北师版八年级数学下册《分式与分式方程》章节测试卷(七)
北师大版2019-2020学年八年级数学下册第五章《分式与分式方程》单元考试卷及答案

第五章《分式与分式方程》测试卷一、选择题(每题3分,共30分)1. 函数y =1x +2中,x 的取值范围是( )A .x ≠0B .x >-2C .x <-2D .x ≠-22.计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( )A .aB .a 5C .a 6D .a 93.下列各式:①k 22π;②1m +n ;③m 2-n 24;④2b 3a ;⑤(x +1)2x -1;⑥1x ,其中分式有( )A .6个B .5个C .4个D .3个4.分式方程232x x =-的解为( )A .x =0B .x =3C .x =5D .x =95.化简211x xx x +--的结果为( )A .x +1B .x -1C .-xD .x6.下列各式从左到右的变形中,正确的是( )A .12212x yx y xy xy--= B .0.2222a b a ba b a b ++=++C .11x x x y x y +--=-- D .a ba ba b a b +-=-+7.若关于x 的分式方程31m x --=1的解为x =2,则m 的值为()A .5B .4C .3D .28.如果a -b =23,那么代数式222a b a b a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为( ) A . 3 B .2 3 C .3 3 D .4 39.一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行100 km 所用时间,与以最大航速逆流航行80 km 所用时间相等,设江水的流速为v km/h ,则可列方程为( )A .1008030v v=+ B .100803030v v =-+ C .100803030v v=+- D .100803030v v =-+ 10.已知m 2-3m +2=0,则代数式22m m m -+的值是( ) A .3 B .2 C .13 D .12二、填空题(每题3分,共30分)11.若分式242x x -+的值为0,则x 的值为________. 12. 在分式:①3ax ;②22x y x y +-;③()2a b a b --;④x y x y +-中,是最简分式的是__________(填序号).13. 化简:2212124x x x x x --+÷--=__________. 14.计算:2b a b a b++-=__________. 15.若a 2-6ab +9b 2=0(a ,b 均不为0),则a b a b -+=________.16.已知1xx+=6,则221xx+-2=________.17.当x=________时,41x+与31x-互为相反数.18.已知关于x的分式方程32xx--=2-2mx-会产生增根,则m=____________.19.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产________台机器.20.关于x的分式方程21x ax++=1的解为负数,则a的取值范围为____________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.计算下列各式:(1)222 44155a b a bab a b+⋅-;(2) 22169211x x x x x -++⎛⎫-÷ ⎪+-⎝⎭.22.解下列方程:(1) 32x x --+1=32x -;(2)32-131x -=562x -.23.先化简,再求值:22211244x x x x x ⎛⎫+++÷ ⎪--+⎝⎭,其中x 满足x 2-2x -5=0.24.当m 为何值时,关于x 的分式方程212326x x x m x x x x +--=+-+-的解不小于1?25.某超市预测某饮料有发展前途,用1 600元购进一批饮料,面市后果然供不应求,又用6 000元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次购进饮料按同一价格销售,两批全部售完后,获利不少于1 200元,那么销售单价至少为多少元?26.阅读下面的材料:∵11×3=12×⎝ ⎛⎭⎪⎫1-13,13×5=12×⎝ ⎛⎭⎪⎫13-15,15×7=12×⎝ ⎛⎭⎪⎫15-17,…,117×19=12×⎝ ⎛⎭⎪⎫117-119, ∴11×3+13×5+15×7+…+117×19=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫117-119=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+117-119=12×⎝ ⎛⎭⎪⎫1-119=919.解答下列问题:(1)在和式11×3+13×5+15×7+…中,第6项是________,第n 项是________________;(2)材料是通过逆用____________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以______________,从而达到求和的目的;(3)根据上面的方法,请你解下面的方程:()()()()()111333669218x x x x x x x ++=++++++.答案一、1.D 2.A 3.C 4.D 5.D 6.A 7.B 8.A 9.C10.D 点拨:∵m 2-3m +2=0,∴m ≠0.∴m -3+2m =0.∴m +2m =3. 则原式=121m m +-=13-1=12.二、11.2 12. ①④ 13.x +2x -1 14.a 2a -b 15.12 16.32 17.1718.-1 19.200 20.a >1且a ≠2三、21.解:(1)原式=4(a +b )5ab ·15a 2b (a +b )(a -b )=12aa -b ;(2)原式=2(x +1)-(x -1)x +1÷(x +3)2(x +1)(x -1)=x +3x +1·(x +1)(x -1)(x +3)2=x -1x +3.22.解:(1)把方程两边同时乘以x -2,得x -3+x -2=-3,解得x =1.检验:当x =1时,x -2=1-2=-1≠0,∴原方程的解为x =1.(2)方程两边同时乘以2(3x -1),得3(3x -1)-2=5,解得x =109.检验:当x =109时,2(3x -1)≠0,∴x =109是原方程的解.23.解:⎝⎛⎭⎪⎫1+x 2+2x -2÷x +1x 2-4x +4=x 2+x x -2·(x -2)2x +1=x (x +1)x -2·(x -2)2x +1=x 2-2x . ∵x 2-2x -5=0,∴x 2-2x =5.∴原式=5.24.解:由原方程,得x (x -2)-(x +1)·(x +3)=x -2m. 整理,得-7x =3-2m ,解得x =237m -. ∵分式方程x x +3-x +1x -2=226x m x x -+-的解不小于1,且x ≠-3,x ≠2, ∴231,7233,7232,7m m m -⎧≥⎪⎪-⎪≠-⎨⎪-⎪≠-⎪⎩解得m ≥5且m ≠8.5. 25.解:(1)设第一批饮料进货单价为x 元,则3·1 600x = 6 000x +2,解得x =8.经检验:x =8是分式方程的解,且符合题意.答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则(m -8)·1 6008+(m -10)·6 00010≥1 200,化简得:2(m -8)+6(m -10)≥12 ,解得:m ≥11.答:销售单价至少为11元.26.解:(1)111×13;1(2n -1)(2n +1)(2)分数减法;相互抵消(3)将分式方程变形为13(1x -1x +3+1x +3-1x +6+1x +6-1x +9)=32x +18. 整理,得1x -1x +9=92(x +9). 方程两边都乘2x (x +9),得2(x +9)-2x =9x ,解得x =2. 经检验,x =2是原分式方程的解.。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案

最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。
(2)分式有意义:B ≠0时。
(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。
2、如果分式1x 3-有意义,那么x 的取值范围是 。
3、下列分式中,不论a 取何值总有意义的是 。
A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。
5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。
分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。
yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。
A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。
A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。
5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。
6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。
北师大版八级数学下册第五章分式与分式方程单元测试题.docx

第五章分式与分式方程一、选择题 ( 每小题 3 分,共 30 分)2y 2 m - n x 2a 21 221.下面是小明写的几个代数式:①y ;② π ;③ 2n ;④ 5- b ;⑤ 2xy - 3xy ,其中分式有 ( ). 2 个. 3 个 . 4 个. 5 个ABC Dx 2- 2x2.要使分式 x 2- 4 有意义, x 的取值范围是 (). x ≠- 2.x ≠ 2 . x ≠± 2 . x ≠4ABCD3.下列各式从左到右的变形正确的是 ()2x - y 2a + b = x + 2y=a + 2bx + 1 x -1a -b C .-x - y = x -y= a +b4.下列各分式中,是最简分式的是 ( )5.下面四个选项分别选自四位同学的作业题,其中计算错误的是()1=- 2x2 43x x 2yB . 8x y ·( - 4y ) ÷ ( - 2 ) = 12x+ 22ab2=bb - a b - aD . x(2 - 1) + 2 x·(x 2- 4) = 3x + 1xx -2xb a 2- b 26.已知 a ≠0,a ≠ b ,且 x = 1 是方程 ax + - 10= 0 的一个根,则分式的值是 ()x2a - 2bA . 1B . 5C . 10D .20a -b +c a - 2b + 3c b - 2c7.化简a +b -c - b - c +a + c -a - b 的结果是 ()A . 0C . 1D .以上选项都不对3x8.关于方程 x -3- x - 3=- 1 的解的情况,下列说法中正确的是()A .解是 x = 3B .无解C .解为任意实数D.解除3外的任意数9.若关于 x 的方程6m() ()-x-1=1 有增根, m的是 () x+ 1x- 1A.-3 B.0 C.3 D.-3或310.某工厂在平均每天比原划多生50 台机器,在生600 台机器所需的与原划生450 台机器所需的相同.原划平均每天生x 台机器,下列方程正确的是 ()450450=x=x450450=x+ 50=x-50二、填空 ( 每小 3分,共 18分)11.于一个含有字母x 的分式,小和小芳分出了它的一些特点,你根据两人的写出一个足条件的分式:_________________________________________________.5-Z- 1x2- 112.若分式x+1的 0, x= ________.a2+2ab+ b21113.若 a, b 互倒数,代数式a+ b÷a+b的 ________.14.在外活跳,相同内小林跳了90 下,小群跳了 120 下.已知小群每分比小林多跳 20下.小林每分跳x 下,可列关于x 的方程 ______________ .15.若关于 x 的方程2+x+m=2 的解正数,m的取范是 ______________.2- x x- 216.已知: 2+23= 22×23,3+38= 32×38,4+154= 42×154,5+245=52×245,⋯ . 若 10+ba=2b10 ×, a+ b= ________.a三、解答 ( 共 52 分 )4a+ 2 17. (6 分 )(1) 化: (1 +a2-4) ·a;x2x x- 1(2)先化简,再求值:x2+4x+4÷x+2-x+2,其中x=2-1.18. (6 分 ) 解方程:x2x- 1(1)x-1-x2-1=1;(2) 22x+=1.x-4x- 2m3m- 119. (6 分 ) 若关于 x 的方程x2-2x=x2-4+x2+2x有增根 x=2,求 m的值.222x+ 1820. (6 分) 已知 x 整数,且分式x+ 3+3-x+x2-9也整数,求所有符合条件的x 的和.21. (6 分 ) 材料,解答下列:察下列方程:①2612x+=3;② x+= 5;③ x+= 7;⋯ .x x x(1)按此律写出关于x的第4个方程_________________________________________ ,第n(n 正整数 ) 个方程 ______________________________ ;(2)直接写出第 n(n 正整数 ) 个方程的解,并此解是否正确.22.(6 分 ) 政府有关部划在某广内种植,B 两种花木共6600 棵.若A花木的数A 量比B 花木数量的 2 倍少 600 棵.(1)A,B 两种花木分别有多少棵?(2) 如果园林处安排26 人同时种植这两种花木,每人每天能种植A花木60棵或 B 花木40 棵,那么分别安排多少人种植 A 花木和 B花木,才能确保同时完成各自的任务?23.(8 分) 为了打造“绿色城市·宜居天堂”的生态环境,某市近年来加快实施城乡绿化工程.某新建社区计划雇佣甲、乙两个工程队种植840 棵树木,已知甲队每天种的树是乙3队的4,甲队种150 棵树所用的天数比乙队种120 棵树所用的天数多 2 天.(1)甲、乙两队每天各种树多少棵?(2) 现已知甲队每天的薪酬为200 元,乙队每天的薪酬为250 元,则雇佣甲、乙两队、单独雇佣甲队、单独雇佣乙队这三种雇佣方案中,哪一种方案所付的薪酬最少?请说明理由.24. (8 分 )[ 探索 ]先 察下面 出的等式,探究 含的 律,然后回答 :11 1 1 1111=1- ;= - ;= - ;⋯ .1× 2 2 2× 3 2 3 3× 4 3 4(1) 算:1 1 1 1 11× 2+2× 3+3× 4+ 4× 5+ 5× 6=________;(2)[ 拓展延伸 ] 接着上面的思路,求下列代数式的 :11 111× 2+ 2× 3+ 3× 4+⋯+ n (n + 1)= ________( 用含 n 的式子表示 ) ;(3)[ 律运用 ]依据上面探索得到的 律解决下面的 :111 117已知代数式1× 3+3× 5+5×7+⋯+( 2n -1)( 2n + 1)的35,求 n的 .1. A6. B1-x11.答案不唯一,如x2+19012. 1=x15.m>- 2 且m≠ 0 [ 解析 ]方程两都乘x-2,得- 2+x+m= 2( x- 2) ,解得x=m+ 2.∵方程的解正数,∴m+2>0且 m+2≠2,解得 m>-2且 m≠0.22232 16. 109[ 解析 ] 通察可把已知的等式形2+22-1= 2 ×22-1, 3+32-1= 33424525b2b×32-1,4+42-1=4×42-1,5+52 -1=5×52 -1,⋯.由于10+a=10 ×a也符合前面式子的律,故利用比思想,求律易知b=10,a=102- 1= 99,∴a+b= 99+ 10= 109.a2- 4+4+ 2a2+ 2aa2-4·17.解: (1) 原式=a=( a+2)( a-2)·a=a-2.(2) 原式=x2x+2 x-1=x x-112·-+ 2-=.( x+2)xx x+2x+2x+2当 x=2- 1 ,原式=1= 2-1.2+ 118.解: (1)方程两同乘 ( x+ 1)(x-1),得x( x+1)-(2 x-1)=( x+1)( x-1),解得 x=2., x=2是原方程的解.所以 x=2是原方程的根.(2)去分母,得 2+x( x+2) =x2- 4,解得 x=-3.:当 x=-3,( x+2)( x-2)≠0.故 x=-3是原方程的根.19.解:去分母,化整式方程,得m( x+2)=3x+( m-1)( x-2).①把 x=2代入①,得4m=6,3解得 m=2.22 2x + 18 20.解:x + 3+ 3-x + x 2- 92( x - 3)2( x +3)2x + 18=( x + 3)( x - 3) -(x + 3)( x - 3) +( x + 3)( x - 3)2( x + 3) =( x + 3)( x - 3)2=x - 3.∵ x 和2x = 1 或 x = 2 或 x = 4 或 x = 5,故所有符合条件的x 值的和为均为整数,∴x - 312.20n ( n + 1) 21.解: (1)x + x = 9x +x= 2n + 1(2) x +n (n + 1)= 2n + 1,观察得 x = n 或 x = n + 1. 检验:将 x = n 代入方程的左边,x得 n + n + 1=2n + 1,右边为 2n +1,左边=右边,即 x = n 是方程的解;将 x = n +1 代入方程的左边,得 n + 1+ n = 2n + 1,右边为 2n + 1,左边=右边,即 x = n +1 是方程的解,则 x=n 或 x = n + 1 都为原分式方程的解.22.解: (1) 设 B 花木有 x 棵,则 A 花木有 (2 x - 600) 棵.根据题意,得 x + (2 x - 600) = 6600,解得 x = 2400,2x - 600=4200.答: A 花木有 4200 棵, B 花木有 2400 棵.(2) 设安排 y 人种植 A 花木,则安排 (26 - y ) 人种植 B 花木.42002400根据题意,得 60y = 40( 26- y ),解得 y =14.经检验, y = 14 是原方程的根,且符合题意.26- y = 12.答:安排 14 人种植 A 花木,安排12 人种植 B 花木,才能确保同时完成各自的任务.15012023.解: (1) 设乙队每天种树x 棵.依题意可列方程3- x =2,解得 x = 40.x4经检验, x = 40 是原方程的根,且符合题意.334x = 4× 40= 30.答:甲队每天种树30 棵,乙队每天种树 40 棵.(2) 单独雇佣乙队所付的薪酬最少.理由如下:840雇佣甲、乙两队的薪酬为(200 + 250) ×30+40= 450× 12= 5400( 元 ) ;840单独雇佣甲队的薪酬为 200× 30 = 200× 28= 5600( 元) ;单独雇佣乙队的薪酬为840250×= 250× 21= 5250( 元) .40比较可知单独雇佣乙队所付的薪酬最少.5n24.解: (1)(2) n + 1611n(3) 原式= 2× (1 - 2n + 1) = 2n + 1.n17由题意可得方程 2n + 1= 35,解得 n = 17.经检验, n = 17 是原方程的根,故 n 的值为 17.。
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
八年级数学下册《分式方程》练习题及答案(北师大版)

八年级数学下册《分式方程》练习题及答案(北师大版)一、单选题 1.方程123x x=-的解为( ) A .6x =-B .2x =-C .2x =D .6x = 2.方程2113x =+的解的情况是( ). A .5x = B .4x = C .3x = D .无解3.学校为满足学生体育运动的需求,计划购买一定数量的篮球和足球.若每个足球的价格比篮球的价格贵15元,且用600元购买篮球的数量与用800元购买足球的数量相同.设每个篮球的价格为x 元,则可列方程为( )A .60080015x x =+ B .60080015x x =- C .60080015x x =+ D .60080015x x=- 4.甲、乙两人同时开始栽树,栽了一小时,两人共栽了20棵,两人均保持栽树速度不变,当甲栽27棵时,乙恰好栽33棵。
那么甲每小时栽树多少棵?设甲每小时裁树x 棵,则列方程为( )A .273320x x =+B .273320x x =-C .273320x x =+D .273320x x=- 5.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠ 6.方程21211x x =--的解为( ) A .1 B .-1 C .-2 D .无解7.九年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是( )A .12018060x x =+ B .12018060x x =- C .12018060x x =+ D .12018060x x=- 8.分式方程101m x x -=-有解,则m 的取值范围是( ) A .0m ≠ B .1m ≠ C .0m ≠或1m ≠ D .0m ≠且1m ≠9.已知关于x 的方程11a x =+的解是负数,则a 的取值范围是( ) A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤ 或0a ≠10.关于x 的分式方程28222m x x x x +=--无解,则m =( ) A .2 B .4 C .2或4D .2或0二、填空题 11.分式方程33x -=2x的解是________. 12.若分式方程11322x x x-+=--有增根,则增根为x =_________. 13.如果分式22224x x x x x x ⎛⎫-÷ ⎪---⎝⎭的值为1,则x 的值为___________. 14.关于x 的方程2322x m x x-+--=3有增根,则m 的值为___________. 15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,依题意列方程,得_____________.三、解答题 16.解分式方程:3201(1)x x x x +-=--.17.(1)计算:()20120193π-⎛⎫-+- ⎪⎝⎭ (2)计算:()()()22242x y x y x y --+(3)因式分解:22363ax axy ay -+(4)解方程:2216124x x x ++=---18.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.19.解分式方程:211 33x x+= --20.新会柑是国家地理标志保护产品,新会柑普茶入口甘醇香甜,保健作用突出,很受市场欢迎.某茶店用4000元购进了A款新会柑普茶若干盒,用8400元购进了B款新会柑普茶若干盒,所购的B款新会柑普茶比A款新会柑普茶多10盒,且B款新会柑普茶每盒进价比A款贵40%.问:A、B两款新会柑普茶每盒进价分别是多少元?。
[精品]八年级下第五章《分式与分式方程》单元测试题有答案(北师大版数学)
![[精品]八年级下第五章《分式与分式方程》单元测试题有答案(北师大版数学)](https://img.taocdn.com/s3/m/769b6b130912a21615792929.png)
2017年北师大版八年级数学下册第五章 《分式与分式方程》单元测试题(班级: 姓名: 得分: )一、 选择题(每小题3分,共30分)1. 下列各式:51(1– x ),34-πx ,222y x -,x x 25,其中分式有( ) A .1个 B .2个 C .3个D .4个 2.分式的计算结果是( ) A . B . C . D .3.使分式的值为正的条件是( ) A . B . C .x <0 D .x >04.已知两个分式:,,其中x ≠±2,则A 与B 的关系是( ) A .相等 B .互为倒数 C .互为相反数 D .A 大于B5.下列分式的值,可以为零的是( )A .B .C .D .6.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .﹣=20 B .﹣=20 C .﹣=0.5 D .﹣=0.57.下列计算正确的是( )A .B .C .D . 8.若x=-1,y=2,则22264x x y --18x y-的值为( ) A .-117 B .117 C .116 D .1159..计算﹣的结果是( ) A .﹣B .C .D . 10.关于x 的分式方程3x +61x --()1x k x x +-=0有解,则k 满足( )A.k≠-3 B.k≠5C.k≠-3且k≠-5 D.k≠-3且k≠5二、填空题(每小题4分,共32分)11.若分式211xx-+有意义,则x的取值范围为.12.对于分式,当x= 时,分式无意义;当x= 时,分式值为零.13.填空: =, =﹣.14.下列各式①;②;③;④;⑤中分子与分母没有公因式的分式是.(填序号)15.若关于x的方程15xx--=102mx-无解,则m= .16.在方程中,如果设y=x2﹣4x,那么原方程可化为关于y的整式方程是.17.若1(21)(21)2121a bn n n n=+-+-+,对任意自然数n都成立,则a= ,b= .18.当y=x+13时,22112xyy x x xy y⎛⎫-⎪-+⎝⎭的值是.三、解答题(共58分)19.(每小题6分,共12分)计算:(1)•÷(2)÷(4x2﹣y2)20.(每小题6分,共12分)解下列方程:(1)1﹣=(2)﹣=.21.(10分)列分式方程解应用题:某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格?22.(12分)小明解方程1x-2xx-=1的过程如下:解:方程两边乘x,得1-(x-2)=1.①去括号,得1-x-2=1.②移项,得-x=1-1+2.③合并同类项,得-x=2.④解得x=-2.⑤所以,原分式方程的解为x=-2.⑥请指出他解答过程中的错误,并写出正确的解答过程.23.(12分)已知A=22211x xx++--1xx-.(1)化简A;(2)当x满足不等式组10,30xx-≥⎧⎨-⎩<,且x为整数时,求A的值.参考答案一、1.A 2.A 3.C 4.C 5.C 6.A 7.A 8.D 9.D 10.A二、11.x≠-1 12.2 13.2aa-14.y 15.-8 16.4517.12-1218.-3三、19.解:(1)原式=•=;(2)原式=•=(2x﹣y)•=;20.解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+3=1,解得:x=﹣5,经检验x=﹣5是分式方程的解.21.解:设去年每吨水费为x元,则今年每吨水费为(1+)x元,小丽家去年12月的用水量为吨,今年2月的用水量为(+5)吨,依题意有(+5)(1+)x=30,解得:x=1.5,经检验得:x=1.5是原方程的根,答:今年居民用水的价格为1.5元.22.解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法为:方程两边乘x,得1-(x-2)=x.去括号,得1-x+2=x.移项,得-x-x=-1-2.合并同类项,得-2x=-3.解得x=32.经检验,x=32是原分式方程的解.所以,原分式方程的解为x=32.23.解:(1)A=22211x xx++--1xx-=()()()2111xx x++--1xx-=11xx+--1xx-=11x-.(2)∵10,30 xx-≥⎧⎨-⎩<,∴1≤x<3.∵x为整数,∴x=1或x=2,又当x=1或x=-1时,A无意义,∴当x=2时,A=121-=1.。
第五章分式与分式方程+单元测试+2022-2023学年八年级下册数学北师大版

第五章分式与分式方程(单元测试)一、单选题 1.分式方程113023162x x --=--的根是( ) A .310x = B .16x = C .3x = D .2x =2.要使分式31x -有意义,x 的取值应满足( ) A .1x > B .1x ≠ C .0x ≠ D .x 为任意实数3.若分式293x x -+无意义,则x 的取值为() A .0B .-3C .3D .3或-3 4.若分式方程2()8(1)5x a a x +=--的解为15x =-,则a 等于( ) A .56 B .5 C .56- D .-55.《九章算术》是中国古代数学名著,其中记载:每头牛比每只羊贵1两,20两买牛,15两买羊,买得牛羊的数量相等,则每头牛的价格为多少两?若设每头牛的价格为x 两,则可列方程为( )A .20151x x =+B .20151x x =-C .20151x x =+D .20151x x=- 6.若分式方程311x m x x -++=2无解,则m =( ) A .﹣3B .﹣2C .﹣1D .0 7.若分式3(1)(2)x x --有意义,则( ) A .x≠1 B .x≠2 C .x≠1且x≠2 D .x≠1或x≠28.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-9.“杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km 的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均速度为xkm /h ,则下列方程正确的是( )A .()22225115-=+%x xB .()2222111512-=+%x x C .()22225115-=+%x x D .()2222111512-=+%x x二、填空题三、解答题21.山西省平遥县政府为进一步挖掘“双林寺、老醯水镇、平遥古城”的旅游价值,计划在2019年开工建设一条途完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若先让甲队施工且甲队参与该项工程施工的时间不超过36天,则乙队加入后至少要施工多少天才能完成该项工程?22.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩.23.按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…① =(a ﹣1)•2(1)(1)ab a a +-…① =21ab a +…① 当a =1,b =1时,原式=12…①以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.24.由于新冠肺炎疫情暴发,某公司根据市场需求代理A 、B 两种型号的空气净化器,每台A 型净化器比每台B 型净化器进价多200元,用5万元购进A 型净化器与用4.5万元购进B 型净化器的数量相等.(1)求每台A 型、B 型净化器的进价各是多少元?(2)公司计划购进A 、B 两种型号的净化器共50台进行试销,其中A 型净化器为m 台,购买资金不超过9.8万元,试参考答案:。
《分式与分式方程》单元测试卷含答案精选全文完整版

可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
北师大版八年级下册数学第五章《分式与分式方程》综合练习题

《分式与分式方程》综合练习题一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6 7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.15.(2009春•营山县期末)已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.(2020秋•北京期末)依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=++,则++=三.解答题(共10小题)21.(2021•包河区三模)市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.(2021•平房区三模)某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.(2021•岳阳二模)岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.(2021•宝安区模拟)为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.(2020秋•香洲区期末)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.(2021春•滨湖区期中)小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.(2021春•大兴区期中)已知非零实数a、b满足等式,求的值.28.(2020秋•连山区期末)阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.(2020秋•乌苏市期末)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.30.(2021•禅城区校级一模)先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.参考答案一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=50【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据“现在生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.【解答】解:设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据题意,得﹣=1.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,利用本题中“生产400台机器所需时间比原计划生产450台机器所需时间少1天”这一个隐含条件,进而得出等式方程是解题关键.2.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.3.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.15【考点】分式方程的解;解一元一次不等式组.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据不等式组的解集为x≥6,列出不等式,求出a的范围;解出分式方程的解,根据方程的解是正整数,列出不等式,求得a的范围;检验分式方程,列出不等式,求得a的范围;综上所述,得到a的范围,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.【点评】本题考查了解一元一次不等式组,解分式方程,注意解分式方程一定要检验.4.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.5【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;一元一次不等式(组)及应用;推理能力.【分析】分别求出满足不等式有解与分式方程的解为正数的a的取值范围,再求出其中满足使分式方程的解为正整数的a的整数值,注意舍去增根的情况.【解答】解:解不等式①得x<2,解不等式②得x>﹣1,∵不等式组有解,∴﹣1<2,解得a<9,解分式方程=4﹣得y=,∵方程的解为正数,∴>0且≠3,∴a>﹣且a≠3,∴﹣<a<9且a≠3,满足使方程的解为正整数的整数a的值有0,6两个.故选:A.【点评】本题考查一元一次不等式组与分式方程的解,解题关键是求解过程要注意分式方程的增根情况.5.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣1【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据“结果比原计划提前一周完成任务”即可得出关于x的分式方程,此题得解.【解答】解:设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据题意,得:=+1.故选:C.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据有且只有两个整数解列出不等式求出a的范围;解分式方程,根据解为正数,且y﹣1≠0,得到a的范围;然后得到a的范围,再根据a为整数得到a的值,最后求和即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x≥,∴不等式组的解集为≤x≤2,∵不等式组有且只有两个整数解,∴0<≤1,∴0<a≤3;分式方程两边都乘以(y﹣1)得:1﹣3y+2a=﹣2(y﹣1),解得:y=2a﹣1,∵分式方程的解为正数,∴2a﹣1>0,∴a>;∵y﹣1≠0,∴y≠1,∴2a﹣1≠1,∴a≠1,∴<a≤3,且a≠1,∵a是整数,∴a=2或3,∴2+3=5,故选:C.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时别忘记检验.7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出不等式组的解集,根据不等式组有解且至多3个整数解,求得m的取值范围;解分式方程,检验,根据方程有整数解求得m的值【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<<2,∴﹣3<m<6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴(m﹣2)x=3,当m≠2时,x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,∴,m=3,1,﹣1.故选:C.【点评】本题考查了解一元一次不等式组,解分式方程,考核学生的计算能力,解分式方程时一定要检验.8.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.15【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a 的整数解为3,4,6,和为13.【解答】解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x﹣1)得:ax﹣2﹣3=x﹣1,解得:x=,∵x﹣1≠0,∴x≠1,∵方程有正数解,∴0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,和为13,故选:B.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程不要忘记检验.9.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时【考点】分式方程的应用.【专题】分式方程及应用.【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【解答】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.10.设x<0,x﹣=,则代数式的值()A.1B.C.D.【考点】分式的值;分式的加减法.【专题】计算题;整体思想.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.【点评】本题考查学生的整体的思想,解题的关键是熟练运用完全平方公式以及立方和公式,本题属于难题.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为﹣2.【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】分别解出两个一元一次不等式的解集,根据不等式组的解集为x≥5,列出不等式求得a的范围;解分式方程,根据方程有非负整数解,且y﹣2≠0列出不等式,求得a 的范围;综上所述,求得a的范围.根据a为整数,求出a的值,最后求和即可.【解答】解:,解不等式①得:x≥5,解不等式②得:x>a+2,∵解集为x≥5,∴a+2<5,∴a<3;分式方程两边都乘以(y﹣2)得:y﹣a=﹣(y﹣2),解得:y=,∵分式方程有非负整数解,∴≥0,∴a≥﹣2,∵≠2,∴a≠2,综上所述,﹣2≤a<3且a≠2,∴符合条件的所有整数a的数有:﹣2,﹣1,0,1,和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时一定记得要检验.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是4710元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).【考点】分式方程的应用.【专题】整式;运算能力.【分析】设乙的成本价为a,然后根据题意列出90﹣s=40%a,求得a,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,然后列式计算即可.【解答】解:设乙的成本价为a,根据题意列出90﹣s=40%a,解得a=70,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,m+n=50则有70n+m(3x+3×)=6213÷(1+30%)70n+70m+mx=4710.xm=,节后乙每盒成本98÷2÷(1+40%)=35,甲每盒成本2x+2×x+35﹣x=35+x,总成本35n+m(35+x)=35×50+×=2657.5.故答案为:2657.5.【点评】本题考查了列代数式和一元一次方程,根据题意正确列出代数式是解题的关键.13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】计算题;方程与不等式;应用意识.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.【考点】分式的化简求值.【分析】先根据题意得出x2=5x﹣1,再根据分式混合运算的法则进行计算即可.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(2009春•营山县期末)已知,则=﹣.【考点】分式的化简求值.【专题】探究型.【分析】先根据题意得出x﹣y=﹣2xy,再代入所求代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,原式====﹣.故答案为:﹣.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.【考点】分式的化简求值.【专题】分式;运算能力;推理能力.【分析】根据xyz=6,可以先将所求式子化简,然后根据x+a2=2010,y+a2=2011,z+a2=2012,可以得到x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,然后代入化简后的式子即可解答本题.【解答】解:∵xyz=6,∴++﹣﹣﹣=﹣=﹣==[(x﹣y)2+(y﹣z)2+(x﹣z)2],∵x+a2=2010,y+a2=2011,z+a2=2012,∴x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,∴原式=×[(﹣1)2+(﹣1)2+(﹣2)2]=×(1+1+4)==,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有27人.【考点】分式方程的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】设每人每天可检疫x头猪,该组检疫工作人员有y人,则每人半天检疫头猪,由甲养殖场的生猪比乙养殖场的生猪多1倍,根据题意可得不等式,从而得解.【解答】解:设每人每天可检疫x头猪,该组检疫工作人员有y人,由题意得:xy+x(1+20%)×<2[x(1+20%)×+6×],化简得:0.4y<11.4∴y<28.5,∵y只能为正整数,且有一人离开后,人数平分∴y的最大值为27.故答案为:27.【点评】本题是较复杂的不等式应用题,题目中有两个变量,但是列完之后,每个因式中都含有x,从而可以消掉,变成一元一次不等式,从而得解,本题的难点在于变量较多,不等关系的得出较为复杂.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比。
北师大八年级数学下第五章《分式与分式方程》单元精品检测卷含解析

北师大版八年级数学(下)单元测试卷第五章《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .yx ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d aD .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( ) A .减小了 B .不变 C .增大了 D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。
新编北师大版八年级数学下《第五章分式与分式方程》单元测试(有答案)

第五章分式与分式方程一、选择题1.分式﹣可变形为()A.﹣B.C.﹣D.2.在中,分式的个数是()A.2B.3C.4D.53.下列算式中,你认为错误的是()A. B. C. D.4.化简的结果为()A.﹣1B.1C.D.5.分式方程﹣2=的解是()A.x=±1B.x=﹣1+C.x=2D.x=﹣16.设m﹣n=mn,则的值是()A. B.0 C.1 D.-17.如果分式的值为零,那么的值是()A. B. C. D.8.如果分式的值为负数,则的x取值范围是( )A. B. C. D.9.解方程去分母得()A. B.C. D.10.若m+n﹣p=0,则的值是()A.-3B.-1C.1D.3二、填空题11. 方程的解为________.12. 若分式方程=a无解,则a的值为________13.若分式的值为零,则=________。
14. 分式方程﹣=0的解是________.15.化简:=________.16.________17.计算:=________ .18.已知关于x的方程=3的解是正数,则m的取值范围是________.三、解答题19.解方程:.20.解分式方程:.21.计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一、选择题D B B B D D C D C A二、填空题11.x=﹣112.1或﹣113.-314.1515.x+y16.a2-b²17.18.m>-6且m≠-4三、解答题19.解:=1+ ,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣120.解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解21.解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.。
第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)

2023年北师大版数学八年级下册《分式与分式方程》单元检测一、选择题(共12小题)1.下列式子是分式的是( )A.a-b2 B.5+yπ C.x+3x D.1+x2.下列是分式方程的是( )A.xx+1+x+43B.x4+x-52=0 C.34(x-2)=43x D.1x+2+1=03.若分式x+12-x有意义,则x满足的条件是( )A.x≠-1B.x≠-2C.x≠2D.x≠-1且x≠24.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.45.下列计算错误的是( )A.0.2a+b0.7a+b=2a+b7a+bB.x3y2x2y3=xyC.a-bb-a=﹣1 D.1c+2c=3c6.下列等式成立的是( )A.(-3)-2=-9B.(-3)-2=19C.(a-12)2=a14D.(-a-1b-3)-2=-a2b67.化简:等于( ).A. B.xy4z2 C.xy4z4 D.y5z8.化简:-x-2y2xy+x+6y2xy=( )A.2xB.4xC.-2xD.-4x9.解分式方程2x-1+x+21-x=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A.180x+6=120x-6B.180x-6=120x+6C.180x+6=120xD.180x=120x-611.若a+b=2,ab=﹣2,则ab +ba的值是( )A.2B.﹣2C.4D.﹣412.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.y2+y﹣3=0B.y2﹣3y+1=0C.3y2﹣y+1=0D.3y2﹣y﹣1=0二、填空题(共6小题)13.若分式的值为0,则x= .14.若关于x的方程«Skip Record If...»的解为x=4,则m= .15.计算:(﹣2xy﹣1)﹣3=.16.已知1a-1b=12,则aba-b的值是________.17.已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是.18.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.三、解答题(共8小题)19.计算:(a 2+3a)÷a 2-9a -3;20.计算:«Skip Record If...».21.解分式方程:x x -1-1=2x 3x -3.22.解分式方程:2x +2x-x +2x -2=x 2-2x 2-2x.23.先化简,再求值:1﹣÷,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.24.在解分式方程2-xx -3=13-x-2时,小玉的解法如下:解:方程两边都乘以x-3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是________________;(2)请你写出这个方程的完整解题过程.25.贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.26.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?答案1.C2.D3.C.4.D5.A6.B7.B8.A9.D10.A.11.D.12.A13.答案为:2.14.答案为:3;15.答案为:﹣y3 8x3.16.答案为:-2;17.答案为:k>﹣12且k≠0.18.答案为:520+45x=1.19.解:原式=a.20.解:原式=«Skip Record If...».21.解:方程两边同乘以3(x-1),得3x-3(x-1)=2x,解得x=1.5.检验:当x=1.5时,3(x-1)=1.5≠0,所以原方程的解为x=1.5.22.解:原方程可化为2(x+1)x-x+2x-2=x2-2x(x-2),方程两边同时乘x(x-2),得2(x+1)(x-2)-x(x+2)=x2-2,整理得-4x=2.解得x=-1 2 .经检验,x=-12是原方程的解.23.解:原式=1﹣•=1﹣==﹣,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得:x=2,y=1,当x=2,y=1时,原式=﹣1 3 .24.解:(1)① 去分母时漏乘常数项 (2)去分母,得2-x=-1-2(x-3).去括号,得2-x=-1-2x+6.移项,合并,得x=3.检验,将x=3代入x-3=0,所以原方程无解.25.解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.26.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意得202x3+60×(12x3+1x)=1,解得x=180.经检验,x=180是原分式方程的根,且符合题意,∴2x3=120,则甲、乙两队单独完成这项工程分别需120天、180天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(1120+1180)=1,解得y=72,需要施工费用72×(8.6+5.4)=1008(万元),∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元。
北师版八下数学第五章分式与分式方程单元测试试题(含答案)

2021春北师版八下数学第五章分式与分式方程单元测试题〔本试卷总分值:100分,时间:90分钟〕一、选择题〔每题3分,共30分〕1 .以下分式是最简分式的是〔〕A.m1B.xy yC.x yD.61m1m3xyx2y232m2 .将分式x2中的x、y的值同时扩大2倍,那么分式的值〔〕x yA.扩大2倍B.缩小到原来的1C.保持不变D.无法确定23.假设分式x21的值为零,那么的值为() x1A.或B. C. D.4 .对于以下说法,错误的个数是〔〕①是分式;②当x1时,x21x1成立;③当时,分式x3的值是零;x1x31a a2a33.④ab a1a;⑤x yx y;⑥2xb2x5.计算1111的结果是〔〕121 x xB. C.x1 D.xx x1设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,那么甲、乙两人合做一天的工作量为〔〕A. B.1 C.ab D.112a ba b7.分式方程x x 1的解为〔 〕x 3 x 1A.x1B. x 1C. x3D. x38.以下关于分式方程增根的说法正确的选项是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根9.某人生产一种零件,方案在 天内完成, 假设每天多生产 个,那么 天完成且还多生产 个,问原方案每天生产多少个零件 ?设原方案每天生产 个零件,列方程得()A . 30x 10 25 B. 30x 10 25 C. 30x 25 10D. 30x 10 x 6 x 6 x 6 x 6 251010. 某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独 做,那么超过规定日期3 天,现在甲、乙两队合做 2天,剩下的由乙队独做,恰好在规定日期完 成,求规定日期.如果设规定日期为 天,下面所列方程中错误的选项是( ) A.2x 1 B. 2 3 C.1 12 x2 1 D. 1 xxx3xx3xx3x31xx3二、填空题〔每题 3分,共24 分〕11. 假设分式x3的值为零,那么x .x 357m 2n12. 将以下分式约分:(1)x ;(2);(3) (a b)2.8x 235mn 2(b a)213. 计算:2a 3b 6ab 2 =.c 3b 2 c 214.,那么m n m 2________.m n m n m 2 n 215. 当x ________时,分式3 无意义;当x______时,分式x2 9的值为.x 1 x 316.假设方程x2m有增根x5,那么m_________. x5x5为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支持,每日比原方案多种20棵,结果提前4天完成任务,原方案每天种植多少棵树?设原方案每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10km/h,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2km所用时间,与以最大速度逆流航行km所用时间相等.请你计算出该冲锋舟在静水中的最大航速为.三、解答题〔共46分〕19.〔8分〕计算与化简:〔1〕2x2y;〔2〕a2a1a21;〔3〕2a1;〔4〕a2a1. y2x4a4a24a24a2a120.〔6分〕先化简,再求值:3a2ab,其中a8,b1. 9a26abb22112x3xy 2y的值.21.〔6分〕假设,求x y x2xy y 22.〔6分〕当x=3时,求112的值.2xx2x2x24x42x23.〔6分〕32b2a a22ab13ab0,求代数式ab1aa的值.2ab b〔8分〕解以下分式方程:〔1〕10030;〔2〕79x4x51.x x723x23x25.〔6分〕某人骑自行车比步行每小时快8km,坐汽车比骑自行车每小时快16km,此人从地出发,先步行4km,然后乘坐汽车10km就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.参考答案解析:m1m1,故A不是最简分式;xyy y(x1)x1,故B不是1m13xy3xy3xm1最简分式;61m 61,故D不是最简分式;C是最简分式.32m32解析:因为2x 24x22x2x2,所以分式的值扩大2倍.22x2y2xy xy yx解析:假设分式x21的值为零,那么所以x1解析:不是分式,故①不正确;当x1时,x21x1成立,故②正确;x1当时,分式x 3的分母,分式无意义,故③不正确;x3,故④不正确;,故⑤不正确;,故⑥不正确.解析:1111x2. x11解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为11,所以甲、乙两人合做一天的工作量为,应选D.a b经检验,是分式方程的解.解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根.解析:原方案生产个零件,假设每天多生产个,那么天共生产个零件,根据题意列分式方程,得30x1025,应选B.x 6解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,112x21,整理,得2x1,所以21x,即23,所以A、xx3x3xx3x x3xx3B、C选项均正确,选项D不正确.11.解析:假设分式x3的值为零,那么所以.x3x5x37m2n m(a b)2212.解析:(1);(2);(3)a b.2228x835mn5n(b a)a b2113.a22a3b6ab22a3b c2a23解析:3223223.3bc cb c cb6ab3bc14.9解析:因为,所以m4n,73所以m n m2mmn nmn m2mnmnm2n2mnmnmnmnmnmnm2mnmnn2m2n2n2n29mnmn mnmn447.n27nn n n339-3解析:由得,所以当时,分式3无意义;x1解析:方程两边同时乘,得,化简得.由时,分式x 29的值为.x316.5解析:方程两边都乘 x5,得x2x5m .22.解:1 1 21 x 22x 1 xx2 x 22xx22 x 2 2xx 22x2x222∵原方程有增根,∴最简公分母x50 ,解得x5 .把x 5代入x2x5m ,得50 m ,解得m5.17.960960 解析:根据原方案完成任务的天数实际完成任务的天数,列方程x4x20即可,依题意可列方程为 960960 4.1 x2x423. 解:由,得21 1 .当 时,1 12x4x2 2 x2 32a b10,a 1,3b解得4 3a 0,1 b2.2xx2018.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,那么 ,解得 .2a ab aaba 222b] bababab .[][ab abababbab ab121,1时,1当421.19.解:〔1〕原式2x?2y4.y 2?xy〔2〕原式a 1 a 2 a 2 a 2.a2a 1 a1a 1 a 22〔3〕原式2aa22a a2 =a 2a2a2a2a2a2a2a2a2〔4〕原式a 2a 1=a 2a1 a1=a 2a21= 1 .a 11a 1a 1a120.解:3a 2ab b 2 a3a b a .当, 时,原式a9a 26ab 3a b 23a b3ab21.解:因为 11 所以yx所以2x3xy 2y2x y 3xy 4xy 3xy xy 1.x2xy y (x y) 2xy 2xy 2xy 4xy41 .a28 8161 49.4924224b1 1 424 224.解:〔1〕方程两边都乘 ,得.解这个一元一次方程,得.检验:把 代入原方程,左边 右边.所以, 是原方程的根.〔2〕方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边.所以,是原方程的根.解:设此人步行的速度是km/h ,依题意可列方程41014,解这个方程,得.xx 8 16 x8检验可知, 是这个方程的根 .答:此人步行的速度为 6km/h .。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)

第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
北师大版八年级数学下册第五章分式与分式方程测试卷

北师大版八年级数学测试卷(考试题)《分式的加减法》习题一、填空题1.计算:242+-x = . 2.计算:a ba b b a+=++________. 3.分式25,34cabc a 的最简公分母是_________.. 4.计算:23124xy x+=________. 5. 计算213122xx x ---- 的结果是____________.. 6.计算:abcac ab 433265+-= . 7.若222222m xy y x yx y x y x y--=+--+,则m =________. 8.当分式2121111y y y ---+-的值等于零时,则y=_________. 二、选择题:1.若xx 1=,则分式36224+-+x x x 的值为( )A .0B . 1C .-1D .-22.分式x-y +22y x y +的值为( )A. 22x y y x y-++B .x+yC. 22x y x y++D.以上都不对3. 如果分式b a b a +=+111,那么abb a +的值( ) A .1 B .-1 C .2 D .-24.化简11(m )(n )nm -÷-的结果是( ) A .1 B .m n C .nmD .-15.化简11123x x x++等于( ) A .12x B .32x C .116x D .56x6.计算37444a a b ba b b a a b++----得( ) A .264a b a b +-- B .264a ba b+- C .2- D .2 三、解答题 1.计算(1)222)3(9)3(x y x y x ----- (2)211x x x --- (3)4412222+----+x x x xx x (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭2.已知21(y 1)(y 2)12y A By y +=+-+-+,求A 、B 的值.3.先化简,再求值:26333x x x x x x +-+--,其中32x =.4. 一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案一、填空题1. 答案:2x x 2+ 2.答案:1; 3. 答案:15bc 2; 4. 答案:264x yx y +;5. 答案:223-5-x x ; 6. 答案:10c 8b 912abc-+; 7. 答案:2x ; 8. 答案:23;二、选择题1. C ;2.C ;3.B ;4.B.5.C ;6.D ;三、解答题1. 答案:(1)33+-x x ;(2)11x -;(3)2)2(4--x x x ;(4)12y -+;解析:【解答】(1)222)3(9)3(x yx y x -----222x 9(x 3)(x 3)x 3(x 3)(x 3)x 3-+-+===---; (2)211x x x ---=222(1)(1)11111+---=-----x x x x x x x x x =11x -; (3)4412222+----+x x x x x x =222222x 2x 1x 4x x x 4x(x 2)(x 2)x(x 2)x(x 2)x(x 2)+-----=-=----- (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭=22(y 1)(y 1)32111114y y y y y y y y ⎛⎫-+---÷-=⨯ ⎪-----⎝⎭211(y 2)(y 2)y y y --=⨯-+-=12y -+ 2.答案:A=1,B=1; 解析:【解答】21)2)(1(12++-=+-+y B y A y y y =)2)(1()1()2(+--++y y y B y A =)2)(1()2()(+--++y y B A y B A ,所以:A+B=2,2A-B=1,解得A=1 ,B=1 3. 答案:133解析:【解答】原式=)3()3)(5()3(152)3(93622--+=--+=--+--x x x x x x x x x x x x x=.3133101515=+=+=+x x x 4. 答案:nm mn m ++22(天)解析:【解答】甲单独需m 天完成,所以甲每天做m1,乙单独完成比甲单独完成多需n 天,所以乙每天做n m +1,所以二人每天共做:m 1+n m +1=)(2n m m n m ++,所以甲乙合作需nm mnm ++22(天)完成.附赠材料:怎样提高答题效率 直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级数学下册《分式与分式方程》章节测试卷(七)
一、填空题
1. 当x_________时,分式 1x+1
有意义; 2. 写出等式中未知的式子:( )c 2+7c = 1c+7
; 3. 约分:10a 2b 4ab 2 =______________;
4. 分式:1x-1 、1x-2
的最简公分母为:____________________; 5. 若方程x x-4 =2 + a x-4
有增根,则增根为x=__________________; 6. 当x=______________时,分式32x-1
的值为1 ; 7. 若x=2是方程 x-a x+1 = 13
的解,则a=_____________; 8. 已知公式:1R
= 1R 1 + 1R 2 ,若R 1 =10,R 2=15,则R=___________; 9. 观察下列各式:
22-4 + 66-4 =2,55-4 + 33-4 =2,77-4 + 11-4 =2,1010-4 + -2-2-4 =2,依照以上各式形
成的规律,在括号内填入正确的数,使等式
2020-4 + ( )( )-4 =2成立 10.计算 22142
a a a -=-- . 11.方程 3470x x
=-的解是 . 12.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132
中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .
13.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12
)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13
)+…。