴△CFD ∽△AED ,∴EDFD =3,即DF =3DE ,∠ADE =∠CDF ,∴∠EDF =90°,∴DE ⊥DF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七 类比探究题类型一 线段数量关系问题(2018·河南)(1)问题发现如图①,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①ACBD的值为________; ②∠AMB 的度数为________; (2)类比探究如图②,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断ACBD 的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.【分析】 (1)①证明△COA≌△DOB(SAS),得AC =BD ,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则AC BD =OCOD =3,由全等三角形的性质得∠AMB 的度数;(3)正确画出图形,当点C 与点M 重合时,有两种情况:如解图①和②,同理可得△AOC∽△BOD,则∠AMB =90°,ACBD =3,可得AC 的长.【自主解答】解:(1)问题发现①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠DOB. ∵OC=OD ,OA =OB , ∴△COA≌△DOB(SAS), ∴AC=BD , ∴ACBD=1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)类比探究ACBD=3,∠AMB=90°,理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴OD OC =tan 30°=33, 同理,得OB OA =tan 30°=33,∵∠AOB=∠COD=90°, ∴∠AOC=BOD , ∴△AOC∽△BOD, ∴AC BD =OCOD=3,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△AOC∽△BOD, ∴∠AMB=90°,ACBD =3,设BD =x ,则AC =3x , 在Rt△COD 中,∵∠OCD=30°,OD =1, ∴CD=2, ∴BC=x -2.在Rt△AOB 中,∠OAB=30°,OB =7. ∴AB=2OB =27,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即( 3 x)2+(x -2)2=(27)2, 解得x 1=3,x 2=-2(舍去), ∴AC=33;②点C 与点M 重合时,如解图②,同理得:∠AMB=90°,ACBD =3,设BD =x ,则AC =3x ,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即(3x)2+(x +2)2=(27)2解得x 1=-3,解得x 2=2(舍去). ∴AC=2 3.综上所述,AC 的长为33或2 3.图①图② 例1题解图1.(2016·河南) (1)发现如图①,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于________________时,线段AC 的长取得最大值,且最大值为__________(用含a ,b 的式子表示). (2)应用点A 为线段BC 外一动点,且BC =3,AB =1,如图②所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图③,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM=90°,请直接写出线段AM 长的最大值及此时点P 的坐标.2.(2015·河南)如图①,在Rt△ABC 中,∠B=90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,AE BD =2;②当α=180°时,AE BD =2;(2)拓展探究试判断:当0°≤α<360°时,AEBD 的大小有无变化?请仅就图②的情形给出证明.(3)解决问题当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.3.(2014·河南) (1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为______________. (2)拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由. (3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD=90°,请直接写出点A 到BP 的距离.4.(2018·南阳二模)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD 的位置关系和数量关系是______________,______________;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于________度时,线段CE和BD之间的位置关系仍成立(点C,E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=32时,请直接写出线段CF的长的最大值是____.5.已知,如图①,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图①,OFEC=_______;②将△AED 绕点A 逆时针旋转45°,如图②,OFEC =_______;(2)类比延伸将图①中△AED 绕点A 逆时针旋转到如图③所示的位置,请计算出OFEC 的值,并说明理由.(3)拓展探究将图①中△AED 绕点A 逆时针旋转,旋转角为α,0°≤α≤90°,AD =2,△AED 在旋转过程中,存在△ACD 为直角三角形,请直接写出线段CD 的长.类型二 图形面积关系问题(2017·河南)如图①,在Rt△ABC 中,∠A=90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是________,位置关系是________; (2)探究证明把△AD E 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图①图② 例2题图【分析】 (1)利用三角形的中位线定理得出PM =12CE ,PN =12BD ,进而判断出BD =CE ,即可得出结论,再利用三角形的中位线定理得出PM∥CE,继而得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD =CE ,同(1)的方法得出PM =12BD ,PN =12BD ,即可得出PM =PN ,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论. 【自主解答】解:(1)∵点P ,N 是BC ,CD 的中点, ∴PN∥BD,PN =12BD.∵点P ,M 是CD ,DE 的中点, ∴PM∥CE,PM =12CE.∵AB=AC ,AD =AE , ∴BD =CE , ∴PM=PN. ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA. ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,(2)由旋转知,∠BAD=∠CAE, ∵AB=AC ,AD =AE , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD =CE.同(1)的方法,利用三角形的中位线定理,得PN =12BD ,PM =12CE ,∴PM=PN ,∴△PMN 是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC.∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD +∠DBC=∠ACB+∠ABC. ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,∴△PMN 是等腰直角三角形,例2题解图(3)如解图,同(2)的方法得,△PMN 是等腰直角三角形, ∴当MN 最大时,△PMN 的面积最大, ∴DE∥BC 且DE 在顶点A 上面, ∴MN 最大=AM +AN , 连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE=90°,在Rt△ABC 中,AB =AC =10,AN =52, ∴MN 最大=22+52=72,∴S △PMN 最大=12PM 2=12×12MN 2=14×(72)2=492.1.(2013·河南)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E =30°. (1)操作发现如图②,固定△ABC,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是______________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是______________. (2)猜想论证当△DEC 绕点C 旋转到如图③所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究已知∠ABC=60°,点D 是角平分线上一点,BD =CD =4,DE∥AB 交BC 于点E(如图④).若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出相应的BF 的长.2.已知Rt△ABC 中,BC =AC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,将∠EDF 绕点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于E ,F.当∠EDF 绕点D 旋转到DE⊥AC 于E 时,如图①所示,试证明S △DEF +S △CEF =12S △ABC .(1)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,如图②所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明理由.(2)直接写出图③中,S△DEF,S△CEF与S△ABC之间的数量关系.3.(2018·郑州模拟)如图①所示,将两个正方形ABCD和正方形CGFE如图所示放置,连接DE,BG. (1)图中∠DCE+∠BCG=__________°;设△DCE的面积为S1,△BCG的面积为S2,则S1与S2的数量关系为______________;猜想论证:(2)如图②所示,将矩形ABCD绕点C按顺时针方向旋转后得到矩形FECG,连接DE,BG,设△DCE的面积为S1,△BCG的面积为S2,猜想S1和S2的数量关系,并加以证明;(3)如图③所示,在△ABC中,AB=AC=10 cm,∠B=30°,把△ABC沿AC翻折得到△AEC,过点A作AD 平行CE交BC于点D,在线段CE上存在点P,使△ABP的面积等于△ACD的面积,请写出CP的长.4.(2018·驻马店一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想图①中,PM与PN的数量关系是______________,位置关系是______________;(2)探究证明将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G,H,判断△PMN的形状,并说明理由;(3)拓展延伸把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.参考答案类型一 针对训练1.解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b. (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC =AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. 在△CAD 和△EAB 中,⎩⎪⎨⎪⎧AD =AB ∠CAD=∠EAB AC =AE ,∴△CAD≌△EAB,∴CD=BE.②∵线段BE 长的最大值等于线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴线段BE 长的最大值为BD +BC =AB +BC =4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN ,如解图①, 则△APN 是等腰直角三角形, ∴PN=PA =2,BN =AM.∵点A 的坐标为(2,0),点B 的坐标为(5,0), ∴OA=2,OB =5,∴AB=3,∴线段AM长的最大值等于线段BN长的最大值,∴当点N在线段BA的延长线时,线段BN取得最大值,最大值为AB+AN.∵AN=2AP=22,∴线段AM的长最大值为22+3.如解图②,过点P作PE⊥x轴于点E.∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).图①图②第1题解图2.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∴AC=AB2+BC2=(8÷2)2+82=4 5.∵点D、E分别是边BC、AC的中点,∴AE=45÷2=25,BD=8÷2=4,∴AEBD=254=52.②如解图①,当α=180°时,得可得AB∥DE,∵ACAE=BCBD,∴AEBD=ACBC=458=52.(2)当0°≤α≤360°时,AEBD的大小没有变化.∵∠ECD=∠ACB, ∴∠ECA=∠DCB. 又∵EC DC =AC BC =52,∴△ECA∽△DCB, ∴AE BD =EC DC =52.图①图②图③ 第2题解图(3)①如解图②,∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵AD=BC ,AB =DC ,∠B=90°, ∴四边形ABCD 是矩形, ∴BD=AC =4 5.③如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P , ∵AC=45,CD =4,CD⊥AD,∴A D =AC 2-CD 2=(45)2-42=80-16=8, ∵点D 、E 分别是边BC 、AC 的中点, ∴DE=12AB =12×(8÷2)=12×4=2,∴AE=AD -DE =8-2=6, 由(2),可得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255. 3.解:(1)∵△ACB 和△DCE 均为等边三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=60°, ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC. ∵△DCE 为等边三角形,∴∠CDE=∠CED=60°. ∵点A ,D ,E 在同一直线上,∴∠ADC=120°, ∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°. ②∵△ACD≌△BCE,∴AD=BE. (2)∠AEB=90°,AE =BE +2CM. 理由如下:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS), ∴AD=BE ,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CD E =∠CED=45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC=135°,∴∠BEC=135°, ∴∠AEB=∠BEC-∠CED=90°. ∵CD=CE ,CM⊥DE,∴DM=ME. ∵∠DCE=90°,∴DM=ME =CM , ∴AE=AD +DE =BE +2CM.(3)∵PD=1,∴点P 在以点D 为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如解图①所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E.∵四边形ABCD是正方形,∴∠ADB=45°,AB=AD=DC=BC=2,∠BAD=90°,∴BD=2.∵DP=1,∴BP= 3.∵∠BPD=∠BAD=90°,∴点A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B,E,P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴3=2AH+1,∴AH=3-1 2;②当点P在如解图②所示位置时,连接PD、PB、PA、作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD,∴3=2AH-1,∴AH=3+1 2.综上所述,点A到BP的距离为3-12或3+12.图①图② 第3题解图4.解:(1)①∵AB=AC ,∠BAC=90°, 线段AD 绕点A 逆时针旋转90°得到AE , ∴AD=AE ,∠BAD=∠CAE, ∴△BAD≌△CAE, ∴CE=BD ,∠ACE =∠B, ∴∠BCE=∠BCA+∠ACE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (2)(1)中的结论仍然成立.证明如下: 如解图①,∵线段AD 绕点A 逆时针旋转90°得到AE , ∴AE=AD ,∠DAE=90°. ∵AB=AC ,∠BAC=90°, ∴∠CAE=∠BAD, ∴△ACE≌△ABD, ∴CE=BD ,∠ACE=∠B, ∴∠BCE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (3)45°;34.过A 作AM⊥BC 于M ,过点E 作EN⊥MA 交MA 的延长线于N ,如解图②. ∵线段AD 绕点A 逆时针旋转90°得到AE , ∴∠DAE=90°,AD =AE ,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA, ∴NE=AM.∵CE⊥BD,即CE⊥MC,∴∠MCE=90°, ∴四边形MCEN 为矩形, ∴NE=MC ,∴AM=MC , ∴∠ACB=45°. ∵四边形MCEN 为矩形, ∴Rt△AMD∽Rt△DCF, ∴MD CF =AMDC,设DC =x , ∵在Rt△AMC 中,∠ACB=45°,AC =32,∴AM=CM =3,MD =3-x ,∴3-x CF =3x ,∴CF=-13x 2+x =-13(x -32)2+34,∴当x =32时,CF 有最大值,最大值为34.故答案为45°,34;图①图② 第4题解图5.解:(1)①∵△A BC ,△AED 是两个全等的等腰直角三角形, ∴AD=BC.∵O 为BC 的中点,F 为AD 的中点, ∴AF=OC.∵∠BAC=∠AED=90°,AB =AC ,AE =DE , ∴∠DAE=∠CBA=45°, ∴AD∥BC,∴四边形AFOC 是平行四边形, ∴OF=AC =22EC ,∴OF EC =22; 故答案:22; ②∵AO=22AC ,∠BAO=∠CAO=45°,∠DAE=45°, ∴∠DAE=∠CAO. ∵AE=AC , ∴AF=AO , ∴AF AE =AO AC,∴△AFO∽△AEC, ∴OF EC =AO AC =22; 故答案:22. (2)OF =22EC. 理由:在等腰直角△ADE 中,F 为AD 的中点, ∴AF=12AD =22AE.在等腰直角△ABC 中,O 为BC 的中点, 如解图①,连接AO , ∴AO=22AC ,∠BAO=∠CAO=45°. ∴∠DAE=45°,∴∠DAE=∠CAO,即∠DAO=∠CAE. ∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; (3)∵△ABC 和△AED 是两个全等的等腰直角三角形, ∴AD=BC =2, ∴ED=AE =AB =AC =1,当△ACD 为直角三角形时,分两种情况:图①图②图③ 第5题解图①当AD 与AB 重合时,如解图②,连接CD. 当△ACD 为直角三角形时,AD⊥AC, 即将△ADE 绕点A 逆时针旋转45°. ∵AD=2,AC =1,∴由勾股定理可得CD =(2)2+12=3; ②当AE 与AC 重合时,如解图③, 当△ACD 为直角三角形时,AC⊥CD,即将△ADE 绕点A 逆时针旋转90°,此时CD =AC =1. 综上所述,CD 的长为3或1. 类型二 针对训练1.解:(1)①△DEC 绕点C 旋转到点D 恰好落在AB 边上, ∴AC=CD.∵∠BAC=90°-∠B=90°-30°=60°. ∴△ACD 是等边三角形, ∴∠ACD=60°,又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC;②∵∠B=30°,∠C=90°, ∴CD=AC =12AB ,∴BD=AD =AC ,根据等边三角形的性质,△ACD 的边AC ,AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2; (2)∵△DEC 是由△ABC 绕点C 旋转得到, ∴BC=CE ,AC =CD ,∠DCE=∠ACB=90°, ∵∠ACN+∠ACE=180°, ∴∠ACN=∠DCM.在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN=∠DCM,∠N=∠CMD=90°,AC =CD∴△ACN≌△DCM(AAS), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;第1题解图(3)如解图,过点D 作DF 1∥BE 交BA 于点F 1,易求得四边形BEDF 1是菱形,∴BE=DF 1,且BE ,DF 1边上的高相等,此时S△DCF 1=S △BDE ; 过点D 作DF 2⊥BD.∵∠ABC=60°,F 1D∥BE 交BA 于点F 2, ∴∠F 2F 1D =∠ABC=60°.∵BF 1=DF 1,∠F 1BD =12∠ABC=30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC=60° ∴△DF 1F 2是等边三角形, ∴DF 1=DF 2.∵BD=CD ,∠ABC=60°,点D 是角平分线上一点, ∴DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 2=360°-150°-60°=150°, ∴∠CDF 1=∠CDF 2. 在△CDF 1和△CDF 2中, ⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD, ∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点. ∵∠ABC=60°,点D 是角平分线上一点,DE∥AB, ∴∠DBC=∠BDE=∠ABD=12×60°=30°.又∵BD=4,∴BE=12×4÷cos 30°=2÷32=433,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833.故BF 的长为433或833.2.解:当∠EDF 绕D 点旋转到DE⊥AC 时,四边形CEDF 是正方形;设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为12a ,∴S △ABC =12a 2,S 正方形CEDF =(12a)2=14a 2,即S △DEF +S △CEF =12S △ABC ;(1)上述结论成立;理由如下: 连接CD ,如解图①所示.∵AC=BC ,∠ACB=90°,D 为AB 中点,∴∠B=45°,∠DCE=12∠ACB=45°,CD⊥AB,CD =12AB =BD ,∴∠DCE=∠B,∠CDB=90° ∵∠EDF=90°, ∴∠1=∠2, 在△CDE 和△BDF 中, ⎩⎪⎨⎪⎧∠1=∠2CD =BD∠DCE=∠B, ∴△CDE≌△BDF(ASA),∴S △DEF +S △CEF =S △ADE +S △BDF =12S △ABC ;图①图② 第2题解图(2)S △DEF -S △CEF =12S △ABC ;理由如下:连接CD ,如解图②所示,同(1)得:△DEC≌△DFB,∠DCE=∠DBF =135°, ∴S △DEF =S 五边形DBFEC , S △CFE +S △DBC , =S △CFE +12S △ABC ,∴S △DEF -S △CFE =12S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是S △DEF -S △CEF =12S △ABC .3.解:(1)如解图①中,∵四边形ABCD 、EFGC 都是正方形, ∴∠BCD=∠ECG=90°.∵∠BCG+∠BCD+∠DCE+∠ECG=360°, ∴∠BCG+∠ECD=180°.图①图②图③ 第3题解图如解图①,过点E 作EM⊥DC 于点M ,过点G 作GN⊥BN 交BN 的延长线于点N , ∴∠EMC=∠N=90°.∵四边形ABCD 和四边形ECGF 均为正方形, ∴∠BCD=∠DCN=∠ECG=90°,CB =CD ,CE =CG ,∴∠1=90°-∠2,∠3=90°-∠2, ∴∠1=∠3. 在△CME 和△CNG 中, ⎩⎪⎨⎪⎧∠EMC=∠GNC ∠1=∠3EC =CG, ∴△CME≌△CNG(ASA), ∴EM=GN.又∵S 1=12CD·EM,S 2=12CB·GN,∴S 1=S 2;故答案为180°,S 1=S 2; (2)猜想:S 1=S 2,证明:如解图②,过点E 作EM⊥DC 于点M ,过点B 作BN⊥GC 交GC 的延长线于点N , ∴∠EMC=∠N=90°.∵矩形CGFE 由矩形ABCD 旋转得到的, ∴CE=CB ,CG =CD ,∵∠ECG=∠ECN=∠BCD=90°,∴∠1=90°-∠2,∠3=90°-∠2,∴∠1=∠3. 在△CME 和△CNB 中, ⎩⎪⎨⎪⎧∠EMC=∠BNC ∠1=∠3EC =CB, ∴△CME≌△CNB(AAS). ∴EM=BN.又∵S 1=12CD·EM,S 2=12CG ·BN ,∴S 1=S 2;(3)如解图③,作DM⊥AC 于M ,延长BA ,交EC 于N , ∵AB=AC =10 cm ,∠B=30°, ∴∠ACB=∠ABC=30°, ∴∠BAC=120°,根据翻折的性质,得∠ACE=∠ACB=30°, ∵AD∥CE,∴∠DAC=∠ACE=30°, ∴∠BAD=90°,DM =12AD ,∴BN⊥EC.∵AD=tan∠ABD·AB,AB =10 cm , ∴AD=tan 30°×10=103 3 (cm),∴DM=12×1033=533(cm).∵S △ABP =12AB·PN,S △ADC =12AC·DM,S △ABP =S △ADC ,AB =AC ,∴PN=DM =533.在Rt△ANC 中,∠ACN=30°,AC =10 (cm), ∴NC=cos∠ACN·AC=cos 30°×10=53(cm). ∵在EC 上到N 的距离等于533的点有两个,∴P′C=103 3 cm ,P ″C =203 3 cm.∴CP 的长为103 3 cm 或203 3 cm.4.解:(1)PM =PN ,PM⊥PN,理由如下: 如解图①,延长AE 交BD 于O , ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠ACB=∠ECD=90°. 在△ACE 和△BCD 中, ⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD=90°,CE =CD ,∴△ACE≌△BCD(SAS), ∴AE=BD ,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO, ∴∠CBD+∠BEO=90°, ∴∠BOE =90°,即AE⊥BD,∵点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点, ∴PM=12BD ,PN =12AE ,∴PM=PN.∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°,∴∠MPN=90°, 即PM⊥PN.图①图② 第4题解图(2)△PMN 为等腰直角三角形,理由如下: 如解图②,设AE 交BC 于点O. ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠AC B =∠ECD=90°, ∴∠ACB+∠BCE=∠ECD+∠BCE, ∴∠ACE=∠BCD, ∴△ACE≌△BCD, ∴AE=BD ,∠CAE =∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°.∵点P ,M ,N 分别为AD ,AB ,DE 的中点, ∴PM=12BD ,PM∥BD,PN =12AE ,PN∥AE,∴PM=PN ,∴∠MGE+∠BHA=180°, ∴∠MGE=90°, ∴∠MPN=90°,∴PM⊥PN,即△PMN 为等腰直角三角形.(3)由(2)可知△PMN 是等腰直角三角形,PM =12BD ,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大, ∴当B ,C ,D 共线时,BD 的最大值为BC +CD =6, ∴PM=PN =3,∴△PMN 面积的最大值为12×3×3=92.。