电化学腐蚀力学

合集下载

第3章电化学腐蚀动力学

第3章电化学腐蚀动力学

R O ne i
i0
则: A a A bA lg i A
C aC bC lg iC
lgi
二、活化极化控制下的腐蚀速度表达式
Zn Zn +2e
2+
i1
i2
H 2 2H +2e
i2
i1
i1 i2 i2 i1
1 0
假设极化电位远距离两个平衡电位,则 (极化电位 总是从腐蚀电位 corr开始)
iC 外
2 i0 exp[
i1
i2
可以忽略
2 2.3( 0,2 ) 2.3( 0,1 ) 1 i2 i1 i0 exp[ ] i0 exp[ ] bC 2 bA1 bC 2
1 0
或者
icorr
2.3( corr 0,2 ) 2.3( corr 0,2 ) i exp[ ] exp[ ] bC 2 bA 2
2 0
2.3 C 2 2.3 C 2 i exp( ) exp( ) bC 2 bA 2
2 0
如果 corr 远距两个平衡点位,则
i1 i2
可以忽略
icorr
2.3( corr 0,1 ) 2.3( corr 0,1 ) i exp[ ] exp[ ] bA1 bC 1
1 0
2.3 A1 2.3 A1 1 2.3 A1 i exp( ) exp( ) i0 exp( ) bA1 bC 1 bA1
0.0591 4
0.21 10 7 4
0.805V(SHE)

第2章 电化学腐蚀的动力学

第2章 电化学腐蚀的动力学

51
ia =ik =ic
稳定电位:电极电位不随时 间变化,又称混合电位
腐蚀电位 稳定状态与平衡状态的区别?
52
腐蚀电池的作用
宏观腐蚀电池的作用
1.一种金属腐蚀而另一种金属不腐蚀: M1腐蚀加速,M2仍不腐蚀
孤立金属M1电极反应:
M1 D + ne
孤立M2电极反应:
M1 n+ + ne D n-
D + ne
10
电化学极化
电化学极化:由电化学步骤来控制电极反
应过程速度的极化
11
电极电位对电化学步 骤活化能的影响
反应按还原方向进行时,当电位改 变△,则带电子nF的粒子穿越双 电层所做的功增加nF△(即终态 总势能的增加),改变电极电位后 阴极反应的活化能增加:
阳极反应的活化能减小:
12
电极电位对电极反应 速度的影响
1.强极化时
在阳极极化曲线的塔菲尔区:
在阴极极化曲线的塔菲尔区:
72
腐蚀体系从腐蚀电位强极化时的极化公式
73
2.微极化时
Rp:线性极化区的极化曲线的斜率,称为极化阻率
74
极化曲线的测量方法
极化曲线: 极化电位与极化电流或极化电流密度之间的关系
曲线
75
1.恒电流法: = f(i) 可能有多值 2.恒电位法: i = F()
稳态扩散过程:扩散途径中每一点的扩散速度都相等,因
而扩散层内的浓度梯度在扩散过程中不随时间改变
菲克第一定律:单位时间内
通过单位面积的扩散物质流量为:
32
在电化学腐蚀过程中,往往是阴极反应,特别是氧分子还原反应 涉及浓度极化。氧分子向电极表面的扩散步骤往往是决定腐蚀速 度的控制步骤 在稳态条件下,扩散层内的浓度梯度就等于扩散层外侧溶液本体 的浓度与电极表面的浓度的差值除以扩散层的厚度:

第四章电化学腐蚀反应动力学详解

第四章电化学腐蚀反应动力学详解
面的因素:
a)腐蚀的驱动力——腐蚀电池的起始电势差 0,C 0, A
b)腐蚀的阻力——阴、阳极的极化率 PC 和 PA ,以及欧姆电阻 R
三项阻力中任意一项都可能明显地超过另两项,在腐蚀过程中对速度起 控制作用,称为控制因素。利用极化图可以非常直观地判断腐蚀的控制 速度。
欧姆电势降与阴极(或阳极)极化曲线加和起来,如图中的 0,C A线, 然后与阳极极化曲线 0,AS 相交于A点,则点A对应的电流I1就是这
种情况下的腐蚀电流。
0,C 0,A C A I1R I1PC I1PA I1R
I1
0,C
PC
0,A
PA R

I corr
0,C 0,A
PC PA R
则阳极极化 阴极极化
A E Ei Ee (4.1a) c E Ee Ei (4.1b)
对不可逆电极存在一个稳态的电位Es,也使用电极极化一词。这时,极化值 的大小用类似式(4.1)的方程式表示
E Ei Es (4.2)
极化的结果:阴极极化使电极电位负移,阳极极化使电极电位正移。 当电流通过电极时,电极上产生两种相反的作用:
铜不溶于还原性酸,因为铜的平衡电势高于氢的平衡电势,不能形成氢阴极 构成腐蚀电池,但铜可溶于含氧酸或氧化性酸中,因为氧的平衡电势比铜高, 可构成阴极反应,组成腐蚀电池。酸中含氧量多,氧去极化容易,腐蚀电流 较大,而氧少时,氧去极化困难,腐蚀电流较小。见图4.10
铜在非含氧酸中是耐蚀的,但当溶液中含氰化物时,可与铜离子配合形成配 合离子,铜的电势向负方向移动,这样铜就可能溶解在还原酸中。见图4.10
图4.7 氧化性酸对铁的腐蚀
图4.8 金属平衡电极电位对腐蚀电流的影响
图4.9 钢在非氧化酸中的腐蚀极化图

电化学腐蚀热力学剖析

电化学腐蚀热力学剖析

电化学腐蚀热力学剖析概述电化学腐蚀是金属在与混合电解质接触时产生的一种可逆或不可逆的化学反应,主要是通过产生原子或离子,在这一过程中,通常会产生电子和阳离子或阴离子,这样金属就会被氧化,这种反应有时也叫做“原电池”。

在电化学腐蚀过程中,腐蚀后沉积物是由金属离子和阴、阳离子的复合物组成的,这个复合物的成分、结构、形态和物理化学性质,与电化学反应的热力学特性息息相关。

电位和电动势在电化学腐蚀过程中,金属表面被氧化而形成的离子产生了电动势,可以用电位的概念来描述。

电位是指一个试验电极在电解质中相对于标准电极势的电势差。

标准电极势是未受化学反应影响时所产生的电位,一般为0 V。

根据电位的大小可以判断金属是否会被电化学腐蚀,以及会被腐蚀的程度。

理论上,电动势是由离子在电解质中的迁移产生的。

在系统中,电子和阳、阴离子之间的迁移是通过氧化还原反应活动发生的。

电极间差电势就是金属接触电解液所造成的电荷分布而产生的电势差。

电化学腐蚀的热力学特性电化学腐蚀的热力学特性主要是通过反应自由能来描述的。

反应自由能是所考虑的化学反应的反应热和熵变的差值。

对于一个化学反应来说,自由能越小,其越倾向于发生。

在电化学腐蚀中出现氧化还原反应,如下所示:Fe→Fe2++2e−O2+2H2O+4e−→4OH−通过上述反应可以看出,当发生氧化还原反应的时候,反应物和产物之间的自由能差,将会决定反应是否会发生,也就是反应的方向性。

如果自由能差大于0,反应就会向反方向发生,这就会导致电化学腐蚀。

影响电化学腐蚀的因素电化学腐蚀是由于环境因素和材料特性的相互作用而引起的。

以下是一些影响电化学腐蚀的主要因素:环境因素1.电解质的浓度:电解质浓度越高,电势差越大,腐蚀越严重。

2.离子活性:离子活性越高,电位越负,金属表面的腐蚀程度越大。

3.温度:温度越高,电化学反应速度越快,腐蚀越严重。

材料特性1.金属组成:不同的金属在相同的环境下会产生不同的电位和反应特性。

电化学腐蚀热力学

电化学腐蚀热力学
标准电极电位Eϴ : 在标准状态下,(反应物活度am=1),将各电极与标准氢
电极组成电池,所测得相对平衡电位。 标准氢电极电位定义为0。
3.非平衡电极电位
非平衡电极电位— 电极反应达到电荷交换平衡可逆,物质交 换不平衡可逆:
阳极反应 Fe Fe 2+ + 2 e ( ia)
阴极反应 2H+ + 2e H2 ( ic)
质中易腐蚀;
+1.229 < Eϴ M ,贵金属,热力学完全稳定;(但有络合剂氧化物也会腐蚀)
根据 pH=7时,: E H/H+ = -0.414 V, E O2/ OH = +0.815 V pH=0时,: E H/H+ = 0.00 V, E O2/ OH = +1.229 V
分组判断金属材料的腐蚀热力学稳定性
iI > 0
腐蚀不可能发生。
例1:Zn在酸性溶液中: Zn + 2H+ = Zn2+ + H2
0 0 -35184 0 G = iI = -35184 Cal
例2: Ni在酸性溶液中 Ni + 2H+ Ni2+ + H2
0 0 -11530 0 G = -11530 Cal
例3:Au在酸性溶液中: Au + 3H+ Au3+ + 3/2H2
金属在电解质溶液中的腐蚀是电化学过程,这是绝大多数金 属腐蚀过程的本质。
如Fe在HCl中,可观察到铁的腐蚀溶解,并析出氢气:
阳极反应:Fe Fe2+ +2e 阴极反应:2H+ +2e H2
金属腐蚀破坏的短路原电池

第4章腐蚀动力学

第4章腐蚀动力学

第四章电化学腐蚀动力学-1§4—1 电化学腐蚀速度与极化从热力学出发所建立起来的电位——pH图只能说明金属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。

一. 腐蚀速度。

腐蚀速度的表示方法有三种。

1. 重量法:用腐蚀前后重量变化(只用均匀腐蚀,金属密度相同)增重法:V+ =(W1-W0)/S0t (g/m²h)失重法:V­=(W0-W1)/S0t (g/m²h)式中:W0——式样原始重量。

W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表面积(m²) t——经受腐蚀的时间(小时)2. 腐蚀深度法(均匀腐蚀时,金属密度不同)可用此法表示。

D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为金属密度力学(或电阻)性能变化法。

(适用于晶间腐蚀,氢腐蚀等)Kσ=(σbº-σbˊ)/σbº×100% K R =(R1-R0)/R0×100%σbº,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. 用阳极电流密度表示V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m²h)F——法拉第常数96500KN——金属光当量=W/n =金属原子量/金属离子价数二. 极化上一章讨论了金属电化学腐蚀的热力学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等人们最为关心的问题。

电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究金属的腐蚀与保护是很重要的。

金属受腐蚀的趋势大小是由其电极电位决定的,将两块不同金属置于电解质中,两个电极电位之差就是腐蚀原动力。

但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。

这种由于有电流流动而造成电极电位变化的现象称为电极的极化。

第三章 电化学腐蚀动力学

第三章  电化学腐蚀动力学

二、腐蚀极化图
★ 极化现象是由于电极反应存在阻力 造成 的,对金属腐蚀有重要影响。
★ 电极电位随电流密度变化而改变, 通常把电极的电位与电流密度的关系绘 图来表示,称为腐蚀极化图。
1、极化曲线的测量
腐蚀电池的阴阳极 电位随电流的变化
腐蚀电池极化曲线测量装置示意图
电流随着电阻的减小而增大, 同时导致阴极和阳极发生极化, 即使阳极电位升高,阴极电位降 低,从而使两极间的电位差减小。
腐蚀金属的理论极化曲线与表观极化曲线

理论极化曲线: 金属腐蚀原电池的阳极、阴极过程极化曲 线。 表观极化曲线: 正在腐蚀的金属施加外电流或电位后会发 生极化,表示外电流与金属的电极电位的关 系的极化曲线。

表观极化曲线的测量方法有两种.恒电流法和恒 电位法,恒电流法是控制电流,测量电位,表示电 极电位是电流的函数E=f(I);恒电位法是控制电位, 测量电流,表示电流是电极电位的函数I=f(E)。目前 腐蚀极化图,多半采用以电位为纵坐标,以电流(或 电流密度)为横坐标。电流有普通直角坐标与对数坐 标两种。
3、 去极化
★消除或减弱引起电极极化的因素,促使电 极反应过程加速进行,习惯上称为去极化作 用。 例如存在浓差极化的情况下,搅拌溶液 可以加快相关物质的扩散,减小浓差极化; 提高温度可提高电极反应速率和物质的扩 散速率,从而降低活化极化和浓差极化; 溶液中的氧化剂如H+、O2等可使阴极极 化减弱,这些氧化剂也叫去极化剂。
(a)阴极控制
b)阳极控制
(c)混合控制
(d)欧姆控制
E
E Eea
Eቤተ መጻሕፍቲ ባይዱ
RPc
Eea
Icorr
(a)阳极初始电位负移
I

电化学腐蚀动力学

电化学腐蚀动力学
20
§2.3 腐蚀电池及工作历程
工业用的金属总是含有少量的杂质,其电位常与金属不同。工业中常用 的合金往往是多相组成,不同相的电位往往也不一样。 当含杂质的金属或多相合金浸在某种电解质溶液中时,其表面会形成许
多由微小的阴极和阳极组成的短路原电池,常称为腐蚀微电池。
21
§2.3 腐蚀电池及工作历程
同时将等量的电子留在金属上;
通式: [ne-·Mn+] → [Mn+] + [ne-]
产物有两种:
可溶性离子,如
不溶性固体,如
➢ 阴极过程:从阳极通过外电路流过来的电子被来自电解质溶液且吸附
于阴极表面能够接受电子的物质,即氧化性物质吸收;
通式: [D] + [ne-] → [D· ne-]
常见的去极化剂(氧化剂)是 H+和O2
没有电流产生
Zn + H2SO4=ZnSO4 + H2
5
§2.1 引言
➢ 电化学腐蚀:是指金属材料和电解质溶液接触时,由于腐蚀电池作用而引 起的金属材料腐蚀破坏。其腐蚀规律遵循电化学腐蚀原理。
阳极:Zn-2e- =Zn2+ 阴极:2H+ +2e- =H2 ↑ 总反应:Zn+2H+ =Zn2+ +H2 ↑
36
§2.4 腐蚀电池的类型
如果微电池的阴、阳极位置不断变化,腐蚀形态是 全面腐蚀; 如果微电池的阴、阳极位置固定不变,腐蚀形态是 局部腐蚀。
37
§2.4 腐蚀电池的类型
亚微观腐蚀电池:亚微观(10-100Å) - 金属表面结构的 显微不均匀性, 阴、阳极无序,统计分布,交替变化
• 成分差异 • 晶体取向差异 • 晶界、异种夹杂物 • 晶格不完整、位错 • 界面溶液涨落 • 亚微观电化学不均匀 • 应力作用形成位错定向移动 – SCC • 交变力场作用 - 腐蚀疲劳等。

腐蚀机理和力学损伤行为研究

腐蚀机理和力学损伤行为研究

腐蚀机理和力学损伤行为研究引言:腐蚀和力学损伤是材料在使用过程中可能遇到的主要问题之一。

腐蚀是指材料与其周围环境相互作用发生化学反应导致材料退化和损坏的过程。

力学损伤则是指材料在受力作用下发生形变和破坏的行为。

通过研究腐蚀机理和力学损伤行为,我们可以更好地理解材料的退化和破坏过程,并采取相应的措施来延长材料的寿命和提高其性能。

一、腐蚀机理研究1. 电化学腐蚀电化学腐蚀是常见的一种腐蚀形式,涉及电子和离子的迁移和转化。

当金属表面有缺陷时,形成一个阳极和阴极之间的电偶,并伴随着电流的流动。

在腐蚀作用下,金属表面的离子逐渐溶解并形成氧化物或酸,导致材料体积的减小和重量的损失。

2. 化学腐蚀化学腐蚀是由于材料与周围环境接触后发生的化学反应导致材料发生变化和损坏的过程。

这通常涉及被腐蚀物质的吸附、反应和扩散。

腐蚀速率受到多种因素的影响,包括温度、湿度、氧分压力、酸度等。

二、力学损伤行为研究1. 韧性断裂韧性断裂是材料在受到大量塑性形变时最终发生破坏的现象。

当应力达到材料的流动应力,开始引起局部塑性变形。

随着应力增加,塑性区域逐渐扩展并形成裂纹。

裂纹扩展到致命长度时立即蔓延并引起材料的破坏。

2. 疲劳破坏疲劳破坏是由于材料在交变应力作用下发生慢性破坏的过程。

在循环载荷的作用下,材料的应力和应变会发生周期性的变化,导致材料的表面出现裂纹。

随着循环次数的增加,裂纹逐渐扩展并引起材料的破坏。

3. 蠕变破坏蠕变是指材料在高温和恶劣条件下在恒定应力或应变作用下发生连续塑性变形的过程。

在蠕变破坏中,材料的结构发生变化,晶界会因为结构的流动而发生剪切,导致材料逐渐变形并最终破坏。

结论:腐蚀机理和力学损伤行为研究是材料科学中的重要课题,对于材料的设计和应用具有重要意义。

通过深入研究和理解腐蚀机理和力学损伤行为,我们可以提出相应的材料改进和维护策略,延长材料的使用寿命,提高材料的性能。

未来,随着科技的进步和研究方法的发展,对于腐蚀机理和力学损伤行为的研究将会进一步深入,为材料领域的发展和创新提供更好的支持。

电化学腐蚀热力学

电化学腐蚀热力学
外电流的表征: 当 ,则外电流为 当 ,则外电流为
过电位
01
定义:把某一极化电流密度下的电极电位与其平衡电位之差称为该电极反应的过电位。
腐蚀原电池定义:只能导致金属材料破坏而不能对外界作有用功的短路的原电池。
含杂质Cu的Zn板在盐酸中的演化实验
在混合电位下有如下规律:
01
02
多电极反应耦合系统
当一个孤立电极上有N>2个电极反应同时进行,且外电流等于0,这些电极反应组成了多电极反应耦合系统。 规律:
2-4 金属电化学腐蚀倾向的判据
金属及其化合物的热力学能量变化示意图
自由能判据 GT,P=0,平衡 GT,P<0,自发 GT,P>0,不可能发生
虚线(b)表示O2(分压 =10135Pa)和H2O的平衡关系,即:O2 +4H+ +4e → 2H2O
0 0 0 0
Fe3+
腐蚀
Fe2O3
钝态
Fe3O4
腐蚀 HFeO2-
稳定Fe
铁——水体系简化电位——PH平衡图 三种区域的划分
第二章 金属电化学热力学
2
1
5
本章重要知识点:
☼电极电位
☼腐蚀原电池、混合电位、交换电流密度、过电位
4
☼金属腐蚀倾向的热力学判据
3
☼平衡电极电位与非平衡电极电位
6
☼电位-pH图
问题的提出
电化学腐蚀是如何产生的?
腐蚀产生的条件是什么?为什么有些情况下产生腐蚀,而另外一些则不会?

1
2
3
4
5
6
非平衡电极电位
01
当金属电极上同时存在两个或两个以上不同物质参与的电化学反应时,电极上不可能出现物质交换和电荷交换均达到平衡的情况,这种情况下的电极电位称为非平衡电极电位,或不可逆电极电位。

腐蚀与防护-第二章电化学腐蚀热力学资料

腐蚀与防护-第二章电化学腐蚀热力学资料
微观腐蚀电池是造成潮湿大气中洁净金属表 面腐蚀的主要原因。特点:尺寸小,间距近。
由于几方面的不均匀性造成。
① 材料本身相的不均匀性
化学成分、组织结构、物理状态、表面膜的不 完整性 ② 液相的不均匀性 ③ 系统外界条件的不均匀性
温度、光能
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对
2.1 电池过程
➢原电池
把化学能转化为电能的装置
原电池的组成
(c) 电极: 电池中发生 氧化还原反 应的场所。
(a)外电路:负载, 电流的外部通路
(b)盐桥: 电流的内 部通路
()Zn ZnSO4(水溶液) CuSO4(水溶液)Cu()
阳极反应: Zn Zn2 2e 阴极反应: Cu2 2e Cu 总反应: Zn Cu2 Zn2 Cu
电位、位于不同位置; (2)阳极和阴极之间要有电性连接(电子导体
通道);
(3)阳极与阴极均处于有导电能力的腐蚀环 境内(离子导体通道)。 总之,要有两种电极(阳极、阴极)和 两种通道(电子通道、离子通道)。
以锌在酸溶液中腐蚀为例,腐蚀电池工作过 程如图2-1所示。
• 腐蚀电池的工作历程 (电化学腐蚀的过程)
(1)以(+)表示原电池的正极,正极总是写在右边;以(-)表示原电池的 负极,负极总是写在左边。
(2)正、负极中总是有一种导电的物质,如Zn、Cu、Ag、等还原态物质可 作为电极导体,导体总是写在紧邻(+)、(-)的最旁边的位置。如果 电对中的还原态物质不是导体,如Fe3+/Fe2+、 H+/ H2 、Cl2/Cl- 等,就需 要加惰性电极,如:C(石墨)、Pt等。
构成温差电池。

电化学腐蚀原理-动力学

电化学腐蚀原理-动力学
如果电极反应的活化能很高,电化学极化步骤变得最慢,成为控制步 骤,由此导致的极化称为电化学极化或活化极化
如果反应物由液相向电极表面或产物自电极表面向液相深处运动的液
相传质步骤最慢,由此导致的极化称为浓度极化或浓差极化。
材料的腐蚀与防护
第 二 章 电 化 学 腐 蚀 原 理
过电位类型
(1)活化极化过电位
移;如果是固体或气体,则有新相生成。
速度控制步骤 在稳态条件下,各步骤中阻力最大的步骤决定了整个电极反
应的速度,称为速度控制步骤,简称控制步骤,记为RCS或者RDS。
材料的腐蚀与防护
第 二 章 电 化 学 腐 蚀 原 理
根据控制步骤的不同,极化分为两类: 电化学极化 ( 活化极化 ) 浓度极化 ( 浓差极化 ) (* 电阻极化)
a k-a k
阳 极 极 化 k-a 阴 极 极 化
k
通路前 通路后
t
*阳极极化和阴极极化的极化程度和 方向都不相同。
k - 阴极开路电位,伏
a - 阳极开路电位,伏
*混合电位(腐蚀电位)(思考题?)
材料的腐蚀与防护
第 二 章 电 化 学 腐 蚀 原 理 过电位
为了表示电位偏离平衡电位的程度,把某一极化电流密度下,极
第 二 章 电 化 学 腐 蚀 原 理
阳极溶解产生的金属离子,首先进入阳极表面附近的液层中,使 之与溶液深处产生浓度差。由于阳极表面金属离子扩散速度制约,阳 极附近金属离子浓度逐渐升高,相当于电极插入高浓度金属离子的溶 液中,导致电势变正,产生阳极极化。
材料的腐蚀与防护
第 二 章 电 化 学 腐 蚀 原 理
阳极电阻极化
当金属表面有氧化膜,或在腐蚀过程中形成膜时,膜 的电阻率远高于基体金属,则阳极电流通过此膜时,使电 势显著变正,由此引起极化。 *通常只在阳极极化中发生

第二章 电化学腐蚀热力学

第二章  电化学腐蚀热力学



确定腐蚀电池的意义: 明确腐蚀电池及其对应的电极过程是研究各种腐蚀类型和腐蚀形 态的基础;
四、电位—pH图
金属的电化学腐蚀绝大多数是金属同水溶液相接触时
发生的腐蚀过程。水溶液中除了其它离子外,总是存在H+ 和
OH-离子。这两种离子含量的多少由溶液的pH值表示。金属在 水溶液中的稳定性不但与它的电极电位有关,还与水溶液的 pH值有关。
RT ln aM n nF
其中E0为标准状态下的平衡电极电位,可查表得到
不同的金属在不同溶液中的离子化倾向 不同。当达到平衡时,金属在溶液中建立起平 衡电极电位。若以标准氢电极为参比电极(规 定其电位为零),则电极电位的大小(即可看 作为原电池的电动势)和自由能变化值一样, 可以表示腐蚀的自发倾向,二者具有以下关系:
(2)气体电极 金属在含有气体和气体离子的溶液中构成的电极 称为气体电极。如氢电极(2H++2e = H2)、氧电极( O2十 2H2O +4e = 4OH-)等。将铂片浸入氢离子浓度为1mol/L 的硫酸溶液中, 然后在25℃不断地通入1个大气压的纯氢气流 就构成了标准氢电极,它又可表示为H+│H2(Pt)。
金属在充气的流动海水中的腐蚀电位
三、腐蚀电池
1、腐蚀电池的工作过程 Zn + H2SO4 = ZnSO4 + H2 腐蚀电池的定义:只能导致金属材料破坏而不 能对外界作功的短路原电池。 2、腐蚀电池的特点 ★腐蚀电池的阳极反应是金属的氧化反应,结果造 成金属材料的破坏。 ★腐蚀电池的阴、阳极短路(即短路的原电池), 电池产生的电流全部消耗在内部,转变为热, 不对外做功。 ★腐蚀电池中的反应是以最大限度的不可逆方式进 行。
ESHE =0.2415十ESCE

4-电化学腐蚀动力学

4-电化学腐蚀动力学

腐蚀速度腐蚀速度-电化学腐蚀动力学
极化与过电位
阳极极化与阴极极化
电化学极化(活化极化) 电化学极化(活化极化)
阴极上由于去极剂结合电子的速度迟缓,来不及全部消耗来自阳极的电 子,形成电子堆集,造成阴极电子密度增高,电位向负方向移动 阳极上金属失去电子成为水化离子的反应速度落后于电子流出阳极的速 度,破坏了双电层的平衡,使双电层电子密度减少,阳极电位向正方向 移动 这种由于电化学反应与迁移速度差异而引起电位的降低或升高称为电化 学极化。因阳极或阴极的电化学反应需较高的活化能,电极反应必须电 极电位正移或负移到某一值才得以进行
腐蚀速度腐蚀速度-电化学腐蚀动力学
扩散过电位η 扩散过电位ηd的计算 设回路中电流为零时,在电极表面附近和溶液本体中参与电极反应的 物质浓度相同,等于C (阳极反应物质的浓度)或C 物质浓度相同,等于CM(阳极反应物质的浓度)或CD(阴极反应物 质的浓度),则阳极或阴极的电位为
RT 0 EA( K ) = EA( K ) + ln CM ( D) 电池工作后,由于浓差极化作用,阳极表面附近的金属离子浓度由C 电池工作后,由于浓差极化作用,阳极表面附近的金属离子浓度由CM nF 升高到C ;阴极表面附近的去极剂浓度由C 降到C 升高到CM′;阴极表面附近的去极剂浓度由CD降到CD′,此时阳极或阴 极的电位为
极化曲线和极化图
极化曲线
理论极化曲线
理论极化曲线是以理想电极得出的。 理想电极是指该电极上无论处于平衡状态或极化状态时只发生一个电极反应, 如只发生阳极氧化反应或阴极还原反应。但这种电极实际上是不存在的。因 为实际金属由于电化学不均匀性,总是同时存在阴极区和阳极区,而局部的 阴极区和阳极区根本分不开,所以理论极化曲线往往无法直接得到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学腐蚀动力学20世纪40年代末50年代初发展起来的电化学动力学是研究非平衡体系的电化学行为及动力学过程的一门科学,它的应用很广,涉及能量转换(从化学能、光能转化为电能)、金属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显示出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作用。

电化学动力学中的一些理论在金属腐蚀与防护领域中的应用就构成了电化学腐蚀动力学的研究内容,主要研究范围包括金属电化学腐蚀的电极行为与机理、金属电化学腐蚀速度及其影响因素等。

例如,就化学性质而论,铝是一种非常活泼的金属,它的标准电极电位为-1.662V。

从热力学上分析,铝和铝合金在潮湿的空气和许多电解质溶液中,本应迅速发生腐蚀,但在实际服役环境中铝合金变得相当的稳定。

这不是热力学原理在金属腐蚀与防护领域的局限,而是腐蚀过程中反应的阻力显著增大,使得腐蚀速度大幅度下降所致,这些都是腐蚀动力学因素在起作用。

除此之外,氢去极化腐蚀、氧去极化腐蚀、金属的钝化及电化学保护等有关内容也都是以电化学腐蚀动力学的理论为基础的。

电化学腐蚀动力学在金属腐蚀与防护的研究中具有重要的意义。

第一节腐蚀速度与极化作用电化学腐蚀通常是按原电池作用的历程进行的,腐蚀着的金属作为电池的阳极发生氧化(溶解)反应,因此电化学腐蚀速度可以用阳极电流密度表示。

例如,将面积各为10m2的一块铜片和一块锌片分别浸在盛有3%的氯化钠溶液的同一容器中,外电路用导线连接上电流表和电键,这样就构成一个腐蚀电池,如2-1。

图2-1 腐蚀电池及其电流变化示意图查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。

让我们观察一下该腐蚀电池接通后其放电流随时间变化的情况。

外电路接通前,外电阻相当于无穷大,电流为零。

在外电路接通的瞬间,观察到一个很大的起始电流,根据欧姆定律其数值为o o 3k a -0.05(0.83)= 4.41011090I R ϕϕ---==⨯+始安培 式中o k ϕ-——阴极(铜)的开路电位,伏;o a ϕ——阳极(锌)的开路电位,伏;R ——电池系统的总电阻,欧姆在达到最大值I 始 后,电流又很快减小,经过数分钟后减小到一个稳定的电流值I 稳=1.5×10-4 安培,比I 始 小约30倍 。

为什么腐蚀电池开始作用后,其电流会减少呢?根据欧姆定律可知,影响电流强度的因素是电池两极间的电位差和电池内外电路的总电阻。

因为电池接通后其内外电路的电阻不会随时间而发生显著变化,所以电流强度的减少只能是由于电池两极间的电位差发生变化的结果。

实验测量证明确实如此。

图2-2表示电池电路接通后,两极电位变化的情况。

从图上可以看出,当电路接通后,阴极(铜)的电位变得越来越小。

最后,当电流减小到稳定值I 稳时两极间的电位差减小到(k ϕ-a ϕ),而k ϕ和a ϕ 分别是对应于稳定电流时阴极和阳极的有效电位。

由于k a -ϕϕ()比(o o ka -ϕϕ)小很多,所以,在R 不变的情况下, I 稳 =k a -R ϕϕ必然要比I 始小很多。

图2-2 电极极化的电位—时间曲线由于通过电流而引起原电池两极间电位差减小并因而引起电池工作电流强度降低的现象,称为原电池的极化作用。

当通过电流时阳极电位向正的方向移动的现象,称为阳极极化。

当通过电流时阴极电位向负的方向移动的现象,称为阴极极化。

在原电池放电时,从外电路看,电流是从阴极流出,然后再进入阳极。

我们称前者为阴极极化电流,称后者为阳极极化电流。

显然,在同一个原电池中,阴极极化电流与阳极极化电流大小相等方向相反。

消除或减弱阳极和阴极的极化作用的电极过程称为去极化作用或去极化过程。

相应的有阳极的去极化和阴极的去极化作用。

能消除或减弱极化作用的物质,称为去极化剂。

极化现象的本质在于,电子的迁移(当阳极极化时电子离开电极,当当阴极极化时电子流入电极)比电极反应及其有关的连续步骤完成得快。

如图2-3所示,如果在进行阳极反应时金属离子转入溶液的速度落后于电子从阳极流入外电路的速度,那么在阳极上就会积累起过剩的正电荷而使阳极电位向正的方向移动;在阴极反应过程中,如果反应物来不及与流入阴极的外来电子相结合,则电子将在阴极积累而使阴极电位向负的方向移动。

图2-3 腐蚀电池极化示意图各类腐蚀电池作用的情况基本上与上述原电池短路时的情况相似。

由于腐蚀电池的极化作用,使腐蚀电流减小从而降低了腐蚀速度。

假若没有极化作用,金属电化学腐蚀的速度将要大得多,这对金属设备和材料的破坏更为严重。

所以,对减缓电化学腐蚀来说,极化是一种有益的作用。

第二节 极化曲线为了使电极电位随通过的电流强度或电流密度的变化情况更清晰准确,经常利用电位~电流图或电位~电流密度图。

例如,图2-1中的原电池在接通电路后,铜电极和锌电极的电极电位随电流的变化可以绘制成图2-4的形式。

因为铜电极和锌电极浸在溶液中的面积相等,所以图中的横坐标采用电流密度i 。

图中的o uC ϕ和o n Z ϕ 分别为铜电极和锌电极的开路电极电位。

从图中可以看出,随着电流密度的增加,阳极电位沿曲线o n Z ϕA 向正的方向移动,而阴极电位沿曲线o u C ϕK 向负的方向移动。

我们把表示电极电位与极化电流或极化电流密度之间关系的曲线称为极化曲线。

图2-4中的o n Z ϕA 是阳极极化曲线,o u C ϕK 是阴极极化曲线。

电位对于电流密度的倒数a a d di ϕ和k kd di ϕ分别称为阳极和阴极在该电流密度(i 1)时的真实极化率,他们分别等于通过极化曲线上对应于该电流密度的点的切线的斜率。

极化率的倒数 di d ϕ可以作为电极反应过程进行的难易程度的量度,称为在该电位下电极反应过程的真实效率。

a ϕV 和k ϕV 分别是阳极和阴极在极化电流密度为i 1时的极化值。

a a i ϕV V 和k k i ϕV V 分别称为在该电流密度区间内阳极和阴极的平均极化率。

从极化曲线的形状可以看出电极极化的程度,从而判断电极反应过程的难易。

例如,若极化曲线较陡,则表明电极的极化率较大,电极反应过程的阻力也较大;而极化曲线较平坦,则表明电极的极化率较小,电极反应过程的阻力也较小,因而反应就容易进行。

极化曲线对于解释金属腐蚀的基本规律有重要意义。

用实验方法测绘极化曲线并加以分析研究,是揭示金属腐蚀机理和探讨控制腐蚀的措施的基本方法之一。

第三节 极化的原因及类型一、 平衡电极反应及其交换电流密度电极反应就是伴随着两类导体相之间的电量转移而在两相界面上发生的氧化态物质与还原态物质互相转化的反应。

如果用O 代表氧化态物质,R 代表还原态物质,则任何反应都可以写为如下通式(2-1)当电极反应按式(2-1)正向即按还原方向进行时,我们称这个电极反应为阴极反应;当电极反应按式(2-1)逆向即按氧化方向进行时,我们称这个电极反应为阳极反应。

根据法拉第定律,在任何电极反应中,反应物质变化的量与转移的电量之间有着严格的等当量关系。

因此,电极反应的速度——相界面上单位面积上的阴极反应或阳极反应的速度——可用电流密度表示。

式(2-1)中的c i u r 和a i s u 分别称为该电极反应的阴极反应电流密度和阳极反应电流密度,简称阴极电流密度和阳极电流密度。

任何一个电极反应都有它自己的阴极电流密度和阳极电流密度。

如果在一个电极表面上只进行象式(2-1)所表示的一个电极反应,当这个电极反应处于平衡时,其电极电位就是这个电极反应的平衡电位e ϕ,其阴极反应和阳极反应的速度相等即o i 是与c i u r 和a i s u 的绝对值均相等的电流密度,称为电极反应的交换电流密度,它表征平衡电位下正向反应和逆向反应的交换速度。

任何一个电极反应处于平衡状态时都有它自己的交换电流密度。

交换电流密度是电极反应的主要动力学参数之一。

当电极反应处于平衡状态时,虽然在两相界面上微观的物质交换和电量交换仍在进行,但因正向和逆向的反应速度相等,所以电极体系不会出现宏观的物质变化,没有净反应发生,也没有冷电流出现。

因此,当金属与含有其离子的溶液构成的电极体系处在平衡状态时,这种金属是不会腐蚀的,即平衡的金属电极是不发生腐蚀的电极。

例如,由纯金属锌和硫酸锌溶液及由纯金属铜和硫酸铜溶液所构成的平衡锌电极及平衡铜电极,当它们分别孤立地存在时,金属锌与金属铜的质和量及表面状态都将保持不变。

孤立的平衡电极,当它们单独存在时,既不表现为阳极也不表现为阴极,或者说是没有极化的电极。

二,平衡电极的极化及其过电位当有净电流通过平衡电极时,其正向反应和逆向反应的速度不再相等,其电极电位将偏离平衡电位。

这个净电流可以是外部电源供给的,也可以是包含该电极的原电池产生的。

与c i u r 和a i s u 不同,净电流是可以用接在外电路中的测量仪表直接测量的,故又称为外电流。

显然,流经任何二个平衡电极的外(净)电流应是c i u r 和a i s u 的差值.我们规定,对任何—个电极反应,当a i s u >c i u r 时,外电流密度i a =a i s u -c i u r称为净阳极电流密度或阳极极化电流密度,该电极进行的是阳极反应,当a i s u <c i u r :时,外电流密度i c =c i u r -a i s u称为净阴极电流密度或阴极极化电流密度,该电极进行的是阴极反应。

对平衡电极来说,当通过外电流时其电极电位偏离平衡电位的现象,称为平衡电极的极化。

外电流为阳极极化电流时,其电极电位向正的方向移动,称为阳极极化;外电流为阴极极化电流时,其电极电位向负的方向移动,称为阳极极化。

为了明确表示出由于极化使其极电位偏离平衡电位的程度,把某一极化电流密度下的电极电位ϕ与其平衡电位e ϕ间之差的绝对值称为该电极反应的过电位,以η表示。

阳极极化时,电极反应为阳极反应,过电位a e =-ηϕϕ阴极极化时,电极反应为阴极反应,过电位c e =-ηϕϕ根据这样的规定,不管发生阳极极化还是阴极极化,电极反应的过电位都是正值。

过电位实质上是进行净电极反应时,在一定步骤上受到阻力所引起的电极极化而使电位偏离平衡电位的结果。

因此,过电位是极化电流密度的函数,只有给出极化电流密度的数值,与之对应的过电位才有意义。

应当注意,极化与过电位是两个不同的概念。

只有当电极上仅有一个电极反应并且外电流为零时的电极电位就是这个电极反应的平衡电位时,极化的绝对值才等于这个电极反应的过电位值。

当一个电极的静止电位(外电流为零时的电极电位常称为静止电位)为非平衡稳定电位时,该电极极化的绝对值与这个电极上发生的电极反应的过电位值并不相同。

相关文档
最新文档