利用椭圆定义解题
椭圆经典例题讲解
椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对12222=+b y a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== 。
4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知|OA |=.)(221||211r a r a PF -=-⨯=故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。
高考数学 专题06 椭圆解题技法(解析版)
专题06椭圆解题技法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b 2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b 2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【题型总结】(一)椭圆的定义应用 (二)焦点三角形的应用(三)椭圆的几何意义与离心率 (四)椭圆与圆的综合(五)向量的几何意义与椭圆 (六)向量的数量积与椭圆综合 (七)椭圆中的反射 (八)椭圆的应用问题 (九)轨迹的求法 四.【题型方法】 (一)椭圆的定义应用例110=的化简结果为( )A.2212516x y += B.2212516y x += C.221259x y += D.221259y x +=【答案】D【解析】曲线方程()()2222+4+410x y x y ++-=,所以其几何意义是动点(),x y 到点()0,4-和点()0,4的距离之和等于10,符合椭圆的定义. 点()0,4-和点()0,4是椭圆的两个焦点.因此可得椭圆标准方程()222210y x a b a b+=>>,其中210a =,所以5a =4c =,所以223b a c =-=,所以曲线方程的化简结果为221259y x+=.故选D 项.练习1.已知椭圆221259x y +=,1F 、2F 是其左右焦点,过1F 作一条斜率不为0的直线交椭圆于A 、B 两点,则2ABF ∆的周长为( ) A.5 B.10C.20D.40【答案】C【解析】由椭圆221259x y +=,得5a =,如图:由椭圆定义可得,12||||210AF AF a +==,12||||210BF BF a +==;2ABF ∴∆的周长为:2122C ||||||ABF AB AF BF ∆=++1212||||||||420AF AF BF BF a =+++==.故选:C .(二)焦点三角形的应用例2.设1F ,2F 分别为椭圆()222210x y a b a b+=>>的左、右焦点.椭圆上存在一点P 使得123PF PF b -=,1294PF PF ab ⋅=.则该椭圆的离心率为( ) A.23 B.223C.13D.24【答案】B【解析】椭圆定义可得122PF PF a +=,又123PF PF b -=, 解得11|(23)2|a b PF =+,21(23)2PF a b =-,1294PF PF ab ⋅=,可得()22194944a b ab -=,即为224990a ab b --=,化为(3)(34)0b a b a -+=,可得3a b =,2222922c a b b b b =-=-=,则该椭圆的离心率为22c e a ==. 故选:B .练习1.已知椭圆24x +23y =1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形【答案】B【解析】由题可知121214MF MF MF MF ⎧⎪⎨+⎪⎩-==,解得125232MF MF ⎧⎪⎪⎨⎪⎪⎩==,又因122F F =,2221221F F MF MF +=,所以△MF 1F 2为直角三角形 答案选B(三)椭圆的几何意义与离心率例3.设F 1,F 2分别是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为( ) A.12 B.23 32 【答案】D 【解析】设|F 1B |=k (k >0),则|AF 1|=3k ,|AB |=4k ,∴|AF 2|=2a -3k ,|BF 2|=2a -k∵cos ∠AF 2B =35,在△ABF 2中,由余弦定理得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2|•|BF 2|cos ∠AF 2B , ∴(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k ,∴|AF 2|=|AF 1|=3k ,|BF 2|=5k , ∴|BF 2|2=|AF 2|2+|AB |2,∴AF 1⊥AF 2,∴△AF 1F 2是等腰直角三角形, ∴c =22a ,∴椭圆的离心率e =22c a =,故选:D .练习1.设1F 、2F 是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30o 的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45【答案】C【解析】如下图所示,21F PF ∆是底角为30o 的等腰三角形,则有1221221,30F F PF PF F F PF =∠=∠=o所以2260,30PF A F PA ∠=∠=o o,所以22322322PF AF a c a c ⎛⎫==-=- ⎪⎝⎭又因为122F F c =,所以,232c a c =-,所以34c e a == 所以答案选C. (四)椭圆与圆的综合例4.已知椭圆()2222:10x y C a b a b+=>>的右焦点()(),0F c c b >,O 为坐标原点,以OF 为直径的圆交圆222x y b +=于P 、Q 两点,且PQ OF =,则椭圆C 的离心率为( )3B.122 6 【答案】D【解析】如下图所示,设点P 为两圆在第一象限的交点,设OF 的中点为点M ,由于两圆均关于x 轴对称,则两圆的交点P 、Q 也关于x 轴对称,又PQ OF c ==,则PQ 为圆M 的一条直径,由下图可知,PM x⊥轴,所以点P 的坐标为,22c c ⎛⎫⎪⎝⎭,将点P 的坐标代入圆222x y b +=得22222c c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得2222222c b a c ==-,所以,2223a c =,因此,椭圆的离心率为222633c c e a a ====,故选:D. 练习1. .如图,已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为( )A .32B .53C .63D .255【答案】B【解析】如图:连接OQ ,1PF ,Q 点Q 为线段2PF 的中点,1//OQ PF ∴,112OQ PF =,122PF OQ b ∴==,由椭圆定义,122PF PF a +=,222PF a b ∴=-Q 线段2PF 与圆222x y b +=相切于点Q ,2OQ PF ∴⊥,12PF PF ∴⊥,且122F F c =,222(2)(22)(2)b a b c ∴+-=即32b a =,2259a c =,5c e a ∴==故选:B .(五)向量的几何意义与椭圆例5. 设F ,B 分别为椭圆22221(0)x y a b a b+=>>的右焦点和上顶点,O 为坐标原点,C 是直线b y x a =与椭圆在第一象限内的交点,若()FO FC BO BC λ+=+u u u r u u u r u u u r u u u r,则椭圆的离心率是( )A 221+B .2217C .213D 21【答案】A【解析】根据()FO FC BO BC λ+=+u u u r u u u r u u u r u u u r,由平面向量加法法则,则BF 与OC 交点为OC 的中点,故BFOBFC S S ∆∆= ,由22221x y a b b y x a ⎧+=⎪⎪⎨⎪=⎪⎩得22C ,BFO BFC S S ∆∆=Q ,则2BOFC BOF S S bc ∆==112222BOFC BOC OFC S S S b c bc ∆∆=+=+= 可得(221)a c = 2217221c e a ∴===- 故选:A .方法2,设BF 与OC 交于点M ,由条件知M 是OC 的中点,则)22,22(baM又B (0,b ),F (c ,0),B ,M ,F 三点共线,所以MF BF k k =,即c abcb-=-2222可得(221)a c =2217221c e a ∴===-练习1.设椭圆()2222:10x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0FA FB ⋅=u u u r u u u r,2FB FA FB ≤≤,则椭圆C 的离心率e 的取值范围是( ) A .25,23⎣⎦ B .)5⎣ C .2312⎤⎢⎥⎣⎦D .)31,1⎡⎣ 【答案】A【解析】设椭圆左焦点为F ',连接,AF BF ''由椭圆的对称性可知,四边形AFBF '为平行四边形0FA FB ⋅=u u u r u u u rQ FA FB ∴⊥ ∴四边形AFBF '为矩形设AF m =,AF n '=,则2m n a +=()222222424m n m n mn a mn c ∴+=+-=-=,解得:22mn b =22222m n m n c mn n m b+∴=+= ※(关键步骤)2FB FA FB ≤≤Q []1,2AF AF m FB AF n ∴==∈' 52,2m n n m ⎡⎤∴+∈⎢⎥⎣⎦即222522c b ≤≤ 2222522c a c ∴≤≤-,即2225212e e ≤≤-,解得:21529e ≤≤25e ∴∈⎣⎦本题正确选项:A方法2,设∠AF’F =α,直角∆F’AF 中,AF’=2ccosα,AF=2csin α,AF+AF’=2a 即2ccosα+2csin α=2a)4sin(21cos sin 1πααα+=+==a c e 直角∆F’AF 中tan α=AF AF' =AF BF ∈[1,2],则],4[0απα∈其中2tan 0=α,51cos ,52sin 00==αα )4sin(21cos sin 1πααα+=+==a c e 在],4[0απα∈上单调递增, 当4πα=是e 最小值为22当0αα=时,e 最大值为3551521=+(六)向量的数量积与椭圆综合例6. .设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=u u u u r u u u r ,222AF F B =u u u u v u u u u v,则椭圆E 的离心率为( )A .23B .34CD.4【答案】C【解析】222AF F B =u u u u r u u u u rQ 设2BF x =,则22AF x =由椭圆的定义,可以得到1122,2AF a x BF a x =-=-,120AF AF ⋅=u u u r u u u u rQ ,12AF AF ∴⊥ 在1Rt AF B V 中,有()()()2222232a x x a x -+=-,解得3ax =,2124,33a a AF AF ∴== 在12Rt AF F △中,有()22242233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理得225=9c a,c e a ∴==故选C 项.练习1. 已知椭圆C :2222x y 1(a b 0)a b+=>>的左右焦点分别为1F ,2F ,O 为坐标原点,A 为椭圆上一点,且12AF AF 0⋅=u u u r u u u r,直线2AF 交y 轴于点M ,若12FF 6OM =,则该椭圆的离心率为( ) A.13C.58【答案】D【解析】结合题意,可知122,3c F F c OM ==则,故21tan 3MF C ∠=,结合120AF AF ⋅=u u u v u u u u v ,可知01290F AF ∠= 故1213AF AF =,设12,3AF x AF x ==,所以234a x x x =+=,()22224310c x x x =+=,所以c e a ==D 。
利用椭圆定义解决焦点三角形周长或边长问题
双曲线解题方法练习一、单选题待定系数法求双曲线方程1.过双曲线 :的右顶点作 轴的垂线与 的一条渐近线相交于点 ,若 的右焦点到点, 距离相等且长度为 2,则双曲线的方程为( )A.B.C.D.一、单选题相同渐近线双曲线方程的求法1.已知双曲线 (不含端点)有且只有一点 满足A.B.的左,右顶点为 , ,右焦点为 , 为虚轴的上端点,在线段 上 ,则双曲线离心率为( )C.D.2.已知双曲线 :(,)的左、右焦点分别为 , ,过点 且斜率为 的直线交双曲线于 , 两点,线段 的垂直平分线恰过点 ,则该双曲线的离心率为( )2.已知双曲线 直线与圆与圆恰好有 个不同的公共点, 是双曲线 的右焦点,过点 的切于点 ,则 到 左焦点的距离为( )A.C.D.B.二、填空题第 II 卷(非选择题)3.对于中心在原点的双曲线,给出下列三个条件: ①离心率为 2;②一条渐近线的倾斜角为 ;③实轴长为 4,且焦点在 x 轴上.写出符合其中两个条件的一个双曲线的标准方程________.A.B.C.D.3.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为 , ,且两条曲线在第一象限的交点为 ,若是以 为底边的等腰三角形.椭圆与双曲线的离心率分别为 , ,则 的取值范围是( )A.B.C.D.4.已知点 P 是双曲线下支上的一点, 、 分别是双曲线的上、下焦点,M 是的内心,且,则双曲线的离心率为( )A.2B.C.3D.4.曲线的焦点是双曲线 的焦点,点在 上,则 的方程是________.5.双曲线 C:的左、右焦点为 F1,F2,直线 yb 与 C 的右支相交于点 P,若|PF1|=2|PF2|,则双曲线 C 的离心率为_____;若该双曲线的焦点到其渐近线的距离是 ,则双曲线的方程为_____.5.设双曲线的上焦点为 F,过点 F 作与 y 轴垂直的直线交两渐近线于 A,B 两点,且与双曲线在第一象限的交点为 P,设 O 为坐标原点,若,e 的值是( ),则双曲线的离心率圆 锥 曲 线 专题练习1/5A.3B.C.6.过双曲线的一个焦点 作垂直于实轴的直线,交双曲线于 于( ), 是另一焦点,若A.B.C.D. ,则双曲线的离心率 等一、单选题1.已知双曲线 :(,)的左、右焦点分别为 , ,过点 且斜率为 的直线交双曲线D.于 , 两点,线段 的垂直平分线恰过点 ,则该双曲线的离心率为( )7.双曲线的左、右焦点为 , ,抛物线 :的焦点为 ,点 为A.B.C.D.双曲线 与抛物线 的一个交点,若线段 的中点在 轴上,则该双曲线的离心率为( )A.二、填空题B.C.D.第 II 卷(非选择题)2. 如图所示,已知双曲线 :对称点为 ,满足,且的右焦点为 ,双曲线的右支上一点 ,它关于原点 的 ,则双曲线 的离心率是( )8.如图所示,图中的多边形均为正多边形, , 是所在边的中点,双曲线均以图中的 , 为焦点,则图①的双A.B.C.D.曲线的离心率为_____;图②的双曲线的离心率为_____.3.如图,双曲线 : 为 的中点.若等腰的底边的左、右焦点分别为 , ,过 作线段 的长等于 的半焦距,则 的离心率为( )与 交于点 ,且圆 锥 曲 线 专题练习A.B.C.D.4.已知是双曲线上不同的三点,且 关于原点对称,若直线的斜率乘积,则该双曲线的离心率是( )2/5A.2D.B.C.8.F1,F2 分别为双曲线(a,b>0)的左、右焦点,点 P 在双曲线上,满足0,若△PF1F2 的5.已知双曲线:,点 的坐标为,斜率为 的直线与双曲线的左右两支分别交于 ,内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为_____.两点,直线 为( )交双曲线于另一点 ,直线 交双曲线于另一点 .当直线的斜率为 时,此双曲线的离心率9.如图,双曲线 为直径的圆内切于菱形的两顶点为 , ,虚轴两端点为 , ,两焦点为 , ,若以 ,切点分别为 , , , .则(1)双曲线的离心率 ______;(2)菱形的面积 与矩形的面积 的比值 ______.A.B.C.D.6.下列三图中的多边形均为正多边形,M、N 是所在边上的中点,双曲线均以图中的 F1、F2 为焦点,设图①②③中的 双曲线的离心率分别为 e1、e2、e3,则()10.已知双曲线 ,则 的离心率为______.11.已知双曲线(的右焦点为 ,过 且斜率为 的直线交 于 、 两点,若)的左右焦点分别为, 为坐标原点,点 为双曲线右支上一点,若,,则双曲线 的离心率的取值范围为_____.A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e212.已知椭圆与双曲线有公共的左、右焦点 、 ,它们在第7.已知双曲线 :的左焦点为 ,右顶点为 ,以 为圆心, 为半径的圆交 的左支于, 两点,且线段 的垂直平分线经过点 ,则 的离心率为( )一象限交于点 ,其离心率分别为 、 ,以 、 为直径的圆恰好过点 ,则_____.A.二、填空题B.C.D.第 II 卷(非选择题)圆 锥 曲 线 专题练习3/5一、单选题渐近线综合问题6.己知双曲线的右支与焦点为 的抛物线,则双曲线 的渐近线方程为( )交于 两点,若1.设直线 满足A.()与双曲线 C:(,)的两条渐近线分别交于点 A,B.若点,则该双曲线的渐近线方程为( )B.C.D.2.设双曲线的左、右焦点分别为 , ,以 为圆心,为半径的圆与双曲线在第一、二象限内依次交于 , 两点,若,则该双曲线的离心率是()D.2A.B.C.3.已知双曲线的左焦点为 ,以 为直径的圆与双曲线 的渐近线交于不同原点的两点,若四边形的面积为,则双曲线 的渐近线方程为( )A. 7.已知抛物线B. C.的焦点 F 恰好是双曲线D. 的右焦点,且双曲线过点,则该双曲线的渐近线方程为( )A.B.C.D.8.已知是双曲线的左、右焦点, 是双曲线 右支上一点, 是线段 的中点, 是坐标原点,若 ()A.周长为 B.( 为双曲线的半焦距), C.,则双曲线 的渐近线方程为 D.A. 4.已知双曲线B. 的两顶点分别为C.D., 为双曲线的一个焦点, 为虚轴的一个端点,若在线9.已知双曲线,双曲线的离心率相同.若 是双曲线 一条渐近线上的点,且 程为( )的左、右焦点分别为 、 ,双曲线 、( 为原点),若,则双曲线 的方段 上(不含端点)存在两点 (),使得A.5.已知双曲线 最大值为( ) A.3B. 的离心率B.,则双曲线的渐近线斜率 的平方的取值范围是C.D.,且双曲线的渐近线与圆C.2D.相切,则 的A.B.C.D.10.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为A.B.C.D.11.知双曲线 C:(相交于点 J,K.若, ),点, 为原点,以 为直径的圆 与圆 :,则双曲线 C 的渐近线方程为( )圆 锥 曲 线 专题练习4/5A.B.C.D.12.设 、 分别为双曲线(,)的左、右焦点, 为双曲线右支上一点,若的最大值为 ,则该双曲线的渐近线斜率的取值范围是( )A.B.C.D.二、多选题13.已知双曲线 上的点到和的距离之差的绝对值为 ,则下列结论正确的是( )A. 的标准方程为 C. 的焦点到渐近线的距离为三、填空题B. 的渐近线方程为D.圆与 恰有两个公共点第 II 卷(非选择题)14.已知双曲线 线的垂线,垂足为 ,若的两个焦点分别为 ,则双曲线 的离心率为______.,过点作该双曲线渐近15.如图, 、 是双曲线的左、右焦点,过 的直线 与双曲线的左右两支分别交于点、 ,若为等边三角形,则双曲线的渐近线方程为______.16.在平面直角坐标系 中,双曲线抛物线交于 两点.若的上支与焦点为 的 ,则该双曲线的渐近线方程为___.圆 锥 曲 线 专题练习5/5。
怎样利用定义求解与椭圆有关的最值问题
椭圆是一种重要的圆锥曲线,与椭圆有关的最值问题在高中数学试卷中比较常见,定义法是解答此类问题的重要方法.椭圆的定义除了第一定义,还有第二定义、第三定义.下面,我们重点谈一谈如何运用椭圆的这三个定义来解答与椭圆有关的最值问题.一、利用椭圆的第一定义求解椭圆的第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.在运用椭圆的第一定义解题时,要先确定两个定点的位置,然后建立关于动点M的关系式:MF1+MF2=2a.这样便可根据该关系式来寻找取得最小值的点M的位置,进而求得最值.例1.已知P()-2,3,F2为椭圆x225+y216=1的右焦点,点M在椭圆上移动.求MP+MF2的最大值和最小值.分析:所求的最值与MF2有关,可利用椭圆的第一定义建立关系式MF1+MF2=2a,将求MP+MF2的最值转化为求MP-MF1的最值,根据三角形三边之间的关系和性质便可求得问题的答案.解:如图1所示,连接PF1,延长PF1交椭圆于点M1,延长F1P交椭圆于点M2.由椭圆的第一定义知MF1+MF2=2a,所以MP+MF2=MP+2a-MF1,由三角形三边之间的关系知-PF1≤MP-MF1≤PF1,当且仅当M与图中M1合时取右边的等号,M与图中M2重合时取左边的等号.因为2a=10,PF1=2,所以MP+MF2的最大值为12,所以MP+MF2的最小值为8.图1一般地,若椭圆的方程为x2a2+y2b2=1(a>b>0),F1,F2分别是椭圆的左右焦点,P()x0,y0为平面内的一个定点,M为椭圆上的任意一点,当定点在椭圆的内部时,2a-PF1≤MF2+MP≤2a+PF1;当定点在椭圆的外部时,PF2≤MF2+MP≤2a+PF1.二、利用椭圆的第二定义求解圆锥曲线的第二定义:到定点的距离与到定直线的距离的比是e的点的轨迹.在运用椭圆的第二定义解题时,我们先要明确定点(即焦点F)和定直线(准线x=a2c)的位置,然后建立关于动点P(x0,y0)的关系式MP=e||||||x0-a2c,利用其关系或关系式来解题.例2.已知F1是椭圆5x2+9y2=45的左焦点,P是椭圆上动点,点A(1,1)是一个定点,求PA+32PF1的最小值.分析:明确题目中的数量关系后可以发现,所求目标中的32是椭圆离心率的倒数,联系第二定义:椭圆上的点到左焦点和到左准线的距离d之比为离心率e,可得PF1d=23,即d=32PF1,不难得到PA+32PF1=PA+d,所以PA+32PF1的最小值为椭圆上的P点到A点和到左准线的距离和的最小值,只需过点A,D作左准线的垂线即可.解:由题意可知,椭圆5x2+9y2=45的长半轴a=3,短半轴b=5,半焦距c=2,离心率e=23,右焦点F2()2,0,左准线x=-92.如图2所示,过点A,D作左准线的垂线,垂足为D1、D2.设P点到左准线的距离为d.由椭圆的第二定义可知PF1=ed,所以PA+32PF1=PA+32ed=PA+d,则PA+d的最小值就是点A到左准线x=-92的距离AD1=1+92=112,当且仅当点P在P1处PA+d取最小值,故PA+d的最小值为112.图2探索与研究颜琴55当与椭圆有关的最值问题涉及定点、定直线时,就要利用椭圆的第二定义,把与动点有关的最值问题转化为与定点、定直线之间的距离来求解.三、利用椭圆的第三定义求解椭圆的第三定义是指平面内动点到两定点A (a ,0)和B (-a ,0)的斜率的乘积等于常数e 2-1的点的轨迹.这也就是说,A ,B 是椭圆C :x 2a 2+y 2b2=1()a >b >0上的两个顶点,P 是椭圆上异于A ,B 的一个动点,若k PA ,k PB 的斜率都存在,则k PA ∙k PB =e 2-1=-b 2a2.运用椭圆的第三定义,可以快速找到过椭圆上两个顶点的直线的斜率之间的关系.例3.已知椭圆C :x 2a 2+y2b2=1()a >b >0的长轴长,短轴长和焦距成等差数列,若A ,B 是椭圆长轴的两个端点,M ,N 是关于x 轴对称的两点,直线AM ,BN 的斜率分别是k 1,k 2(k 1∙k 2≠0),则||k 1+||k 2的最小值为_______.分析:由长轴长、短轴长和焦距成之间的关系得到椭圆的离心率,由A ,B ,M ,N 的位置可联想到椭圆的第三定义,求得k 1∙k 2的值,再利用基本不等式就可以使问题得解.解:由椭圆的长轴长,短轴长和焦距成等差数列,得2a +2c =4b ,又b 2=a 2-c 2,可得e =c a =35,由椭圆的第三定义可得k 1∙k 2=e 2-1=-1625,而M ,N 是关于x 轴对称的两点,则k 1=-k 2,可得k 1∙k 2=1625,所以||k 1+||k 2≥2k 1k 2=85,当且仅当k 1=k 2时取等号.由以上几个题目可以看出,与椭圆有关的最值问题一般都会涉及椭圆上的定点、定直线.如果问题中的定点为焦点,就要考虑利用椭圆的第一定义来解题;如果问题中涉及的定点、定直线分别为焦点、准线,就要考虑用椭圆的第二定义来解题;如果问题中涉及了椭圆的顶点以及过顶点的直线的斜率,就要考虑采用椭圆的第三定义解题.(作者单位:江西省余干第一中学)探索与研究在学习中,我们经常会遇到抽象函数问题,此类问题一般侧重于考查同学们的直观想象能力和抽象思维能力.抽象函数一般没有具体的函数解析式,与x a 、sin x ()cos x 、ln x 、e x 的乘积构成的函数解析式也不明确,我们很难快速解出.而运用构造法,借助构造的新函数的性质、图象,则能快速破解此类问题.例1.已知定义在R 上的函数f ()x 为奇函数,当x ≤0时,恒有xf ′(x )≥3f ()-x ,则不等式8xf ()2x >()1-3x 3x 2f ()1-3x 的解集为_____.解:∵f ()x 是定义在R 上的奇函数,∴f ()-x =-f ()x ,当x ≤0时,由xf ′()x ≥3f ()-x 可得x 3f ′()x +f ()x ≥0,令g ()x =x 3f ()x ,∴当x ≤0时,g '()x =2x 2f ()x +x 3f ′()x =3x 2éëùûf ()x +x 3f '()x ≥0,∴g ()x 在(]-∞,0上单调递增,∵g ()-x =-x 3f ()-x =x 3f ()x =g ()x ,g ()x 是偶函数,∴g ()x 在[)0,+∞上单调递减,不等式8xf ()2x >()1-3x 3x2f ()1-3x 等价于8x 3f ()2x >()1-3x 3f ()1-3x ,即g ()2x >g ()1-3x ,等价于||2x <||1-3x ,解得x <15或x >1,∴不等式的解集为æèöø-∞,15⋃()1,+∞.56。
椭圆经典例题分类汇总
椭圆经典例题分类汇总1.椭圆第一定义的应用例1椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k . 说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方.(2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x . 解之得41-=x 或5121-=x .① 另一方面221≤≤-x .②则①与②矛盾,所以满足条件的点M 不存在.例2已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值. 解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1)⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明? 5.相交情况下--弦长公式的应用例1已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程. 例2已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=6.相交情况下—点差法的应用例1已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得 ()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。
怎样运用椭圆的定义求解与椭圆有关的轨迹问题
而h ′1()x =12x,h ′2()x =-2x .由h ′1()x 0=h ′2()x 0得-12x 20=-2x 0,解得x 0,y 0=,所以p èø,则m =èø2+.画出h 1()x=12x和h 2()x =-x 2+m 的图象,如图1、2、3所示.由图可知,当m时,两个函数图象有1个交点;当m =时,两个函数图象有2个交点;当m 时,两个函数图象有3个交点.即当m >时,方程有1个根;当m =时,方程有2个根;当m 时,方程有3个根.将原方程解的个数转化为两个函数h 1()x =12x和h 2()x =-x 2+m 的交点的个数.而两个函数一定一动,确定两个函数图象相切时的位置,便可确定两个函数图象交点的个数.利用导数的几何意义便可求得切点的坐标,进而得到两图象相切时m 的取值.函数、方程之间的联系紧密.在解答含参方程问题时,我们要注意将问题转化为函数问题来求解,利用导数法、函数的图象来分析、解答问题.这样不仅能拓宽解题的思路,还能有效地提升解题的效率.(作者单位:江西省赣州市赣县中学)图1图2图3求解圆锥曲线轨迹问题的方法有很多,比如定义法、直接法、相关点法(或叫代入法)、参数法等.对于与椭圆有关的轨迹问题,我们也同样可以运用这些方法来求解.其中定义法是应用范围最广、使用频率最高的一种方法.而椭圆的定义有三种:第一、二、三定义,本文重点探讨如何运用椭圆的这三个定义来求解与椭圆有关的轨迹问题.一、椭圆的第一定义椭圆的第一定义:平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.在求解与椭圆有关的轨迹问题时,我们可以直接套用椭圆的第一定义,寻找动点到两定点的距离之和,然后建立关系式,即∣F 1F 2∣=2c ,|PF 1|+|PF 2|=2a ,得到椭圆的焦距、长轴长,进而求得曲线的轨迹方程.例1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),M 为椭圆上的一个动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是().A.圆B.椭圆C.双曲线D.抛物线解析:不妨设椭圆C 的右焦点为F 2,根据椭圆的第一定义不难得到:|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,根据椭圆的第一定义可知点P 的轨迹是椭圆.解:设椭圆C 的右焦点为F 2,坐标原点为O ,由椭圆的定义得|MF 1|+|MF 2|=2a >2c ,则|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,则点P 的轨迹是以F 1、O 为焦点的椭圆,故本题答案为B 项.二、椭圆的第二定义圆锥曲线的第二定义:到定点的距离与到定直线的距离的比是e 的点的轨迹,其中定点为焦点,定直线为准线.当0<e <1时该曲线为椭圆;当e =1时该曲线为抛物线;当e >1时该曲线为双曲线.椭圆的第二朱园娇章长红解题宝典39解题宝典定义将焦半径的长度转化为到准线的距离,突出曲线上动点的横坐标.在解题时,我们只需要明确准线的位置和椭圆上的动点的横坐标,便可使问题得解.例2.已知点P 是正四面体V -ABC 侧面VBC 上一点,且点P 到底面ABC 的距离与它到顶点V 的距离相等,则动点P 的轨迹().A.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分解:过P 作PD ⊥平面ABC 于D ,过D 作DH ⊥BC 于H ,连接PH ,如图1,由题意可得BC ⊥平面DPH ,所以BC ⊥PH ,故∠PHD 为二面角V -BC -A 的平面角,令其为α,则在Rt△PDH 中,||PD :||PH =sin α,又点P 到平面ABC 距离与到点V 的距离相等,即||PV =||PD ,所以||PV :||PH =sin α<1,所以在平面VBC 中,点P 到点V 的距离与到直线BC 的距离之比为sin α<1,由椭圆的第二定义知P 点的轨迹为椭圆在平面VBC 内的一部分.解答这个题目的关键是作出并求得点P 到底面的距离.通过添加辅助线,设二面角V -BC -A 为α,由二面角的定义可得点P 到点V 的距离与定直线BC 的距离之比为一个常数,根据椭圆的第二定义即可得到问题的答案.三、椭圆的第三定义椭圆的第三定义也叫椭圆的斜率积定义,是指平面内动点到两定点A 1(a ,0)和A 2(-a ,0)的斜率的乘积等于常数e 2-1的点的轨迹.其中两定点为椭圆的顶点.椭圆的第三定义将斜率的乘积作为主要关系,那么我们在解题时可以根据斜率的这种关系来进行求解.例3.设P 为椭圆C :x 2a 2+y 2b2=1(a >b >0)上的动点,F 1,F 2为椭圆的两个焦点,I 为△PF 1F 2的内心,求点I的轨迹方程.解析:由于本题是与焦点三角形的内切圆有关的问题,所以要依据分割图形的面积来寻找圆的半径和三角形三边之间的关系.由内心I 是动点,F 1和F 2是两个定点,我们可联想到椭圆的第三定义,结合这两个关系式得到IF 1与IF 2的斜率之积是一常数,根据椭圆的第三定义就不难发现并求得点I 的轨迹方程.解:如图2,设内切圆I 与F 1F 2的切点为H ,半径为r ,且设F 1H =y ,F 2H =z ,PF 1=x +y ,PF 2=x +z ,c =a 2+b 2,则{y +z =2c ,2x +y +z =2a ,所以直线IF 1与IF 2的斜率之积为k IF 1∙k IF 2=-IH 2F 1H ∙F 2H=-r 2yz ,而根据海伦公式可得△PF 1F 2的面积为()x +y +z r =xyz ()x +y +z ,因此k IF 1∙k IF 2=-x x +y +z =-a -ca +c .根据椭圆的斜率积定义可得I 点的轨迹是以F 1F 2为长轴,离心率为e 的椭圆,其标准方程为x 2c 2+y 2a -c a +c∙c 2=1()y ≠0.我们知道,椭圆中有个重要的结论:椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点到椭圆长轴的两个端点的斜率之积等于-b2a2.椭圆的第三定义是这个结论的逆命题.因此,对于椭圆中与角度、斜率有关的问题,我们都可以利用椭圆的第三定义,根据椭圆中与角度、斜率建立关系式,求得椭圆的方程.以上三个题目分别借助椭圆的第一定义、第二定义、第三定义求解与椭圆有关的轨迹问题.在解题过程中,我们要学会依据题意,结合图形,紧扣椭圆的三个定义对题目中的条件进行转化,比如,例1是根据椭圆的第一定义将中位线转化为动点到两定点的距离之和,例2是根据椭圆的第二定义,将点P 到平面ABC 距离与到点V 的距离之间的关系转化为点P 到点V 的距离与到直线BC 的距离之比,例3是根据椭圆的第三定义,将圆的半径和三角形三边之间的关系转化为k IF 1∙k IF 2.通过转化便可建立动点满足的等量关系式,联系椭圆的定义,从而达到解答与椭圆有关的轨迹问题的目的.(作者单位:江西省余干第一中学)图1图240。
椭圆定义及应用
一、椭圆第一个定义的应用1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。
若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。
两个定点F1、F2称为椭圆的焦点。
由此定义得出非常重要的等式,其中P为椭圆上一个点。
此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。
即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。
1.2 应用举例例1.已知点1(3,0)F-,2(3,0)F,有126PF PF+=,则P点的轨迹是 .例2.求证以椭圆 (a>b>0) 上任意一点P的焦半径为直径画圆,这个圆必与圆相切.解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。
我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。
例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点,求的面积.24解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用解决例4.P 是椭圆2214520x y +=上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点,若则12PF PF -的值为( )A. 65B. 25C.153D. 253 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程.练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
例6.已知定点A(-2,3),点F为椭圆2211612x y+=的右焦点,点M在该椭圆上移动时,求| AM| + | MF |的最小值与最大值。
高中数学人教版选修2-1追本溯源-用椭圆的定义解题
追本溯源――用椭圆的定义解题追本溯源,也就是我们常说的回归定义,定义常常是解决问题的犀利武器. 在学习圆锥曲线内容时,不仅要领悟其概念的实质,而且要强化应用定义解题的意识,在解题中灵活运用. 本文例谈运用椭圆的定义求轨迹方程的几例,抛砖引玉,希望读者能举一反三.一、联系平面几何考察椭圆定义例1.已知A 1(,0)2-,B 是圆F :221()42x y -+=(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为_____分析:由题意,题中的A ,F 是定点,B ,P 是动点,要求P 点的轨迹方程,只须研究P 与A ,F 的距离的和与差即可.解:因为直线l 为AB 的垂直平分线,则PB PA =,又因为PB +PF 为圆F 的半径,故可知PB +PF=2,即PA +PF =2,可知P 点的轨迹为中心在原点,长轴长为2,焦距为1的椭圆,可得椭圆的轨迹方程为22413x y +=. 点评:在解决圆锥曲线的轨迹问题时,经常联想的是动点到两个定点的距离,并研究其和与差,如果和与差是定值,则就有可能是椭圆或是双曲线.二、逆用椭圆的定义求轨迹例2.过原点的椭圆的一个焦点为1(1,0)F ,长轴长为4,求椭圆中心的轨迹.解析:设椭圆中心为(,)M x y ,由于椭圆的一个焦点为1(1,0)F ,则椭圆的另一个焦点为2(21,2)F x y -,再由椭圆定义可知124OF OF +=,即221(21)44x y -+=,即2219()24x y -+=(除去点(-1,0)).点评:本题由于题干短小,看似简单,但实际上由条件不易得出结论,故回归椭圆定义是最好的办法.三、联系圆的内外切考察椭圆的定义例3.已知圆C :226910x y x ++-=及圆内一点(3,0)P ,求过点P 且与已知圆内切的圆的圆心M 的轨迹方程.解析:设动圆半径为r ,则(10)10MC MP r r +=-+=,故M 点的轨迹是以C 、P 为焦点的椭圆,其标准方程为2212516x y +=. 点评:有关圆的内切与外切问题,一般来说可以使用圆心距等于两圆半径的和与差来解决.四、联系正弦定理考察椭圆定义例4.在中,A ,B ,C 所对的三边为,,a b c ,(1,0),(1,0)B C -,求满足sin sin 2sin C B A +=时,顶点A 的轨迹方程.1ACA 解:1sin sin sin2C B A+=,2224c b a∴+==⨯=,即4AB AC+=,动点(,)A x y符合椭圆的定义,且24,2,22,1a a c c====,故此可知,动点A的轨迹方程为22143x y+=(0y≠).点评:本题最易忽视轨迹方程成立的条件,即在ABC中,如果0y=,则A,B,C三点共线.五、联系立体几何考察椭圆定义例5.在正方体ABCD-1111A B C D中,侧面AB11B A内的动点P到底面ABCD的距离等于到直线11B C的距离的2倍,则在侧面AB11B A内动点P的轨迹是()(A) 椭圆的一部分(B)双曲线的一部分(C) 抛物线的一部分(D)线段解析:点P到底面ABCD的距离即到直线AB的距离,点P到直线11B C的距离即到点1B的距离,故将此问题转化到椭圆的第二定义,到定点1B的距离与到定直线AB的距离的比为12,故选A.点评:在立体几何中应用圆锥曲线的定义是创新之举,读者也可以尝试把比值改变,从而得出轨迹是双曲线与抛物线.作者:唐学宁图2。
例析椭圆的定义在解题中的应用
椭圆的定义在解题中的应用通过研究一类与椭圆定义有关的数学问题,体会椭圆上点与焦点距离的联系与相互转化关系,引导学生思考利用掌握的椭圆定义等相关数学知识探究问题本质,意在引起老师和学生对数学定义的重视,注重概念教学。
一:椭圆定义:平面内到两定点的距离和等于常数2a(大于|F 1F 2|)的点的集合叫椭圆。
其中两个定点F 1、F 2叫作椭圆的焦点,|F 1F 2|叫作椭圆的焦距.说明:1、椭圆定义体现了椭圆上任一点与两个焦点距离间的密切联系 ,在变化中存在一个等量关系,这种‘距离的动’与‘和的静’结合的数学之美将会在今天的学习中逐步体味。
2、椭圆定义中包括的定点,定量等多方面联系,利用这种联系可以将椭圆上任一点到两定点的距离有机联系在一起,可将其中一个数量转化为另外一个量研究。
二:思维拓展类型一:由定义求轨迹(方程)应用定义求方程是求曲线方程的一种重要方法,它是在根据题意判断出已知曲线形状的情况下确定量的关系进而得出方程的形式,需要注意在求出方程后验证是否有不符合条件的点存在例1:已知⊙O 1:16)2(22=++y x ,⊙O 2:1)2(22=+-y x 动圆P与⊙O 1内切,与点⊙O 2外切,求动圆圆心P 的轨迹方程? 解:(分析:充分利用题目中的内切和外切的条件,挖掘动点与两定点的等量关系)设圆P 的半径为r,由条件知 r PO -=6||1 r PO +=1||2 7||||21=+∴PO PO∴ P 在以为o1,o 2焦点的椭圆上14/334/4922=+∴yx:方程为巩固提高:已知圆B:22(1)16x y ++=及点(1,0)A ,C 为圆B 上任一点,求AC 的垂直平分线与线段BC 的交点P 的轨迹方程.(几何画板演示)类型二:焦点三角形的应用焦点三角形的应用是椭圆定义的集中体现,围绕焦点三角形的面积、周长、焦半径、椭圆离心率等试题相对较多,教学时应引起重视,并能重视知识间的内在联系,如余弦定理、均值定理的应用。
(8)从椭圆定义到焦点半径
专题指导(8)(8)从椭圆定义到焦点半径一、用椭圆方程求椭圆的焦点半径公式数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.【例1】已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0)是椭圆的两个焦点.求证:|PF1|=a+;|PF2|=a -.【分析】可用距离公式先将|PF1|和|PF2|分别表示出来.然后利用椭圆的方程"消y"即可.【解答】由两点间距离公式,可知|PF1|= (1)从椭圆方程解出(2)代(2)于(1)并化简,得|PF1|= (-a≤x≤a) 同理有|PF2|= (-a≤x≤a)【说明】通过例1,得出了椭圆的焦半径公式r1=a+ex r2=a-ex (e=)从公式看到,椭圆的焦半径的长度是点P(x,y)横坐标的一次函数.r1是x的增函数,r2是x的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y轴,关于原点).二、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆"坐标化"后的产物,按椭圆定义,对焦半径直接用距离公式即可.【例2】 P (x,y)是平面上的一点,P到两定点F1(-c,0),F2(c,0)的距离的和为2a(a>c>0).试用x,y的解析式来表示r1=|PF1|和r2=|PF2|.【分析】问题是求r1=f(x)和r2=g(x).先可视x为参数列出关于r1和r2的方程组,然后从中得出r1和r2.【解答】依题意,有方程组②-③得代①于④并整理得r1-r2= ⑤联立①,⑤得【说明】椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c而无b,其基础性显然.三、焦半径公式与准线的关系用椭圆的第二定义,也很容易推出椭圆的焦半径公式. 如图右,点P(x,y)是以F1(-c,0)为焦点,以l1:x=-为准线的椭圆上任意一点.PD⊥l1于D.按椭圆的第二定义,则有即r1=a+ex,同理有r2=a-ex.对中学生来讲,椭圆的这个第二定义有很大的"人为性".准线缺乏定义的"客观性".因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.【例3】 P(x,y)是以F1(-c,0),F2(c,0)为焦点,以距离之和为2a的椭圆上任意一点.直线l为x=-,PD1⊥l交l于D1.求证:.【解答】由椭圆的焦半径公式|PF1|=a+ex.对|PD1|用距离公式|PD1|=x-=x+.故有.【说明】此性质即是:该椭圆上任意一点,到定点F1(-c,0)(F2(c,0))与定直线l1:x=- (l2:x=)的距离之比为定值e(0<e<1).四、用椭圆的焦半径公式证明椭圆的方程现行教材在椭圆部分,只完成了"从曲线到方程"的单向推导,实际上这只完成了任务的一半.而另一半,从"方程到曲线",却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).其实,有了焦半径公式,"证明椭圆方程为所求"的过程显得很简明.【例4】设点P(x,y)适合方程.求证:点P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a(c2=a2-b2).【分析】这题目是为了完成"从方程到曲线"的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】P(x,y)到F1(-c,0)的距离设作r1=|PF1|.由椭圆的焦点半径公式可知r1=a+ex ①同理还有r2=a-ex ②①+②得r1+r2=2a即|PF1|+|PF2|=2a.即P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a.【说明】椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.五、用椭圆焦半径公式推导椭圆方程焦半径公式既然能独立于椭圆方程而直接从椭圆定义导出,那么它也就有推导椭圆方程的价值.【例5】 P(x,y)到两定点F1(-c,0),F2(c,0)距离和为2a的轨迹曲线上任意一点,且有|PF1|=a+,,试求轨迹曲线的方程.【分析】为求曲线的轨迹方程E(x,y)=0可考虑对|PF1|和|PF2|用距离公式.【解答】因为P,F1的坐标分别为(x,y)和(-c,0),且有|PF1|=对|PF1|用距离公式可得令化简即得同理由|PF2|=a-也可推出因此,求得曲线轨迹方程为【说明】椭圆的焦半径函数式与椭圆的方程具有互推性(因为它们都可从椭圆定义直接导出).理论上讲,椭圆方程能解决的问题,其焦半径公式都能解决.自然,若研究的问题是围绕过焦点的线段而展开,那么,焦半径公式则有其长处.六、椭圆中的数列问题从焦半径公式r=a±ex看到,若x1,x2,...,xn成等差数列,则r1,r2,...,rn也成等差数列,这是椭圆焦点半径的一条性质.【例6】若P1(0,y1),P2(x2,y2),P3(4,y3)是椭圆上的三点.F(-3,0)是椭圆的一个焦点,并有2|P2F|=|P1F|+|P3F|=.(1)求x2 ;(2)求椭圆方程.【解析】(1)由2|P2F|=|P1F|+|P3F|知r1,r2,r3成等差数列,故x1,x2,x3也成等差数列. 故有x2=(2)在焦半径公式r=a+中,令 c=3,r=,得a+,即5a2-31a+30=0 解得a1=5,a2=(舍去) 故求得椭圆方程为七、焦半径公式轻取高考题围绕焦半径的高考题,年年都有.如2006年四川卷第15题,就是这类题目.该题的解法很多,正解、别解、妙解、拙解等层出不穷.此题,若会焦半径上陈,绝对是轻巧取胜:不需动笔,一望而答.【例8】(2006年四川川卷第15题)如图把椭圆的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于,,......七个点,F是椭圆的一个焦点,则____________.【思考】长轴被8等分,7个等分点x1,x2,......,x7(其中x4=0)自然成等差数列.对应的7条焦半径r1,r2,......,r7自然也成等差数列.显然,r4是r1和r7,r2和r6,r3和r5的等差中项,而r4=a+ex4=a=5.于是有7r4=35.【评说】以上思考过程,不需动笔!????????1。
椭圆第二定义及其应用
椭圆第二定义及其应用在新课标课本(人教A 版)《椭圆》中,有这样一道例题“例6 点),(y x M 与定点)0,4(F 的距离和它到直线425:=x l 的距离的比是常数54,求点M 的轨迹”。
我们知道,点M 的轨迹是长轴、短轴长分别为10、6的椭圆,如果对这道例题进行推广,就得到椭圆的第二定义(比值定义).定义:平面内与一个定点F 的距离和一条定直线的距离之比为常数)10(<<e e 的点的轨迹是椭圆. 定点F 称为椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.椭圆第二定义的巧妙运用可以使题目化繁为简,下面举例如下: 一、求距离[例1]椭圆的方程为16410022=+y x 上有一点P ,它到椭圆的左准线的距离等于10,求点P 到它的右焦点的距离.解:∵64,10022==b a ,∴66410022=-=-=b ac ,∴a c e ==53106= 依椭圆第二定义,设P 点到椭圆左焦点的距离为d ,则5310=d ,∴6=d ∴点P 到椭圆右焦点距离为2×10-6=14评述:椭圆第二定义的巧妙运用可以使题目化繁为简,熟练掌握椭圆第二定义灵活地将它应用到解题当中,是我们在学习中的重要训练对象.二、求最值[例2]已知定点A (-2,3),点F 为椭圆1121622=+y x 的右焦点,点M 在该椭圆上移动时,求|MA |+2|FM |的最小值,并求出此时点M 的坐标.分析:设M (x ,y ),则有⎪⎩⎪⎨⎧=++-+-++=+11216)2(2)3()2(2222222y x y x y x FM MA 由①可将y 用x 表示出来,将其代入②,则式子|MA |+2|FM |可转化成一个关于x 的一元函数,再求其最小值.以上解法,思路可行,计算量却很繁琐,不妨换一种思考方法.解:∵a =4,b =23,c =2∴e =21 右焦点F (2,0),右准线方程l :x =8设点M 到右准线l 的距离为d ,则21==e dFM 得2|MF |=d ∴|MA |+2|MF |=|MA |+d由于点A 在椭圆内,过A 作A K ⊥l ,K 为垂足,易证|A K|为|MA |+d 的最小值,其值为8+2=10∵M 点的纵坐标为3,得横坐标为23① ②∴|MA |+|2MF |的最小值为10,点M 的坐标为(23,3)评述:(1)以上解法就是椭圆第二定义的巧用,将问题转化成点到直线的距离去求,就可以使题目变得简单易解了.(2)一般地,如果遇到一个定点到定直线问题应联想到椭圆第二定义. 三、推导公式[例3]设P (x 0,y 0)是离心率为e 的椭圆,方程为12222=+by a x 上的一点,P 到左焦点F 1和右焦点F 2的距离分别为1r 和2r .求证:0201,ex a r ex a r -=+=证明:由椭圆第二定义,得e ca x PF =+201∴|PF 1|=e ca x 20+=e )(20c a x +,∴|PF 1|=0ex a +又e cax PF =-202,∴|PF 2|=e ca x 20-=e )(20c a x -, ∴|PF 2|=0ex a -,综上所述0201,ex a r ex a r -=+= 注意:|PF 1|=0ex a +,|PF 2|=0ex a -,称为(00,y x )点椭圆的焦半径,焦半径公式在解题中的作用应引起我们广大师生的注意.[例4]已知椭圆1922=+y x ,过左焦点F 作倾斜角为30°的直线交椭圆于A 、B 两点,求弦AB 的长. 解法一:∵a =3,b =1,c =22,∴F (-22,0)∴直线方程为y =)22(31+x 与1922=+y x 联立消元,得4x 2+122x +15=0 ①设A (x 1,y 1),B (x 2,y 2)则依韦达定理,得x 1+x 2=-32,x 1x 2=415∴|AB |=21221214)(32311x x x x x x -+=-+,∴|AB |=2解法二:由于所求线段AB 是椭圆的“焦点弦”,故也可用“焦半径”公式计算:|AB |=|AF |+|BF |=2a +e (x 1+x 2)=2评述:一般地,遇到点到椭圆焦点的距离问题,可采用“焦半径”公式处理.。
椭圆问题的类型与解法
椭圆问题的类型与解法椭圆问题是近几年高考的热点内容之一。
可以这样毫不夸张地说,高考试卷中,每卷必有椭圆问题。
从题型上看,可能是选择题或填空题,也可能是大题,难度为中档或高档。
纵观近几年高考试卷,归结起来椭圆问题主要包括:①求椭圆的标准方程;②椭圆定义与几何性质的运用;③求椭圆离心率的值或取值范围;④与椭圆相关的最值问题;⑤直线与椭圆位置关系问题等几种类型。
各种类型问题结构上具有一定的特征,解答方法也有一定的规律可寻。
那么在实际解答椭圆问题时到底应该如何抓住问题的结构特征,快捷,准确的解答问题呢?下面通过典型例题的详细解析来回答这个问题。
【典例1】解答下列问题: D 1、如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 相交于点P ,则点P的轨迹是( )A 椭圆B 双曲线C 抛物线D 圆【解析】【知识点】①椭圆的定义与性质;②圆的定义与性质;③求点的轨迹方程的基本方法。
【解题思路】设点P (x ,y ),运用椭圆的定义与性质,结合问题条件可知点P 的轨迹是一个椭圆,从而得出选项。
【详细解答】设点P (x ,y ),纸片折叠后M 与F 重合,折痕为CD ,CD 与OM 相交于点P ,∴|PM|=|PF|,⇒|PF|+|PO|=|PM|+|PO|=|OM|是圆O 的半径为一个定值,∴点P 的轨迹是以2c=|OF|,2a=|OM|的椭圆,⇒A 正确,∴选A 。
2、根据下列条件求椭圆的标准方程:(1)焦点在x 轴上,且过点(2,0)和点(0,1); (2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近一个焦点的距离等于2; (3)已知P 点在以坐标轴为对称轴的椭圆上,点P 过P 作长轴的垂线恰好过椭圆的一个焦点;(4)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程。
第一讲 用椭圆定义解题2 —焦点三角形(课件)-高考数学二轮专题之椭圆小题突破
+
= 上的任意一点,点
F1,F2分别为该椭圆的上下焦点,设α=∠PF1F2,
β=∠PF2F1,则sinα+sinβ的最大值为
.
(2)已知点P为椭圆
+
= 上的任意一点,点F1,F2分别为该椭圆的上下焦
点,设α=∠PF1F2,β=∠PF2F1,则sinα+sinβ的最大值为
则2c>2a-2c且4c>2a-2c,得
1
1
e ,e ,
3
2
则2a-2c >2c且4c>2a-2c,得
1
1
e ,
3
2
(7)已知椭圆方程为
+
= (a> ),A,B是
上、下顶点,P为椭圆上的一个动点,且∠APB的最
大值为120°,若M(0, ),N(0,− ),则
|PF1|=λ|PF2|(1≤λ≤3),∠F1PF2= ,,则椭圆离心率的取值范围为
解:
PF1 PF2 PF2 PF2 1 PF2 2a
PF1 PF2 2 PF2 PF2 2 1 PF2 4c 2
2 1
c2
2 1
1
a
PI
2
(5)已知椭圆C:
+ = > > 的左、右
焦点分别为F1,F2,若C上存在一点P,使得∠F1PF2
=120°,且△F1PF2内切圆的半径大于 a,则C的
椭圆方程的几种常见求法
椭圆方程的几种常见求法河南 陈长松对于求椭圆方程的问题,通常有以下常见方法:一、定义法例1 已知两圆C 1:169)4(22=+-y x ,C 2:9)4(22=++y x ,动圆在圆C 1内部且和圆C 1 相内切,和圆C 2相外切,求动圆圆心的轨迹方程.分析:动圆满足的条件为:①与圆C 1相内切;②与圆C 2相外切.依据两圆相切的充要条件建立关系式. 解:设动圆圆心M(x ,y ),半径为r ,如图所示,由题意动圆M内切于圆C 1,∴r MC -=131,圆M外切于圆C 2 , ∴r MC +=32,∴1621=+MC MC ,∴ 动圆圆心M的轨迹是以C 1、C 2为焦点的椭圆,且82,162==c a ,481664222=-=-=c a b , 故所求轨迹方程为:1486422=+y x . 评注:利用圆锥曲线的定义解题,是解决轨迹问题的基本方法之一.此题先根据平面几何知识,列出外切的条件,内切的条件,可发现利用动圆的半径过度,恰好符合椭圆的定义.从而转化问题形式,抓住本质,充分利用椭圆的定义是解题的关键.二、待定系数法例2已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求该椭圆的方程.分析:已知两点,椭圆标准方程的形式不确定,我们可以设椭圆方程的一般形式:22ny mx +=1()0,0>>n m ,进行求解,避免讨论。
解:设所求的椭圆方程为22ny mx +=1()0,0>>n m . ∵椭圆经过两点)2,3(),1,6(21--P P ,∴⎩⎨⎧=+=+.123,16n m n m 解得⎪⎪⎩⎪⎪⎨⎧==.31,91n m ,故所求的椭圆标准方程为13922=+y x . 评注:求椭圆标准方程,可以根据焦点位置设出椭圆标准方程,用待定系数法求出b a ,的值:若焦点位置不确定,可利用椭圆一般形式简化解题过程.三、直接法例3 设动直线l 垂直于x 轴,且交椭圆12422=+y x 于A、B两点,P是l 上线段 AB 外一点,且满足1=•PB PA ,求点P的轨迹方程.分析:如何利用点P的坐标与椭圆上A,B两点坐标的关系,是求点P的轨迹的关键,因直线l 垂直于x 轴,所以P、A、B三点的横坐标相同,由A、B在椭圆上,所以A、B两点的纵坐标互为相反数,因此,紧紧抓住等式1=•PB PA 即可求解.解:设P(x ,y ),A(A x ,A y ),B(B x ,B y ) ,由题意:x =A x =B x ,A y +B y =0∴A y y PA -=,B y y PB -=,∵P在椭圆外,∴y -A y 与y -B y 同号, ∴PB PA •=(y -A y )(y -B y )=1)(2=++-B A B A y y y y y y∵)41(2)41(2222x x y y y A A B A --=--=-= 1)41(222=--x y ,即)22(13622<<-=+x y x 为所求. 评注:求轨迹方程,首先要找出动点与已知点之间的关系,建立一个等式,用坐标代换.四、相关点法例4 ABC ∆的底边BC =16,AC 和AB 两边上的中线长之和为30,求此三角形重心G和定点A的轨迹方程.分析:由题意可知G到B、C两点的距离之和为定值,故可用定义法求解,A点和G点的关系式好建立,故可用相关点法去求.解(1)以BC 边所在直线为x 轴,BC 边的中点为坐标原点建立直角坐标系,设G(x ,y ),由3032⨯=+GB GC ,知G点的轨迹是以B、C为焦点,长轴长为20的椭圆且除去x 轴上的两顶点,方程为)0(13610022≠=+y y x . (2)设A(x ,y ),G(),00y x ,则由(1)知G的轨迹方程是)0(13610002020≠=+y y x ∵ G为ABC ∆的重心 ∴⎪⎪⎩⎪⎪⎨⎧==3300y y x x 代入得:)0(132490022≠=+y y x 其轨迹是中心为原点,焦点在x 轴上的椭圆,除去长轴上的两个端点.评注:本题的两问是分别利用定义法和相关点法求解的,要注意各自的特点,另要注意轨迹与轨迹方程的不同.(注:文档可能无法思考全面,请浏览后下载,供参考。
【高二】椭圆的定义和标准方程
【高二】椭圆的定义和标准方程椭圆的定义和标准方程(一)知识点的安排1.掌握椭圆的定义,会用定义解题;2.掌握椭圆的标准方程及其简单的几何性质,熟练地进行基本量之间的相互计算,并能根据给定的方程作图;3.掌握求椭圆的标准方程的基本步骤――①定型(确定它是椭圆);②定位(判断它的中心在原点、焦点在哪条坐标轴上);③定量(建立关于基本量的方程或方程组,解基本量)。
双基训练1.椭圆的长轴位于轴,长轴长等于;短轴位于轴,短轴长等于;焦点在轴上,焦点坐标分别为,离心率=,准线方程是,焦点到相应准线的距离(焦准距)等于;左顶点坐标是;下顶点坐标是,椭圆上的点p的横坐标的范围是,纵坐标的范围是,的取值范围是。
2.如果从椭圆上的点P到左准线的距离为10,则从P到其右焦点的距离为()a.15b.12c.10d.83.在ABC中,已知B和C的坐标分别为(-3,0),(3,0)和?如果ABC的周长等于16,则顶点A的轨迹方程为。
4.若椭圆短轴一端点到椭圆一焦点的距离是该焦点到同侧长轴一端点距离的3倍,则椭圆的离心率是;若椭圆两准线之间的距离不大于长轴长的3倍,则它的离心率的取值范围是。
典型例子例1已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,且过点p(3,2),求椭圆的方程。
例2:从椭圆上的点P到X轴画一条垂直线。
垂直脚正好是椭圆的左焦点F1。
A是椭圆的右顶点,B是椭圆的上顶点,和。
(1)计算椭圆的偏心率;(2)如果椭圆的拟线性方程为,求出椭圆的方程。
后作业1.从椭圆上的点到左焦点F1的距离为2,n是F1的中点,O是坐标原点,然后on=。
2.若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则此椭圆长轴的长的最小值是.3.让椭圆的中心位于原点,焦点位于x轴上。
一个焦点和短轴的两个端点之间的连接线相互垂直,焦点和靠近长轴的端点之间的距离为,从而找到椭圆方程。
4.已知椭圆的中心在原点,焦点f1(0,-1)、f2(0,1),直线y=4是椭圆的一条准线,(1)求椭圆的方程;(2)设p点在这个椭圆上,且pf1-pf2=1,求tan∠f1pf2.5.椭圆的焦点分别为F1和F2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 2 项分母较大 不同点:焦点在x轴的椭圆 不同点:焦点在 轴的椭圆 项分母较大. y 2 项分母较大 焦点在y轴的椭圆 焦点在 轴的椭圆 项分母较大.
3.椭圆的相关概念 椭圆的相关概念
y
• 焦点
F1 F2 x O
• 焦距 • 长轴长
y
• 短轴长
Fy + = 1 的两个焦点, 已知F 的两个焦点, 例1:已知 1,F2是椭圆 25 9
• 练习: 练习:
x y + = 1 的一个焦点 1,M为椭圆上一点,且 的一个焦点F 为椭圆上一点, 椭圆 为椭圆上一点 25 9
|MF1|=2,N是线段 是线段MF1的中点,则|ON|=_____________ 的中点, 是线段
2
2
y
M
F1 O
F2 x
例2
y
P
F1 O
F2 x
例3:已知圆 :已知圆P:(x+1)2+y2=1,圆Q:(x-1)2+y2=9动圆 , 动圆 M与圆 外切,与圆 内切。求动圆圆心 的轨迹方 与圆P外切 内切。 与圆 外切,与圆Q内切 求动圆圆心M的轨迹方 程。
1.复习: 1.复习: 复习
椭圆的定义:平面内与两个定点F1,F2的距离 椭圆的定义:平面内与两个定点F ( 的和等于常数 大于 F 1 F 2 ) 的点的轨迹是椭圆. 的点的轨迹是椭圆 椭圆.
这两个定点叫做椭圆的焦点 焦点, 这两个定点叫做椭圆的焦点,两焦点间的 距离叫做椭圆的焦距. 距离叫做椭圆的焦距. 焦距 当2a>2c时,轨迹是椭圆; 2a>2c时 轨迹是椭圆; 2a=2c时 轨迹是以F 为端点的线段; 当2a=2c时,轨迹是以F1、F2为端点的线段; 2a<2c时 无轨迹; 当2a<2c时,无轨迹; 轨迹为圆。 当c=0时,轨迹为圆。
y2 x2 + 2 = 1 (a > b > 0) 2 a b
F(±c,0) ( ,
F(0,±c) (0, ) (0
c2=a2-b2
注: 共同点:椭圆的标准方程表示的一定是焦点在坐标轴上, 共同点:椭圆的标准方程表示的一定是焦点在坐标轴上, 中心在坐标原点的椭圆;方程的左边是平方和 右边是1. 左边是平方和, 中心在坐标原点的椭圆;方程的左边是平方和,右边是
o
F1
x
(y +c)2 + x2 + (y −c)2 + x2 = 2a
总体印象:对称、简洁,“像”直线方程的截距 总体印象:对称、简洁, 式
定 义
|MF1|+|MF2|=2a (2a>2c>0) y y
M F 2
M
图 形
F 1
o
F2 x
o
F 1
x
方 程 焦 点 a,b,c之间的关系
x2 y 2 + 2 = 1 (a > b > 0) 2 a b
2
2
P是椭圆上一点,则三角形PF1F2的周长是多少? 是椭圆上一点,则三角形 的周长是多少? 是椭圆上一点
y y y
P
P
P
F1 O
F2 x
F1 O
F2 x
F1 O Q
F2
的面积最大时P点的坐标 点的坐标? 问:三角形PF1F2的面积最大时 点的坐标? 三角形 是过F 求三角形PQF2 的周长 问:若PQ是过 1的弦 求三角形 是过 的弦,求三角形
M -2 P(-1,0) Q(1,0) 4
例4:求与椭圆 的椭圆方程
x2 y2 + = 1 共焦点,且过点(3,-2) 共焦点,且过点( 9 4
新疆 王新敞
奎屯
2.复习:椭圆的标准方程: 2.复习:椭圆的标准方程: 复习
F1
y
M
o
F2 x
x2 y 2 焦点在x轴 焦点在 轴: 2 + 2 = 1(a > b > 0) a b
(x +c)2 + y2 + (x −c)2 + y2 = 2a
y
F2
M
y2 x2 焦点在y轴 焦点在 轴: + =1(a > b > 0) a2 b2