8-2_污水管道的水力计算

合集下载

8-2有压管流-流体力学

8-2有压管流-流体力学

2、水泵吸水管的水力计算 离心泵吸水管水力计算,主要为确定泵的安装高 度,即泵轴线在吸水池水面上的高度Hs 取吸水池水面1-1和水泵进口断面2-2,列伯诺里方程 pa p2 α υ 2 0+ + 0 = Hs + + + hl ρg ρ g 2g pa − p2 υ2 l − (α + λ + ∑ ζ ) Hs = ρg 2g d 2 υ l = hv − (α + λ + ∑ ζ ) d 2g
2 3
Si = a ili
Si —— 管段的阻抗s2/m5
3、串联管道计算公式
Q1 = Q2 = Q3 = Q
2 1 2 2 2 3
H = S 1Q + S 2 Q + S 3 Q
例6-5:上题如车间需水量Q =0.152m3/s,管线布 置、地面标高及供水点需自由水头都不变,试设计 水塔高度。
解:按比阻计算,先验算阻力区
4Q 4 × 0.152 υ= 2 = = 1.21m/s 2 πd π × 0.4
v >1.2m/s,比阻不需修正,直接查表6-4得a=0.2232s2/m6
1.3
0.3
已知v、d、J中任两个量,便可直接由表6-7查出另一 个量,使得计算工作大为简化
例 6-4:水塔向车间供水,铸铁管l=2500m, d=400mm,水塔地面标高▽1=6lm,水塔水面距地 面的高度H1=18m,车间地面标高▽ 2=45m,供水 点需要的自由水头H2=25m,求供水量Q 解:作用水头 H=(▽1+ H1)- (▽2+ H2) = (61+18)- (45+ 25) = 9m
2
(过渡区)

给排水计算公式

给排水计算公式

一、用水量计算按不同性质用地用水量指标法计算,参见GB50282-98《城市给水工程规划规范》 2.2.5部分。

未预见水量及管网漏失水量,一般按上述各项用水量之和的15%~25%计算。

因此,设计年限内城镇最高日设计用水量为:1234(1.15~1.25)()d Q Q Q Q Q =+++(m 3/d) 二、给水管网部分计算1. 管网设计流量:满足高日高时用水量,K h 查表得。

2. 比流量q s :Q —设计流量,取Q h ;∑q —集中流量总和;∑l —管网总计算长度;l —管段计算长度。

3. 沿线流量q l :在假设全部干管均匀配水前提下,沿管线向外配出的流量。

q l = q s l (与计算长度有关,与水流方向无关)4. 节点流量:集中用水量一般直接作为节点流量分散用水量经过比流量、沿线流量计算后折算为节点流量,即节点流量等于与该点相连所有管段沿线流量总和的一半。

q i =0.5∑q l0.5——沿线流量折算成节点流量的折算系数5. 管段计算流量q ij ——确定管径的基础 若规定流入节点的流量为负,流出节点为正,则上述平衡条件可表示为:0=∑+ij i q q (6-11)式中 q i ______ 节点i 的节点流量,L/s ;q ij ______ 连接在节点i 上的各管段流量,L/s 。

依据式(6-11),用二级泵站送来的总流量沿各节点进行流量分配,所得出的各管段所通过的流量,就是各管段的计算流量。

)/(3h m T Q K Q d h h =)/(m s L l q Q q s ⋅-=∑∑6. 管径计算由“断面积×流速=流量” ,得7. 水力计算环状管网水力计算步骤:1) 按城镇管网布置图,绘制计算草图,对节点和管段顺序编号,并标明管段长度和节点地形标高。

2) 按最高日最高时用水量计算节点流量,并在节点旁引出箭头,注明节点流量。

大用户的集中流量也标注在相应节点上。

3) 在管网计算草图上,将最高用水时由二级泵站和水塔供入管网的流量(指对置水塔的管网),沿各节点进行流量预分配,定出各管段的计算流量。

第八章污水管道系统的设计计算

第八章污水管道系统的设计计算

第⼋章污⽔管道系统的设计计算第⼋章污⽔管道系统的设计计算(⼀)教学要求熟练掌握污⽔管道的设计计算过程(⼆)教学内容1、污⽔设计流量2、污⽔管道的设计参数3、污⽔管道的⽔⼒计算(三)重点污⽔管道的⽔⼒计算第⼀节污⽔设计流量的计算污⽔管道系统的设计流量是污⽔管道及其附属构筑物能保证通过的最⼤流量。

通常以最⼤⽇最⼤时流量作为污⽔管道系统的设计流量,其单位为L/s 。

它包括⽣活污⽔设计流量和⼯业废⽔设计流量两⼤部分。

就⽣活污⽔⽽⾔⼜可分为居民⽣活污⽔、公共设施排⽔和⼯业企业内⽣活污⽔和淋浴污⽔三部分。

⼀、⽣活污⽔设计流量 1.居民⽣活污⽔设计流量居民⽣活污⽔主要来⾃居住区,它通常按下式计算:1Q =360024zK N n (8-1)式中: Q 1—— 居民⽣活污⽔设计流量,L /s ;n ——居民⽣活污⽔量定额,L /(cap ·d); N ——设计⼈⼝数,cap ;K Z ——⽣活污⽔量总变化系数。

(1)居民⽣活污⽔量定额居民⽣活污⽔量定额,是指在污⽔管道系统设计时所采⽤的每⼈每天所排出的平均污⽔量。

在确定居民⽣活污⽔量定额时,应调查收集当地居住区实际排⽔量的资料,然后根据该地区给⽔设计所采⽤的⽤⽔量定额,确定居民⽣活污⽔量定额。

在没有实测的居住区排⽔量资料时,可按相似地区的排⽔量资料确定。

若这些资料都不易取得,则根据《室外排⽔设计规范》(GBJl4-87)的规定,按居民⽣活⽤⽔定额确定污⽔定额。

对给⽔排⽔系统完善的地区可按⽤⽔定额的90%计,⼀般地区可按⽤⽔定额的80%计。

(2)设计⼈⼝数设计⼈⼝数是指污⽔排⽔系统设计期限终期的规划⼈⼝数,是计算污⽔设计流量的基本数据。

它是根据城市总体规划确定的,在数值上等于⼈⼝密度与居住区⾯积的乘积。

即:F N ?=ρ (8-2) 式中:N ——设计⼈⼝数,cap ;ρ——⼈⼝密度,cap/hm 2;F ——居住区⾯积,hm 2; cap ——“⼈”的计量单位。

热水热力管网的水力计算

热水热力管网的水力计算

热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。

水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。

第一循环管网的水力计算:1.热媒为热水:以热水为热媒时,热媒流量G按公式(8-8)计算。

热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh。

热水管道的流速,宜按表8-45选用。

当锅炉与水加热器或贮水器连接时,如图8-12所示:热媒管网的热水自然循环压力值Hzr按式(8-35)计算:式中:Hzr—热水自然循环压力,Pa;Δh—锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m;p1—锅炉出水的密度,kg/m3;p2—水加热器或贮水器的出水密度,kg/m3。

当Hzr>Hh时,可形成自然循环,为保证运行可靠一般要求(8-36):当Hzr不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。

循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。

2.热媒为高压蒸汽:以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。

热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。

高压蒸汽管道的常用流速见表8-13。

确定热媒蒸汽管道管径后,还应合理确定凝水管管径。

第二循环管网的水力计算:1.配水管网的水力计算配水管网水力计算的目的主要是根据各配水管段的设计秒流量和允许流速值来确定配水管网的管径,并计算其水头损失值。

(1)热水配水管网的设计秒流量可按生活给水(冷水系统)设计秒流量公式计算。

(2)卫生器具热水给水额定流量、当量、支管管径和最低工作压力同给水规定。

(3)热水管道的流速,宜按表8-12选用。

第 8 章 污水管道系统的设计计算

第 8 章 污水管道系统的设计计算

(8-5)
工业企业工业废水和职工生活污水和淋浴废水定额: 与给水定额相近,可参考。 各符号意义见教材P180:式(8-5)。
9
8.1.2 工业废水设计流量
工业废水量变化系数 日变化系数较小,接近1。时变化系数见下表:
工业种类 冶金 化工 纺织 食品 皮革 造纸
时变化系数Kh
1.0~1.1
1.3~1.5
的污水量;
(3)集中流量q3 —— 是从工业企业或其它产生大量 污水的公共建筑流来的污水量。
13
对于某一设计管段,本段流量是沿管段长度变
化的,即从管段起点为零逐渐增加到终点的全部流 量。为便于计算,通常假定本段流量从管段起点集 中进入设计管段。而从上游管段和旁侧管流来的转 输流量 q2和集中流量 q3对这一管段是不变的。 本段流量是以人口密度和管段服务面积来计算的, 公式如下: 生活污水量 q1 F qs K Z
向低处流动,在大多数情况下,管道内部
是不承受压力的,即靠重力流动。
17
8.3.2 污水管道水力计算的设计参数
① 设计充满度 在设计流量下,管道中的水深 h 与管径 D的比值 h/D 称为设计充满度,当 h/D=1 时称为满流;h/D<1时称为不满流。 污水管道的设计有按满流和非满流两种 方法。在我国,按非满流进行设计。
内容:根据已确定的管道路线以及各设计管段的 设计流量来计算各设计管段的管径、坡度、流速、 充满度等。 原则是:不冲刷、不淤积、不溢流、要通风。 污水管道水力计算是由控制点开始,从上游 到下游,对各设计管段进行计算。
16
8.3.1 污水管道中污水流动的特点
污水由支管流入干管,由干管流入主 干管,由主干管流人污水处理厂,管道由 小到大,分布类似河流,呈树枝状,与给 水管网的环流贯通情况完全不同。污水在 管道中一般是靠管道两段的水面高差从高

管道水力计算-公式汇总

管道水力计算-公式汇总

壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
1.舍维列夫公式
公称直径 (mm) 800
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 250
流速 (m/s) 0.71
8
2.曼宁(Mannins)公式C=1/n×R1/6和谢才(Chezy)公式v=C√Ri
粗糙系数
公称直径 (mm) 100
外径 (mm) 100
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流速 (m/s) 0.68
8
5.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m /d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
3
52500 0.6 -2.63
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58
备注
注:适用于夹
6.70 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注

污水管道设计计算书

污水管道设计计算书

污水管道系统的设计计算(一)污水设计流量计算一.综合生活污水设计流量计算各街坊面积汇总表居住区人口数为300⨯360。

75=108225人则综合生活污水平均流量为150⨯108225/24⨯3600L/s=187。

89L/s用内插法查总变化系数表,得K Z=1。

5故综合生活污水设计流量为Q1=187.89⨯1。

5L/s=281.84L/s二.工业企业生活污水和淋浴污水设计流量计算企业一:一般车间最大班职工人数为250人,使用淋浴的职工人数为80人;热车间最大班职工人数为100人,使用淋浴的职工人数为50人故工业企业一生活污水和淋浴污水设计流量为Q2(1)=(250⨯25⨯3+100⨯35⨯2.5)/3600⨯8+(80⨯40+50⨯60)/3600L/s =2。

68L/s企业二:一般车间最大班职工人数450人,使用淋浴的职工人数为90人;热车间最大班职工人数为240人,使用淋浴的职工人数为140人故工业企业二生活污水和淋浴污水设计流量为Q2(2。

)=(450⨯25⨯3+240⨯35⨯2.5)/3600⨯8+(90⨯40+140⨯60)/3600=5。

23L/s所以工业企业生活污水和淋浴污水设计流量为Q2=Q2(1)+Q2(2)=(2。

68+5。

23)L/s=7.91L/s三.工业废水设计流量计算企业一:平均日生产污水量为3400m3/d=3.4⨯106L/d=59。

03L/s企业二:平均日生产污水量为2400m3/d=2。

4⨯106L/d=27.78L/sQ3=(59.03⨯1。

6+27。

78⨯1。

7)L/s=141。

67L/s四.城市污水设计总流量Q4=Q1+Q2+Q3=(281。

84+7.91+141。

67)l/s=431.42L/s(二)污水管道水力计算一.划分设计管段,计算设计流量本段流量q1=Fq s K Z式中q1--——设计管段的本段流量(L/s)F-———设计管段服务的街坊面积(hm2)q s————生活污水比流量[L/(s·hm2)]K Z--—-生活污水总变化系数生活污水比流量q s=nρ/24⨯3600=300⨯150/24⨯3600 L/(s·hm2)=0.521 L/(s·hm2)式中n----生活污水定额或综合生活污水定额[L/(人·d)] Ρ—-——人口密度(人/hm2)污水干管和主干管设计流量计算表工厂排出的工业废水作为集中流量,企业一流出水量在检查井7处进入污水管道,相应的设计流量为97。

污水管水力计算

污水管水力计算

第2.2.1条 雨水设计流量按下式计算式中,Q=qψFQ--雨水设计流量(L/s);q--设计暴雨强度(L/s.ha);ψ--径流系数;F--汇水面积(ha)注:当有生产废水排入雨水管道时,应将其水量计算在内。

第2.2.2条 径流系数按下表采用。

平均径流系数可按加权平均计算。

径流系数ψ综合径流系数ψ第2.2.3条 设计暴雨强度(见专用表)第2.2.4条 雨水设计重现期:一般选用0.4~3a,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般选用2~5a.第2.2.5条 设计降雨历时,按下式计算:t=t1+mt2式中,t--降雨历时(min);t1--地面集水时间(min),视距离长短、地形坡度和地面铺盖情况而定,一般采用5~15min;m--折减系数,暗管折减系数m=2,明渠折减系数m=1.2 ;t2--管渠内雨水流行时间(min)注:在陡坡地区,采用暗管时折减系数m=1.2~2.第2.3.1条 合流管道的总设计流量应按下式计算:第2.3.1条 合流管道的雨水重现期可适当高于同一情况下的雨水管道设计重现期。

第3.2.1条 排水管渠的流速,应按下式计算:V=(1/n) R2/3I1/2式中,V--流速 (m/s);R--水力半径(m);I--水力坡降;n--粗糙系数.第3.2.2条 管渠粗糙系数按下表选用:管渠粗糙系数 n第3.2.3条 排水管渠的最大设计充满度和超高,应遵守下列规定:一、污水管道应按不满流计算,其最大设计充满度应按下表采用。

最大设计充满度注:在计算污水管道充满度时,不包括淋浴或短时间内突然增加的污水量,但当管径小于或等于300mm时,应按满流复核.二、雨水管道和合流管道应按满流计算。

三、明渠超高不得小于0.2m。

第3.2.4条 排水管道的最大设计流速应遵守下列规定:一、金属管道为10m/s;二、非金属管道为5m/s;第3.2.6条 排水管渠的最小设计流速应遵守下列规定:一、污水管道在设计充满度下为0.6m/s;二、雨水管道和合流管道在满流时为0.75m/s;三、明渠为0.4m/s。

管道计算----例题

管道计算----例题

六、污水管道的水力计算步骤污水管道的设计方法与水力计算步骤,通过下面的例题予以介绍。

【例7-5】图8-6为河南省某中小城市一个建筑小区的平面图。

小区街坊人口密度为350cap/ha。

工厂的工业废水(包括从各车间排出的生活污水和淋浴污水)设计流量为29L/s。

工业废水经过局部处理后与生活污水一起由污水管道全部送至污水厂经处理后再排放。

工厂工业废水排出口的埋深为2 m,试进行该小区污水管道系统的图8-7 某建筑小区污水管道平面布置图(初步设计)设计方法和步骤如下:(一)在街坊平面图上布置污水管道由街坊平面图可知该建筑小区的边界为排水区界。

在该排水区界内地势北高南低,坡度较小,无明显分水线,故可划分为一个排水流域。

在该排水流域内小区支管布置在街坊地势较低的一侧;干管基本上与等高线垂直;主干管布置在小区南面靠近河岸的地势较低处,基本上与等高线平行。

整个建筑小区管道系统呈截流式布置,如图8-7所示。

(二)街坊编号并计算其面积将建筑小区内各街坊编上号码,并将各街坊的平面范围按比例计算出面积,将其面积值列入表8-7中,并用箭头标出各街坊污水排出的方向。

(三)划分设计管段,计算设计流量根据设计管段的定义和划分方法,将各干管和主干管中有本段流量进入的点(一般定为街坊两端)、有集中流量进入及有旁侧支管接入的点,作为设计管段的起止点并将该点的检查井编上号码,如图8-7所示。

各设计管段的设计流量应列表进行计算。

在初步设计中,只计算干管和主干管的设计流量;在技术设计和施工图设计中,要计算所有管段的设计流量。

本设计为初步设计,故只计算干管和主干管的设计流量,如表8-8所示。

生活污水比流量为:10035086400s q ⨯==0.405(L /(s ·hm 2))工厂排出的工业废水作为集中流量,在检查井l 处进入污水管道,相应的设计流量分别为29L/s 。

如图8-7和表8-8所示,设计管段1~2为主干管的起始管段,只有集中流量(工厂经局部处理后排出的工业废水)29L/s 流入,故其设计流量为29L/s 。

管路水力计算

管路水力计算

(3)压强降低过程
在B处,由于有向左的V0 ,压强 p0,使B处 有向左离开的趋势。由于B右侧无液流填充, 又使其停止,压强降低,密度减小。在理 想情况下,压强降低值=升高值Δp,从B传 至A用的时间为t=l/a,称降压波,使AB段 V=0,压强p= p0 -Δp 。
(4) 压强恢复过程
当减压波传到A。被蓄能器截止,在A两侧 产生压差,使流体向右流,速度V0,达到B 处,使AB段压强回到p0,所用时间为t=l/a , 速度 V0 。 此时若阀门仍关闭,则重复开始升压波→压 力恢复→ 减压→压强恢复过程。因此,用 4t=4l/a完成一个水击周期,速度依次V0→0, 0→ V0 ;V0 →0,0→ V0 。理想条件下,无 阻力,无能损,水击将无休止进行下去。
它与该段所增加的圆环面积ΔA上受力互相 平衡。 该段流体质量为Δta长度管内流体与 Δt 时间 以速度V0流入的流体质量之和,即:
atA V0 tA A(a V0 )t
列动量方程:
pA t A(a V0 )t (0 V0 ) A(a V0 )V0 t
p (a V0 )V0
通常 aV0 ,因此 p aV0 该式称为儒 柯夫斯基公式。
当阀门部分关闭时,过程与上述完全一致,
只是速度由 V0 降为V ' ,用类似方法可求出:
2. 水击最高压强
取靠近B端的一段液柱进行研究,在Δt时间 内,升压波向右传递的距离为Δta ,此时速 度为0,压强增加到 p0+Δp ,管道截面积从 A扩大到 A+ΔA 。如图。
p0 p
V0 , p0
A A
t a
该段所受轴向力为:
( p0 p) A p0 A pA

建筑给水设计流量和管道水力计算

建筑给水设计流量和管道水力计算

建筑给水设计流量和管道水力计算3.7设计流量和管道水力计算3.7.1建筑给水设计用水量应根据下列各项确定:1居民生活用水量;2公共建筑用水量;3绿化用水量;4水景、娱乐设施用水量;5道路、广场用水量;6公用设施用水量;7未预见用水量及管网漏失水量;8消防用水量;9其他用水量。

3.7.2居民生活用水量应按住宅的居住人数和本标准表3.2.1规定的生活用水定额经计算确定。

3.7.3公共建筑生活用水量应按其使用性质、规模采用本标准表3.2.2中的生活用水定额,经计算确定。

3.7.4建筑物的给水引入管的设计流量应符合下列规定:1当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量;2当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量;设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量;3当建筑物内的生活用水既有室外管网直接供水,又有自行加压供水时,应按本条第1款、第2款的方法分别计算各自的设计流量后,将两者叠加作为引入管的设计流量。

3.7.5住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:1根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,可按下式计算出最大用水时卫生器具给水当量平均出流概率:式中:U o——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);q L——最高用水日的用水定额,按本标准表3.2.1取用[L/(人·d)];m——每户用水人数;K h——小时变化系数,按本标准表3.2.1取用;N G——每户设置的卫生器具给水当量数;T——用水时数(h);0.2——一个卫生器具给水当量的额定流量(L/s)。

2根据计算管段上的卫生器具给水当量总数,可按下式计算得出该管段的卫生器具给水当量的同时出流概率:式中:U——计算管段的卫生器具给水当量同时出流概率(%);αc——对应于U o的系数,按本标准附录B中表B取用;N g——计算管段的卫生器具给水当量总数。

排水横管水力计算公式

排水横管水力计算公式

排水横管水力计算公式
排水横管水力计算公式是工程中常用的公式之一,它用于计算排水横管中的水力特性。

为了保证排水系统的正常运行,我们需要准确计算横管的流量、速度和压力损失等参数。

下面是排水横管水力计算的公式和步骤。

我们需要计算横管的流量。

流量是指单位时间内通过横管的水量,通常用立方米/秒来表示。

计算流量的公式如下:
Q = A × V
其中,Q表示流量,A表示横管的横截面积,V表示水流的平均速度。

通过测量横管的尺寸,我们可以计算出横截面积。

我们需要计算横管的速度。

速度是指水流通过横管的平均速度,通常用米/秒来表示。

计算速度的公式如下:
V = Q / A
其中,V表示速度,Q表示流量,A表示横管的横截面积。

通过计算流量和横截面积,我们可以得到水流的平均速度。

我们需要计算横管的压力损失。

压力损失是指水流通过横管时由于摩擦力和阻力而损失的压力。

计算压力损失的公式如下:
ΔP = f × (L / D) × (V^2 / 2g)
其中,ΔP表示压力损失,f表示摩擦系数,L表示横管的长度,D 表示横管的直径,V表示水流的速度,g表示重力加速度。

通过上述公式和步骤,我们可以准确计算出排水横管中的流量、速度和压力损失等水力特性。

这些参数对于工程设计和运维都非常重要,能够保证排水系统的正常运行和性能优化。

因此,在进行排水横管水力计算时,我们需要严谨认真,确保计算结果的准确性和可靠性。

排水工程(上册)课后答案及例题

排水工程(上册)课后答案及例题

第二章习题1、某肉类联合加工厂每天宰杀活牲畜258T,废水量标准8.2m³/t活畜,总变化系数1.8,三班制生产,每班8h,最大职工数860人,其中在高温及污染严重车间工作的职工占总数的40%,使用淋浴人数按85%计,其余60%的职工在一般车间工作,使用淋浴人数按30%计.工厂居住区面积9.5×104㎡,人口密度580人/104㎡,生活污水量标准160L/人·d,各种污水由管道汇集送至污水处理站,试计算该厂的最大时污水设计流量。

解: 该厂的最大时污水设计流量Q=Q\S()错误!+Q错误!错误!错误!+Q错误!错误!错误! Q错误!错误!=错误!=错误!错误!=18.525L/sQ错误!错误!=错误!+错误!=错误!错误!+错误!=2。

39+6。

59=8。

98L/sQ错误!=错误!=错误!=44。

08 L/sQ=Q错误!错误!+Q错误!错误!错误!+Q错误!错误!错误!=18。

525+8.98+44.08=72。

59L/s2、下图为某工厂工业废水干管平面图.图上注明各废水排除口的位置,设计流量以及各设计管段的长度,检查井处的地面标高,排除口1的管底标高为218。

9m,其余各排除口的埋深均不得小于1.6m.该地区土壤无冰冻。

要求列表进行干管的水力计算,并将计算结果标注在图上。

解:先进行干管的流量计算如下表:干管水量计算表管段编号排出口设计流量L/s 转输流量L/s 管段设计流量L/s1~2 9。

78 0。

00 24.2814。

52~312.4 24.28 36.68 3~4 14。

636.68 51.284~59.551.2860.785~6 8.7 60.78 69.486~7 12.8 69.48 82。

28干管水力计算表3、试根据下图所示的街坊平面图,布置污水管道,并从工厂接管点至污水厂进行管段的水力计算,绘出管道平面图和纵断面图.已知:(1)人口密度为400人/10错误!㎡;(2)污水量标准为140L/人·d;(3)工厂的生活污水和淋浴污水设计流量分别为8.24L/s 和6。

排水工程(上册)课后问题详解及例题

排水工程(上册)课后问题详解及例题

第二章习题1、某肉类联合加工厂每天宰杀活牲畜258T ,废水量标准8.2m ³/t 活畜,总变化系数1.8,三班制生产,每班8h,最大职工数860人,其中在高温及污染严重车间工作的职工占总数的40%,使用淋浴人数按85%计,其余60%的职工在一般车间工作,使用淋浴人数按30%计.工厂居住区面积9.5×104 ㎡,人口密度580人/104 ㎡,生活污水量标准160L/人·d,各种污水由管道汇集送至污水处理站,试计算该厂的最大时污水设计流量. 解: 该厂的最大时污水设计流量Q=Q 1 +Q 2 +Q3Q 1 =k ·n ·kz 24×3600 =160×9.5×585×1.824×3600=18.525L/s Q 2 =A 1 B 1 K 1 +A 2 B 2 K 2 T ×3600 +C 1 D 1 +C 2 D2 3600 =860×60%×25×3.0+860×40%×35×2.58×3600 +860×60%×30%×40+860×40%×85%×603600=2.39+6.59=8.98L/sQ 3 =m ·M ·kz T ×3600 =258×8.2×1.8×103 3600×24 =44.08 L/s Q=Q 1 +Q 2 +Q3=18.525+8.98+44.08=72.59 L/s 2、下图为某工厂工业废水干管平面图。

图上注明各废水排除口的位置,设计流量以及各设计管段的长度,检查井处的地面标高,排除口1的管底标高为218。

9m,其余各排除口 的埋深均不得小于 1.6m 。

该地区土壤无冰冻。

排水管网第6章污水管网设计与计算

排水管网第6章污水管网设计与计算

KZ——生活污水量总变化系数,可由表6.1查得或采用公式6.1计算确定。
6.1 污水设计流量的计算
6.1.3 污水设计流量计算
(2)公共建筑污水设计流量 Q 4
可与 Q 1 合并计算,此时选用综合生活污水量定额(附表1b),也可单独计算。
式中:
Q2
q2iN2iKh2i (L/s) 360T2i0
总体规划及其他基础设施情况 地形资料,包括地形图、等高线
自然资料: 气象资料,包括气温、风向、降雨量等
水文资料,受纳水体流量、流速、洪水位 地质资料,包括地下水位、地耐力、地震等级
工程资料:道路、通讯、供水、供电、煤气等 设计方案确定:包括排水体制的选择、排水系统的布置形式。
6.1 污水设计流量的计算
1
2
3
4
5
转输流量
q
6.2 管段设计流量的计算
6.2.2 节点设计流量计算
本段流量:
q1Fq0KZ
式中:
q1——设计管段的本段流量,L/s; F——设计管段服务的街坊面积,公顷;
KZ——生活污水量总变化系数;
q0——单位面积的本段平均流量,比流量,L/s.公顷
q0
n p 86400
式中:n——污水量标准,L/(人.d);
某城镇居住小区街坊总面积50.20hm2,人口350cap/hm2, 居民生活污水量定额为120L/(cap·d);有两座公共建筑, 火车站和公共浴室的汗水设计流量分别为3.0L/s和 4.0L/s;有两个工厂,工厂甲的生活、沐浴污水与工业 废水总设计流量为25.0L/s,工厂乙的生活、沐浴污水 与工业废水总设计流量为6.0L/s。全部污水统一送至污 水处理厂。试计算该小区污水设计总流量。

控制性详细规划污水水力计算

控制性详细规划污水水力计算
在街坊和厂区内的最小管径为200mm,在街 道下的最小管径为300mm。
知 其 然
干管的布置 形式
最小设计流速是保证管道内不致 发生沉淀淤积的流速。污水管道 在设计充满度下的最小设计流速



所 以
平行式?

正交式?
为0.6m/s。
最小设计坡度???
我国《室外排水设计规范》规 定:管径为200mm时,最小设

最大设计流速是保证管道不被冲刷损坏的流
速。该值与管道材料有关,通常金属管道的最大
设计流速为10m/s,非金属管道的最大设计流速为
5m/s。
3、最小设计坡度 我国《室外排水设计规范》规定:管径为
200mm时,最小设计坡度为0.004;管径为 300mm时,最小设计坡度为0.003。
4、最小管径 我国《室外排水设计规范》规定:污水管道
• 【例】 河北某中等城市一屠宰厂每天宰杀活 牲畜260t,废水量定额为10m3/t,工业废水 的总变化系数为1.8,三班制生产,每班8h。 最大班职工人数800cap,其中在污染严重车 间工作的职工占总人数的40%,使用淋浴人 数按该车间人数的85%计;其余60%的职工 在一般车间工作,使用淋浴人数按30%计。 工厂居住区面积为10ha,人口密度为 600cap/ha。各种污水由管道汇集输送到厂
2.自上游管段至下下游管段依次进行设计,下游 管段比上游管段的管径大1~2级(一级为50mm )或相等;
3、对于各设计管段,已知5个参数q、 v、 I、 h/D、 D中的任意3个可求另外2个。5个参数q、 v、i、h/D、D相互制约,存在一个试算过程。
水力计算图表法
<例题1>: 已知n=O.014、Q=32L/s、 D=300mm,h/D=0.55,求v和I。

管道的水力计算及强度计算(精)

管道的水力计算及强度计算(精)

第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。

如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。

如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。

管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。

图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。

图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。

图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。

以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。

流速是指单位时间内,流体流动所通过的距离。

以符号。

表示,其单位为m/s或cm /s。

图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。

由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1)式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。

如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为什么要做最大设计充满度的规定?
1、预留一定的过水能力,防止水量变化的冲击, 为未预见水量的增长留有余地;
2、有利于管道内的通风; 3、便于管道的疏通和维护管理。
(2)设计流速
——与设计流量和设计充满度相应的污水平均 流速。
最小设计流速:是保证管道内不发生淤积的 流速,与污水中所含杂质有关;我国根据试 验结果和运行经验确定最小流速为0.6m/s。 当管径小于或等于500mm时,自净流速可 取0.7m/s,当管径大于500mm,自净流速 可取0.8m/s。
(4)最小设计坡度
(1)
(2)
(3)
——相应于最小设计流速的坡度为最小设计坡度, 最小设计坡度是保证不发生淤积时的坡度。
设计充满度一定时,管径越大,最小设计坡度 越小。
规定:管径200mm的最小设计坡度为0.004;
管径300mm的最小设计坡度为0.003。
(5)污水管道的埋设深度
管道的埋设深度有两个意义:
2、确定衔接方式和高程
采用沟顶平接? 设计沟段上端沟底高程:44.220+0.300-0.350=44.170(m) 设计沟段的下端沟底高程:44.170-240 ×0.0015=43.810(m)
44.220+0.300 44.220+0.300-0.350
Байду номын сангаас
检验:
上游沟段下端水面高程: 44.220+0.300 0.55=44.385(m) 设计沟段上端水面高程: 44.170+0.65 0.350=44.398(m)
(1)设计充满度(h/D)
——指设计流量下,管道内的有效水深与管径的比值。
h/D =1时,满流 h/D <1时,非满流
hD
《室外排水设计规范》规定,最大充满度为:
管径(D)或暗渠高(H) (mm)
200~300 350~450 500~900
≥1000
最大充满度(h/D)
0.55 0.65 0.70 0.75
第二节 污水管道的水力计算
一、污水管道中的水流情况
1.污水在管道中一般是从高处向低处流动,属 于重力流动。
2.将污水按一般水看待,符合一般水力学的水 流运动规律。
3.在污水管网设计中采用均匀流计算
二、水力计算公式
三 污水管道设计参数
污水管道水力计算的设计数据 设计充满度(h/D) 设计流速(v) 最小管径(D) 最小设计坡度(i)
h/D=0.66>0.65,不合格 i =0.0015<0.0024,比较合适
B:令D=350mm,查图.
当D=350mm,qV=40L/s, v=0.6m/s时, h/D=0.66>0.65,不合格。
令h/D=0.65 时,v=0.61>0.6m/s,符合要求。 i =0.0015<0.0024,比较合适。
最大设计流速:是保证管道不被冲刷破坏的 流速,与管道材料有关;金属管道的最大流 速为10m/s,非金属管道的最大流速为5m/s。
(3)最小管径
• 为什么要规定最小管径? 街坊管最小管径为200mm,街道管最小管径为
300mm。 • 什么叫不计算管段?
在管道起端由于流量较小,通过水力计算查得 的管径小于最小管径,对于这样的管段可不用再 进行其他的水力计算,而直接采用最小管径和相 应的最小坡度,这样的管段称为不计算管段。
求:设计沟段的口径和沟底高程
解: 1、确定管径和坡度
由于上游沟段的覆土厚度较大,设计沟段坡度应尽量小于地 面坡度以减少埋深。

力 计 算 图
I=0.0058>0.0024 h/D=0.9>0.55
A:令D=300mm,查图. 当D=300mm,qV=40L/s,h/D=0.55时, i=0.0058>I=0.0024, 不符合本题应尽量减少埋深的原则; 令v=0.6m/s时,h/D=0.90>0.55,也不符合要求。
满足街坊污水连接管衔接要求:
从以上三个因素出发,可以得到三个不同的覆土 厚度,最大值就是这一沟段的允许最小覆土厚度。
最大埋深 根据技术经济指标及施工方法决定。 在干燥土壤中,沟道最大埋深一般不超过7~8m; 在多水、流沙、石灰岩地层中,一般不超过5m。
(6)污水管道的衔接
衔接原则: (1)尽可能提高下游沟段的高程,以减少埋深,从 而降低造价,在平坦地区这点尤其重要; (2)避免在上游沟段中形成回水而造成淤积; (3)不允许下游沟段的沟底高于上游沟段的沟底。
决定污水管道最小覆土厚度
地面
的因素:
地面荷载
冰冻线的要求
满足街坊管连接要求
管道
覆 土 厚 度
埋 设 深 度
满足地面荷载要求:车行道下最小覆土厚度0.7m
满足防冰冻要求: 《室外排水设计规范》规定:无保温措施的生活污 水管道,管底可埋设在冰冻线以上0.15m;有保温 措施或水温较高的管道,距离可以加大。
44.398m高于44.385m,不符合要求,应采用水面平接。
沟底高程修正:采用水面平接。
上流沟段的下端水面高程: 44.22+0.3 ×0.55=44.385(m) 设计沟段的上端沟底高程: 44.385-0.35 ×0.65=44.158(m) 设计沟段的下端沟底高程: 44.158-240 ×0.0015=43.798(m)
作业:p264 8.6 8.7
不应 发生
下游沟底高于上游沟底 下游水位高于上游水位
衔接 方法
沟顶平接 水面平接 沟底平接
一般情况下, 异管径沟段采用沟顶平接。 同管径沟段采用水面平接。
(7)污水管道断面的形式
常见的有圆形、半椭圆形、马蹄形、矩形和梯形等
四 污水管道水力计算方法
v

1
21
R 3I2
n
Q=
1
AR
2 3
I
1 2
n
在进行水力计算时,对于每一管段而言,有六个 水力因素:管径D、粗糙系数n、充满度h/D、水力坡 度I、流量Q和流速v。
方法:(一)水力计算图 (二)水力计算表
例 已知设计沟段长度L为240m;地面坡度I为 0.0024;流量qV为40L/s,上游沟段管径D=300mm, 充满度h/D为0.55,沟底高程为44.22m,地面高程为 46.06m,覆土厚度为1.54m。
相关文档
最新文档