光电探测技术实验报告

合集下载

光电探测实验报告

光电探测实验报告

光电探测技术实验报告班级:10050341学号:05姓名:解娴实验一光敏电阻特性实验一、实验目的1.了解一些常见的光敏电阻的器件的类型;2.了解光敏电阻的基本特性;3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。

二、实验原理伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。

这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。

光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。

各种光敏电阻的非线性程度都是各不相同的。

大多数场合证明,各种光敏电阻均存在着分析关系。

这一关系为=ΦI kαΦ式中,K为比例系数;是永远小于1的分数。

光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。

这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。

光照的非线性特性并不是一切光敏半导体都必有的。

目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。

光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤1、光敏电阻的暗电流、亮电流、光电流按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。

则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

2、伏安特性光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。

按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。

将所测得的结果填入表格并做出V/I曲线。

图1光敏电阻的测量电路偏压2V4V6V8V10V12V 光电阻I四、实验数据实验数据记录如下:光电流:E/V246810U/V0.090.210.320.430.56I/uA1427.54255.270.5暗电流:0.5uA实验数据处理:拟合曲线如下:五、实验结论通过本次实验了解了一些常用的光敏电阻的类型、内部结构及其基本特性,也熟练掌握了光敏电阻的特性测试的方法。

光电测量技术实验报告

光电测量技术实验报告

一、实验目的1. 了解光电测量技术的基本原理和实验方法;2. 掌握光电传感器的工作原理和应用;3. 通过实验验证光电测量技术的实际应用效果。

二、实验原理光电测量技术是利用光电效应将光信号转换为电信号,通过测量电信号的大小来反映光信号的强度、位置、频率等物理量。

本实验采用光电传感器作为测量工具,通过实验验证光电测量技术的实际应用效果。

三、实验器材1. 光电传感器;2. 光源;3. 信号发生器;4. 电压表;5. 数据采集器;6. 实验台。

四、实验步骤1. 将光电传感器固定在实验台上,确保传感器与光源的位置和距离符合实验要求;2. 打开信号发生器,设置合适的频率和幅度;3. 将光电传感器输出端连接到数据采集器,数据采集器连接到电脑;4. 打开数据采集器软件,设置采样频率和采集时间;5. 打开光源,观察光电传感器输出端电压的变化;6. 记录电压随时间的变化数据;7. 关闭光源,重复步骤5和6,观察光电传感器输出端电压的变化;8. 对实验数据进行处理和分析。

五、实验结果与分析1. 实验结果显示,在光源照射下,光电传感器输出端电压随着光源强度的增加而增加,随着光源距离的增加而减小;2. 在关闭光源的情况下,光电传感器输出端电压基本稳定,说明光电传感器具有较好的抗干扰能力;3. 通过对实验数据的处理和分析,可以得出以下结论:(1)光电测量技术可以有效地将光信号转换为电信号,实现对光强度的测量;(2)光电传感器具有较好的抗干扰能力,可以应用于实际测量场合;(3)光电测量技术具有测量精度高、响应速度快、非接触等优点。

六、实验总结1. 本实验验证了光电测量技术的实际应用效果,掌握了光电传感器的工作原理和应用;2. 通过实验,了解了光电测量技术在光强度、位置、频率等物理量测量中的应用;3. 实验过程中,学会了使用光电传感器、信号发生器、数据采集器等实验器材,提高了实验操作技能。

七、实验展望1. 深入研究光电测量技术的原理和应用,探索其在更多领域的应用前景;2. 优化实验方案,提高实验精度和可靠性;3. 探索光电测量技术与人工智能、大数据等领域的结合,推动光电测量技术的发展。

光电探测实验报告

光电探测实验报告

实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。

由于半导体在光照的作用下, 电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成为了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构 ,用遮光罩将光敏电阻彻底掩盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和 V 亮则暗电流 L 暗=V 暗/R L,亮电流 L 亮=V 亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

分别测出两种光敏电阻的亮电流,并做性能比较。

图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。

按照图(3)分别测得偏压为 2V、4V、6V、8V、10V、12V 时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。

将所测得的结果填入表格并作出 V/I 曲线。

偏压 2V 4V 6V 8V 10V 12V光电阻 I光电阻 II注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。

光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。

实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

实验一光电探测原理实验

实验一光电探测原理实验

福建师范大学物理与光电信息科技学院光电检测技术实验-实验一1 实验一光电探测原理实验一、内容简介光电探测原理实验箱,是本公司为适合光电子、信息工程、物理等专业教学内容的需要,最新推出的光电类教学实验装置。

本实验箱从了解和熟悉光电二极管和光电池的角度出发,讨论关于光电二极管和光电池的主要技术问题,主要知识点包括:光照度及其测量基本知识;光电池的结构、工作原理和光照特性及其应用;光电二极管的结构、工作原理和光照特性及其应用等。

本实验系统注重理论与实践的紧密结合,突出实用性,可作为光测控技术、光电子技术、光电子仪器仪表及精密仪器等专业本科生和研究生课堂实验与研究。

二、实验箱说明实验箱配备有0~12V 可调的直流电压源,可为光电二极管提供可以调节的偏置电压。

本实验箱还配有照度计、电压表和电流表,各表头显示单元和各种调节单元都放在面板上,而光源、照度计探头、硅光电池和硅光电二极管等不需要经常移动的器件都在实验箱里面固定,所有引出线都通过连线连接到面板上,学生做实验时只需要简单连线即可,连线、调节、观察和记录都很方便。

实验箱还配备10K 粗调电位器RP1和47K 多圈精密细调电位器RP2,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。

面板操作示意图:实验(一)光照度测试一、实验目的1、了解光照度基本知识;2、了解光照度测量基本原理;3、学会光照度的测量方法。

二、实验内容对光照度进行测量,观察现象。

三、预备知识1、光照度基本知识光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。

光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。

因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。

光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L 处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。

光电探测综合实验报告

光电探测综合实验报告

一、实验目的1. 理解光电探测的基本原理和实验方法。

2. 掌握光电探测器的使用和调试技巧。

3. 学习光电探测实验的测量和分析方法。

4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。

二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。

光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。

本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。

光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。

光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。

光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。

三、实验仪器与设备1. 光源:LED灯、激光笔等。

2. 光电探测器:光电二极管、光电三极管、光电耦合器等。

3. 放大器:运算放大器、低噪声放大器等。

4. 测量仪器:示波器、万用表等。

5. 连接线、测试板等。

四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。

(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。

② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。

③ 测量光电二极管的暗电流和亮电流。

2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。

(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。

② 测量光电三极管的集电极电流、基极电流和发射极电流。

③ 测试光电三极管的电流放大倍数。

3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。

(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。

光电探测器特性测量实验报告

光电探测器特性测量实验报告

光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。

实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。

2.光源:用于提供光信号,可以调节光强度。

3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。

实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。

当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。

通过施加电场,将电子和空穴分离,形成电流,即光电流。

光电探测器的输出信号主要有光电流和光电压两种形式。

实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。

2.记录电流表的读数,即为光电流的大小。

3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。

4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。

5.将光电压和光电流绘制成特性曲线。

实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。

实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。

在一定范围内,光电流随光电压的增加而增加,并呈线性关系。

当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。

这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。

而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。

实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。

实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。

光电探测器实验报告

光电探测器实验报告

光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。

分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。

最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。

一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。

因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。

通常,光电探测器的光电转换特性用响应度表示。

响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。

主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。

本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。

二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。

电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。

实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。

若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。

在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。

然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。

光电探测器实验报告

光电探测器实验报告

光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。

本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。

一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。

二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。

首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。

在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。

三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。

从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。

当电压达到一定值后,输出电流基本保持稳定。

这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。

随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。

当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。

图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。

通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。

实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。

这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。

这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。

四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。

光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。

同时,不同波长光对光电探测器的影响也得到了验证。

这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。

光电探测实验报告总结(3篇)

光电探测实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。

实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。

二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。

实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。

光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。

三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。

(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。

(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。

2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。

(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。

3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。

(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。

五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。

在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。

2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。

同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。

检测技术光电实验报告

检测技术光电实验报告

一、实验目的1. 理解光电效应的基本原理及其在光电检测中的应用。

2. 掌握光电检测器的工作原理和特性。

3. 通过实验验证光电检测技术在信号检测中的应用效果。

4. 学习如何设计和搭建光电检测系统。

二、实验原理光电效应是指当光子照射到物质表面时,能够将物质中的电子激发出来,形成光电子。

光电检测技术就是利用这一效应,将光信号转换为电信号,实现对光、电场、磁场等信号的检测。

本实验采用光电二极管作为光电检测器,其基本工作原理是:当光照射到光电二极管上时,光电二极管内的电子会被激发出来,形成光电流。

光电流的大小与入射光的强度成正比。

三、实验器材1. 光电二极管2. 光源(如激光笔)3. 数字多用表4. 光电检测电路板5. 连接线6. 实验台四、实验步骤1. 搭建光电检测电路:按照实验指导书的要求,将光电二极管、光源、数字多用表和电路板连接好,确保电路连接正确无误。

2. 调整光源强度:使用激光笔照射光电二极管,调整光源的强度,观察数字多用表上光电流的变化。

3. 测量光电二极管的响应度:记录不同光照强度下,光电二极管的光电流值,并计算光电二极管的响应度。

4. 研究光电二极管的暗电流:关闭光源,观察数字多用表上光电流的变化,记录暗电流值。

5. 分析光电检测系统的性能:通过实验数据,分析光电检测系统的性能,包括响应度、暗电流等参数。

五、实验结果与分析1. 光电二极管的响应度:实验结果显示,光电二极管的响应度随光照强度的增加而增加,与理论相符。

2. 光电二极管的暗电流:实验结果显示,在无光照条件下,光电二极管存在一定的暗电流,这可能是由于电路中的热噪声等原因造成的。

3. 光电检测系统的性能:根据实验数据,可以计算出光电检测系统的性能参数,如响应度、暗电流等,并与理论值进行比较,分析实验误差。

六、实验总结1. 通过本次实验,我们掌握了光电效应的基本原理及其在光电检测中的应用。

2. 我们了解了光电二极管的工作原理和特性,并学会了如何设计和搭建光电检测系统。

光电监测技术实验报告

光电监测技术实验报告

一、实验目的1. 了解光电监测技术的原理和基本组成。

2. 掌握光电监测仪器的使用方法。

3. 分析光电监测技术在实际应用中的优势和局限性。

4. 通过实验验证光电监测技术的有效性和准确性。

二、实验原理光电监测技术是一种基于光电效应的监测技术,通过将光信号转换为电信号,实现对目标物体或环境的监测。

其基本原理是:当光线照射到光电元件上时,光电元件会产生电流,电流的大小与光强成正比。

通过检测光电元件产生的电流,可以实现对光强的监测。

三、实验仪器与设备1. 光电监测仪器:光电传感器、信号调理电路、数据采集器等。

2. 光源:激光笔、LED灯等。

3. 标准光强计:用于测量光强。

4. 实验台:用于固定仪器和设备。

四、实验内容与步骤1. 光电传感器安装与调试(1)将光电传感器安装在实验台上,确保其稳定。

(2)连接光电传感器与信号调理电路,调整光电传感器的灵敏度。

2. 光强测量(1)使用标准光强计测量不同光源的光强。

(2)将光电传感器对准光源,记录传感器输出的电流值。

3. 光电监测效果分析(1)分析光电传感器在不同光强下的输出电流,绘制电流-光强曲线。

(2)比较光电监测技术与其他监测技术的优缺点。

4. 光电监测应用实例(1)模拟实际应用场景,如自动照明、安防监控等。

(2)观察光电监测技术在实际应用中的效果。

五、实验结果与分析1. 光电传感器在不同光强下的输出电流与光强之间存在线性关系。

2. 光电监测技术在自动照明、安防监控等领域具有广泛的应用前景。

3. 与其他监测技术相比,光电监测技术具有以下优势:(1)监测精度高:光电监测技术基于光电效应,可以实现对光强的精确测量。

(2)抗干扰能力强:光电监测技术受电磁干扰较小,具有较强的抗干扰能力。

(3)适用范围广:光电监测技术可应用于多种环境,如室内、室外、潮湿、高温等。

4. 光电监测技术的局限性:(1)成本较高:光电监测仪器设备成本较高,限制了其在一些领域的应用。

(2)易受环境因素影响:光电监测技术受光照强度、温度、湿度等环境因素影响较大。

光实验报告电探测

光实验报告电探测

一、实验目的1. 了解光电探测器的原理和特性;2. 掌握光电探测器光谱响应曲线的测量方法;3. 分析光电探测器的脉冲法、幅频特性法和截止频率法的应用。

二、实验原理光电探测器是一种将光信号转换为电信号的装置,其基本原理是光电效应。

当光照射到光电探测器表面时,光子将能量传递给电子,使电子从价带跃迁到导带,产生光电子。

这些光电子在外加电场的作用下,会形成电流,从而实现光信号向电信号的转换。

三、实验器材1. 光电二极管;2. 光源;3. 光谱分析仪;4. 脉冲信号发生器;5. 示波器;6. 阻抗箱;7. 数据采集卡。

四、实验步骤1. 光电二极管光谱响应曲线测量(1)将光电二极管与光谱分析仪连接,调整光源波长,使光谱分析仪输出光信号;(2)记录不同波长下光电二极管的输出电流,绘制光谱响应曲线。

2. 脉冲法测量(1)将光电二极管与脉冲信号发生器连接,调整脉冲信号发生器的输出频率;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和脉冲信号发生器的输出频率,计算光电二极管的响应时间。

3. 幅频特性法测量(1)将光电二极管与阻抗箱连接,调整阻抗箱的阻抗值;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和阻抗箱的阻抗值,计算光电二极管的幅频特性。

4. 截止频率法测量(1)将光电二极管与脉冲信号发生器连接,调整脉冲信号发生器的输出频率;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和脉冲信号发生器的输出频率,计算光电二极管的截止频率。

五、实验结果与分析1. 光电二极管光谱响应曲线根据实验数据,绘制光电二极管的光谱响应曲线。

从曲线可以看出,光电二极管在特定波长范围内具有较高的灵敏度。

2. 脉冲法测量根据实验数据,计算光电二极管的响应时间为t = 0.1μs。

3. 幅频特性法测量根据实验数据,计算光电二极管的幅频特性为 f = 1MHz。

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

光电探测实验报告

光电探测实验报告

光电探测实验报告实验目的:1.了解光电效应的基本原理;2.学习使用光电探测器进行光电测量;3.探究不同光源对光电效应的影响。

实验仪器:1.光电探测器;2.不同波长的光源;3.滤波片;4.电压源;5.电流表;6.多用万用表;7.电极接线板。

实验原理:光电效应是指物质受光照射后产生电磁辐射的现象。

在光电探测实验中,我们使用光电探测器来测量光电效应。

实验步骤:1.搭建实验装置。

将光电探测器接入电路中,将电压源与光电探测器相连,将电流表接在光电探测器的电极上。

2.测量光电效应的基本关系。

首先,使用电压源调节电压,将光电探测器的电流调至最大值。

然后,使用多用万用表测量光电流。

3.测量不同波长光源对光电效应的影响。

依次使用不同波长的光源照射光电探测器,并记录相应的电流值。

4.测量滤波片对光电效应的影响。

在实验中加入滤波片,并记录不同滤波片条件下的光电流值。

5.分析实验结果,并得出结论。

实验数据:波长(纳米),电压(V),光电流(安培)------------,---------,--------------400,2,0.005500,2,0.004600,2,0.003实验结果分析:根据实验数据,可以得出以下结论:1.光电效应的光电流随着光源波长增加而减小,说明光电效应受光源波长的影响。

2.在相同电压下,不同波长的光源产生的光电流大小存在差异。

3.使用滤波片可以改变光源光电流的大小,进一步证明光电效应受光源波长的影响。

实验结论:1.光电效应的光电流与光源的波长有关,光源波长越长,光电流越小。

2.不同波长的光源产生的光电流存在差异,反映了光电效应对不同波长光的灵敏度。

实验总结:通过这次光电探测实验,我们对光电效应有了更深入的了解。

光电效应是一种重要的物理现象,广泛应用于光电能转换、光电仪器等领域。

掌握了光电探测器的使用方法,我们可以更加准确地测量和利用光电效应。

实验结果也使我们认识到光电效应对光源波长的灵敏度,这对于光学仪器的设计和光电器件的选择有着重要的指导意义。

光电探测原理实验报告 南邮

光电探测原理实验报告 南邮

光电探测原理实验报告南邮摘要:采用四象限探测器作为光电定向实验,学习四象限探测器的工作原理和特性,同时掌握四象限探测器定向的工作方法。

实验中,四象限探测器的四个限区验证了具有完全一样的光学特性,同时四象限的定向具有较良好的线性关系。

关键词:光电定向四象限探测器1、开场白随着光电技术的发展,光电探测的应用也越来越广泛,其中光电定向作为光电子检测技术的重要组成部分,是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。

光电定向方式有扫描式、调制盘式和四象限式,前两种用于连续信号工作方式,后一种用于脉冲信号工作方式。

,由于四象限光电探测器能够探测光斑中心在四象限工作平面的位置,因此在激光准直、激光通信、激光制导等领域得到了广泛的应用[1]. 本光电定向实验装置采用激光器作为光源,四象限探测器作为光电探测接收器,采用目前应用最广泛的`一种光电定向方式现直观,快速定位跟踪目标方位。

定向原理由两种方式完成:1、硬件模拟定向,通过模拟电路进行坐标运算,运算结果通过数字表头进行显示,从而显示出定向坐标;2、软件数字定向,通过AD转换电路对四个象限的输出数据进行采集处理,经过单片机运算处理,将数据送至电脑,由上位机软件实时显示定向结果。

本实验系统就是根据光学雷达和光学制导的原理而设计的,利用其光电系统可以轻易、间接地测定目标的方向。

使用650nm激光器搞光源,用四象限探测器表明光源方向和强度。

通过实验,可以掌控四象限光电探测器原理,并观测至红外红外线电磁辐射至四象限探测器上的边线和强度变化。

并利用实验仪展开设计性实验等内容,将光学定向应用领域至各领域中[2]。

2、实验原理2.1、系统了解光电定向是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域获得了广为的应用领域。

光电检测实验报告

光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。

四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。

2、将光纤实验模板输出端V0与数显单元相连,见图9-2。

3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。

4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。

5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。

注:电压变化范围从0→最大→最小必须记录完整。

表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。

并认为X=4mm时为最小的0。

6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。

答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。

光电检测实验报告

光电检测实验报告

光电检测实验报告光电检测实验报告引言:光电检测是一种常见的实验方法,通过光电效应原理,将光信号转化为电信号进行测量和分析。

本次实验旨在通过搭建光电检测系统,探索光电效应在不同条件下的特性,并研究其在实际应用中的潜力。

一、实验装置的搭建实验装置由光源、光电探测器和信号处理器组成。

光源可以选择激光器、LED 等,而光电探测器则包括光电二极管、光电倍增管等。

信号处理器用于放大和转换光电信号,常见的有放大器、滤波器等。

二、光电效应的研究光电效应是指当光照射到物质表面时,光子能量被物质吸收,从而产生电子的现象。

实验中,我们通过改变光源的强度和波长,以及调整光电探测器的位置和方向,研究光电效应的特性。

1. 光源强度对光电效应的影响在实验中,我们使用不同强度的光源照射光电探测器,记录下光电流的变化情况。

实验结果显示,光源强度越大,光电流也越大,这表明光电效应与光源的强度呈正相关关系。

2. 光源波长对光电效应的影响我们使用不同波长的光源照射光电探测器,观察光电流的变化。

实验结果显示,不同波长的光源对光电效应的影响不同。

在可见光范围内,短波长的光源产生的光电流较大,而长波长的光源产生的光电流较小。

这说明光电效应与光源的波长呈负相关关系。

三、光电检测在实际应用中的潜力光电检测技术在许多领域中有着广泛的应用,如光电传感器、光电测距仪等。

以下是一些实际应用案例:1. 光电传感器在自动化生产中的应用光电传感器可以通过光电效应检测物体的存在与否,广泛应用于自动化生产线上。

例如,在汽车制造过程中,光电传感器可以检测零件的位置和质量,实现自动化装配和质量控制。

2. 光电测距仪在测量领域中的应用光电测距仪利用光电效应测量物体与测距仪之间的距离。

它可以应用于建筑测量、地质勘探等领域。

例如,在建筑测量中,光电测距仪可以快速、准确地测量建筑物的高度和距离,提高测量效率。

结论:通过本次实验,我们搭建了光电检测系统,并研究了光电效应在不同条件下的特性。

光电探测实验报告体会

光电探测实验报告体会

光电探测实验报告体会实验概述在本次实验中,我们学习了光电效应的基本原理,并通过搭建光电探测系统来观察和测量光电效应产生的电流和电压。

实验中我们使用了光电效应的经典实验仪器,包括光源、光栅、光电探测器等,通过调节实验参数,如入射光强度、光波长、光电探测器表面材料等,来研究和探索光电效应的各种规律和特性。

实验目的本次实验的目的是通过实际操作,加深对光电效应的理解,并进一步学习如何应用光电探测技术进行测量和检测。

同时,通过观察和记录实验现象和数据,分析实验结果,总结实验经验和体会,提高科学实验的设计和操作技能。

实验装置与步骤实验装置主要包括光源、光栅、光电探测器和测量设备。

实验步骤如下:1. 搭好实验装置并确认系统工作正常;2. 调节光源亮度和光电探测器的位置,确保探测到的电流和电压信号稳定;3. 在一定范围内改变入射光波长,并观察光电流和光电压的变化;4. 固定光波长,改变光源亮度,测量光电流和光电压的关系;5. 记录实验数据并进行分析。

实验结果与分析通过实验观察和数据测量,我们得到了以下结果和分析:1. 光电流与光电压与入射光强度成正比关系;2. 光电流与光电压与光波长有关,当光波长增大时,光电流和光电压呈指数增长;3. 改变光电探测器表面材料可以改变光电效应的灵敏度和响应特性。

实验结果与理论预期相符,验证了光电效应的基本规律和特性。

通过分析数据,我们可以进一步推导出光电效应的数学表达式,并用于实际应用中的光电探测和测量。

实验总结与体会通过本次实验,我对光电效应有了更深入的理解,学习到了如何设计和搭建光电探测系统,以及如何准确测量和分析光电信号。

同时,我也体会到了进行科学实验的重要性和意义:1. 科学实验是理论知识的验证和实践应用的重要环节;2. 实验过程需要细心和耐心,保证实验数据的准确性和可靠性;3. 数据分析是实验成果的重要组成部分,需要具备科学思维和严密的推理能力。

此外,本次实验还让我认识到光电探测技术在现代科学和工程领域的重要性,特别是在光学通信、太阳能发电、光电传感器等领域的应用。

光电技术实验报告

光电技术实验报告

一、实验目的1. 理解光电效应的基本原理和规律。

2. 掌握光电探测器的性能参数测量方法。

3. 学习光电技术在实际应用中的具体应用。

二、实验原理光电效应是指光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应方程,光子的能量与电子的动能之间存在以下关系:E = hν = Ek + W其中,E为光子的能量,h为普朗克常数,ν为光的频率,Ek为电子的动能,W为金属的逸出功。

光电探测器是一种将光信号转换为电信号的装置,常用的光电探测器有光电二极管、光电三极管、光电倍增管等。

本实验主要研究光电二极管的性能参数。

三、实验仪器与设备1. 光电效应实验装置:包括光电管、光源、放大器、示波器等。

2. 光电探测器性能参数测试仪:用于测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。

3. 电源:提供实验所需的电压。

四、实验步骤1. 光电效应实验:(1)将光电管接入实验装置,调整光源的电压和电流,使光电管正常工作。

(2)打开示波器,观察光电管在不同电压下的伏安特性曲线。

(3)改变光源的频率,观察光电效应的规律。

2. 光电探测器性能参数测试:(1)将光电二极管接入性能参数测试仪,调整测试仪的电压和电流,使光电二极管正常工作。

(2)测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。

五、实验结果与分析1. 光电效应实验结果:(1)伏安特性曲线:随着电压的增加,光电管的电流逐渐增大,当电压达到一定值时,电流达到饱和。

(2)光电效应规律:光电效应的电流与光强成正比,与光的频率有关,当光的频率低于截止频率时,光电效应不发生。

2. 光电探测器性能参数测试结果:(1)暗电流:在无光照条件下,光电二极管的电流为暗电流,其大小反映了光电二极管的漏电流。

(2)饱和电流:当光强增加时,光电二极管的电流逐渐增大,当电流达到饱和时,光强的增加对电流的影响不再明显。

(3)光电流:光电二极管的光电流与光强成正比,其比例系数称为光电流灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电探测技术实验报告班级:08050341X学号:28*****实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。

由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

分别测出两种光敏电阻的亮电流,并做性能比较。

图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。

按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。

将所测得的结果填入表格并作出V/I曲线。

注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。

光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。

实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

实验数据及结果:1.暗电流L暗=V暗/R L=3.678V/0.47M=7.82*10-6亮电流L亮=V亮/R L=2.212V/22.68k=9.75*10-5 2.偏压4V偏压6V偏压8V偏压10V偏压12V光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验二光敏管的应用-----光控电路实验目的:了解光敏管在控制电路中的具体应用。

实验所需部件:光敏二极管或光敏三极管、光控电路、光源、电压表、电阻器、三极管实验步骤:1.图(10)为一常用的由光敏管组成的光控电路,其原理与前述光敏电阻光控电路相似,电路接线时须注意光敏管的极性。

接通电源后调节控制电路,使其在自然光下负载发光管不亮。

2.分别用白纸\带色的纸\书本和遮光罩改变光敏管的光照,观察控制电路的亮灯情况。

实验结果及结论:亮电阻白纸带色的纸书本遮光罩9.00V 5.18V 4.45V 3.00V 1.79V很亮较亮微亮较暗很暗光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验三光纤传感器--------位移测试实验原理:本实验仪中所用的为传光型光纤传感器,光纤在传感器中起到光的传输作用,因此是属于非功能性的光纤传感器。

光纤传感器的两支多模光纤分别为光源发射及接收光强之用,其工作原理如图(22)所示。

光纤传感器工作特性曲线如图(23)所示。

一般都选用线性范围较好的前坡为测试区域。

实验所需部件:光纤、光电变换器、放大稳幅电路、近红外发射及检测电路(光纤变换电路内)、反射物(电机叶面)、电压表.实验步骤:1.将光纤、光电变换块与光纤变换电路相连接,注意同一实验室如有多台光电传感器实验仪,由于光电变换块中的光电元件特性存在不一致,则光纤变换电路中的发射\接收放大电路的参数也不一致,故请做实验之前将光纤\光电变换块和实验仪对应编号,不要混用,以免影响正常实验。

2.光纤探头安装于位移平台的支架上用紧定螺丝固定,电机叶片对准光纤探头,注意保持两端面的平行。

3.尽量降低室内光照,移动位移平台使光纤探头紧贴反射面,此时变换电路输出电压Vo应约等于零。

4.旋动螺旋测微仪带动位移平台使光纤端面离开反射叶片,每旋转一圈(0.5毫米)记录Vo值,并将记录结果填入表格,作出距离X与电压值mv的关系曲线。

从测试结果可以看出,光纤位移传感器工作特性曲线如图(23)所示分为前坡Ⅰ和后坡Ⅱ。

前坡Ⅰ范围较小,线性较好。

后坡工作范围大但线性较差。

因此平时用光纤位移传感器测试位移时一般采用前坡特性范围。

根据实验结果试找出本实验仪的最佳工作点。

(光纤端面距被测目标的距离)起始电压 0.05V 峰值电压 0.76V 每次相距 0.15mm由峰值向前20组0.76 0.75 0.74 0.72 0.69 0.68 0.67 0.66 0.65 0.63 0.62 0.61 0.60 0.49 0.37 0.26 0.20 0.12 0.09 0.05由峰值向后20组思考题:如何利用光纤传感器位移测试的原理,设计一个光纤传感器压力测试单元?(提示:压力致使物体产生形变)。

答:压力→位移→电压→数字信号光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验四. 光电位置敏感器件-----PSD传感器实验原理:PSD(position sensitive detector)是一种新型的横向光电效应器件,当入射光点照在器件光敏面上时,激发光生载流子而产生电流I,光生电流的大小与光点的大小无关,只和光点在器件上的位置有关系。

当光点位于器件中点(原点)时,光生电流I1=I2,根据这一原理,将PSD器件两极电流I1、I2变换成电压信号后再进行运算即可知道光点的位置。

PSD器件工作原理见图(27)实验所需器件:PSD基座(器件已装在基座上)、固体激光器、反射体、PSD处理电路单元、电压表实验步骤:1.通过基座上端圆形观察孔观察PSD器件及在基座上的安装位置,连接好PSD器件与处理电路,开启仪器电源,输出端Vo接电压表,此时因无光源照射,PSD前聚焦透镜也无因光照射而形成的光点照射在PSD器件上,Vo输出的为环境光的噪声电压,试用一块遮光片将观察圆孔盖上,观察光噪声对输出电压的变化。

2.将激光器插头插入“激光电源”插口,激光器安装在基座圆孔中并固定。

注意激光束照射到反射面上时的情况,光束应与反射面垂直。

旋转激光器角度,调节激光光点,(必要时也可调节PSD前的透镜)使光点尽可能集中在器件上。

3.仔细调节位移平台,用电压表观察输出电压V O的变化,当输出为零时,再分别测两路信号电压输出端V O1、V O2的电压值,此时两个信号电压应是基本一致的。

4.从原点开始,位移平台分别向前和向后位移10mm,因为PSD器件对光点位置的变化非常敏感,故每次螺旋测微仪旋转25格(5/10mm),并将位移值(mm)与输出电压值(V0)记录列表,作出V/X曲线,求出灵敏度S,S=△V/△X。

根据曲线分析其线性。

参考电压 0.473V 绝对位置 20mm向前20组△X=0.5mm测量电压0.468 0.462 0.458 0.456 0.454 0.450 0.447 0.441 0.440 0.437 0.434 0.429 0.423 0.420 0.416 0.411 0.405 0.399 0.393 0.389 △U0.006 0.004 0.002 0.002 0.004 0.003 0.006 0.001 0.003 0.005 0.006 0.003 0.004 0.005 0.006 0.006 0.004△U的平均数=0.0038V △X的平均数=0.5mm S=△V/△X=7.6向后20组△X=0.5mm测量电压0.473 0.475 0.479 0.484 0.488 0.492 0.494 0.496 0.504 0.5070.511 0.515 0.517 0.519 0.523 0.526 0.530 0.532 0.536 0.540 △U0.002 0.004 0.005 0.004 0.004 0.002 0.002 0.003 0.004 0.004 0.002 0.002 0.004 0.003 0.002 0.004 0.004△U的平均数=0.003275V △X的平均数=0.5 S=△V/△X=0.655注意事项:实验中所用的固体激光器光点可调节,实验时请注意光束不要直接照射眼睛,否则有可能对视力造成不可恢复的损伤。

每一支激光器的光点和光强都略有差异,所以对同一PSD 器件,光源不同时光生电流的大小也是不一样的。

实验时背景光的影响也不可忽视,尤其是采用日光灯照明时,或是仪器周围有物体移动造成光线反射发生变化时,都会造成PSD光生电流改变,致使单元V0输出端电压产生跳变,这不是仪器的毛病。

如实验时电压信号输出较小,则可调节一下激光器照射角度,使输出达到最大。

光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验五光敏三极管对不同光谱的响应实验原理:在光照度一定时,光敏三极管输出的光电流随波长的改变而变化,一般说来,对于发射与接收的光敏器件,必须由同一种材料制成才能有此较好的波长响应,这就是光学工程中使用光电对管的原因。

实验所需部件:光敏三极管、发光二极管(包括红外发射管、各种颜色的LED)、试件插座、直流稳压电源、电压表(自备4 1/2位)实验步骤:1、按图(14)接好光敏三极管测试电路,电路中的光敏三极管为红外接收管,电路中的光源采用红外发光二极管,必须注意发光二极管的接线方向。

发光二极管的光都是通过顶端的透镜发射的,因此实验时必须注意二极管与三极管的相对位置。

(顶端透镜相对)2、接好如图(15)所示的发光二极管电路,注意发光二极管限流电阻阻值的调节(电位器阻值的调节一定要按从大到小的原则),发光二极管可插在试件插座上。

实验中发光源可用多种颜色的LED。

3、用黑色胶管将发光二极管与光敏三极管对顶相连,并用遮光罩将它们罩住,如果光谱一致的话则测试电路输出端信号变化较大,反之则说明发射与接收不配对,需更换发光源。

4、调整发光二极管发光强度(可调节电位器)或改变与光敏管的相对位置,重复上述实验。

注意事项:发光二极管限流电阻一定不能太小,否则将损坏发光源。

绿色二极管红色二极管光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验六 光栅衍射实验——光栅距的测定实验目的:了解光栅的结构及光栅距的测量方法。

实验所需部件:光栅、激光器、直尺与投射屏(自备)。

实验步骤:1、激光器放入光栅正对面的支座中用紧定螺丝固定,接通激光电源后使光点对准光栅中点。

2、在光栅后面安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光斑为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。

相关文档
最新文档