十字相乘法分资料
因式分解-十字相乘法
因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x ab ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b pab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。
交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。
从而)1)(7(762-+=-+x x x x 。
2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。
右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x =-+762x )1)(7(-+x x xx⇓⨯⇓71-xx x 67=+-数,从而得()()2762232x x x x -+=--。
十字相乘法完整版
XX,a click to unlimited possibilities
十字相乘法完整版
目录
01
添加目录标题
02
十字相乘法的基本原理
03
十字相乘法的应用
04十字相乘法ຫໍສະໝຸດ 注意事项05十字相乘法的扩展应用
01
添加章节标题
02
十字相乘法的基本原理
定义与公式
定义:十字相乘法是一种解一元二次方程的方法,通过将方程的系数分解为两个因数的乘积,从而找到方程的解。
分解因式时,要注意符号的变化,特别是当多项式中含有括号时。
分解因式时,要注意符号的变化,特别是当多项式中含有分数时。
分解因式时要注意完全平方数的问题
分解因式时要注意完全平方数的问题,避免出现错误的结果。
分解因式时要注意符号问题,确保结果的正确性。
分解因式时要注意因式的分解是否彻底,避免出现不必要的错误。
应用场景:求解一元二次不等式时,当不等式的系数较大或较为复杂时,使用十字相乘法可以简化计算过程
注意事项:在使用十字相乘法时,需要确保分解后的两个一次项的乘积为正,否则会导致不等号方向错误
举例说明:通过具体的一元二次不等式实例,展示十字相乘法的应用和求解过程
求解一元二次函数极值
定义:一元二次函数极值是指函数在某点的导数为零,且该点两侧的函数值异号
代数方程:十字相乘法可用于解二次方程和一元高次方程
矩阵运算:十字相乘法在矩阵的乘法中也有应用
分式化简:十字相乘法可以用于化简分式,简化计算过程
在物理和工程领域的应用
线性代数方程组的求解
工程中的结构分析、流体动力学等领域
物理中的动力学方程求解
矩阵运算中的分块矩阵相乘
因式分解法(十字相乘法)知识讲解
2x
4
x×4+2x×(-3)=-2x
①竖分二次项与常数项 ②交叉相乘,和相加
③检验确定,横写因式
十字相乘法(竖分常数交
叉验, 横写因式不能乱。 )
例1、用十字相乘法分解因式 2x2-2x-12
法二:
2x2-2x-12 = (x+2)(2x-6)
x
2 = 2(x+2)(x-3)
2x
-6
x×(-6)+2x×2=-2x
(顺口溜:竖分常数交叉验,横写因式不能乱。)
例1、(2)
12x2 29x 15
3x
5
4x
3
(9x) (20x) 29x
所以: 原式 (3x 5)(4x 3)
十字相乘法(竖分常数交叉验, 横写因式不能乱。 )
例1、(3)
2x2 5xy 7 y2
2x
7y
x 1y
2xy 7xy 5xy
1、十字相乘法 (借助十字交叉线分解因式的方法)
2、用十字相乘法把形如x2 + px +q 二次三项式 分解因式
3、 x2+px+q=(x+a)(x+b) 其中q、p、a、b之 间的符号关系
q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符 号相同 当q<0时, q分解的因数a、b( 异号) (其中绝对值较大 的因数符号)与p符号相同
x2 29x 138 (x 23)(x 6)
小结:当q>0时,q分解的因数a、b( 同号 )
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5)
x2 14x 72 (x 4)(x 18)
十字相乘法完整版
练一练:将下列各式分解因式
x2 +7x 10 x2 -2x 8 y2 7 y 12 x2 7x 18
例2 分解因式: x2 6x 16
解: x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为-1时 ,先提出 负号再因式分解 。
因式分解 2x2+3xy–9y2+14x–3y+20。
通过十字相乘法得到 (2x–3y)(x+3y)
设原式等于(2x–3y+a)(x+3y+b)
通过比较两式同类项的系数可得:3aa23bb
14 3
解得:ab
4 5
,∴原式
=
(2x–3y+4)(x+3y+5)
= (a + d) (b – c)
配方法
配方法是一种特殊的拆项添项法,将多项式配 成完全平方式,再用平方差公式进行分解。
因式分解 a2–b2+4a+2b+3
解:原式 = (a2+4a+4) – (b2–2b+1)
= (a+2)2 – (b–1)2
= (a+b+1)(a–b+3)
拆项添项法
回顾例题:因式分解 x5+x4+x3+x2+x+1 。
(6)(x+y)2 + 4(x+y) - 5 (7) 2(a+b)2 + 3(a+b) – 2 (8) 2(6x2 +x) 2-11(6x2 +x) +5
分组分解法
十字相乘法
x
2 1 1 2
3x
5 10 10 5
例题解析:10=2×5=1×10=(-1)×(-10)=(—2)×(-5)只有
5x 6 x 11x
3x2 11x 10 (x 2)(3x 5)
3 、5 x 2 6 x y 8 y 2
x
2y 2y y y
5x
4y 4y 8y 8y
例题解析:8y2 (2y)(4y) (2y)(4y) y(8y) (y)(8y) ,只
2、 x 4 5 x 2 4
x2
1 1 2 2
x2
4 4 2 2
例题解析:把 x2 看作 x , x4 可以看作 x2 。4 分解为 2×2、1×4、
(-2)×(-2)、(-1)×(-4)只有分解为(-1)×(-4)时有
( x2 ) (4 x2 ) (5x2 )
x 4 5 x 2 4 ( x 2 1)( x 2 4 )
则有 (x a)(x b) x 2 (a b)x ab
2、因式分解:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把 这个因式分解,分解因式技巧掌握: ①分解因式是多项式的恒等变形,要求等式左边必须是多项式 ②分解因式的结果必须是以乘积的形式表示 ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。
通法在握:系数为 1 的二次三项式,利用十字相乘法因式分解的一般步骤:
(1)竖分二次项和常数项 (2)交叉相乘并相加
(3)检验确定,横写因式 顺口溜: 竖分常数交叉验, 横写因式不能乱。 寻找的两数 a 和 b 的符号数如何确定的?
x 2 px q ( x a )( x b)
当 q>0 时,a、b 同号,且 a、b 的符号和 p 的符号相同。 当 q<0 时,a、b 异号且绝对值较大的因数符号与 p 的符号相同。 例题 2:因式分解
资料:十字相乘法
十字相乘法用来解决一些比例问题特别方便。
但是,如果使用不对,就会犯错。
(一)原理介绍通过一个例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:搞笑(也是高效)的方法。
男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
1.(2006年江苏省考)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5答案:C分析:男教练:90% 2%82%男运动员:80% 8%男教练:男运动员=2%:8%=1:42.(2006年江苏省考)某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1 B.3∶2 C. 2∶3 D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:580 30600女职工工资:630 20男职工:女职工=30:20=3:23.(2005年国考)某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
十字相乘法知识点总结
十字相乘法知识点总结1. “哎呀,十字相乘法就是把二次项系数分解成两个数相乘,常数项也分解成两个数相乘,然后交叉相乘再相加,看是不是等于一次项系数呀!”就像妈妈切菜一样,把一个大的任务分成小块来处理。
比如算2x^2+5x+3,2 可以分成 1 和 2,3 可以分成 1 和 3,交叉相乘1×3+2×1 不就正好等于 5 嘛!2. “嘿,用十字相乘法可得细心点哟!要像找宝藏一样仔细去找那些能凑对的数!”就好像在一堆玩具里找自己最喜欢的那个。
比如3x^2+7x+2,3 只能分成 1 和 3,2 只能分成 1 和 2,很快就能发现1×2+3×1 等于 5 啦!3. “你们知道吗,十字相乘法可有意思啦!就像是拼图游戏,要把合适的部分拼在一起。
”比如解 4x^2+8x-5,4 可以分成 2 和 2,-5 可以分成1 和-5,试试就知道怎么组合啦!4. “哇塞,十字相乘法不难呀,就是找对搭配嘛!这多像我们搭配衣服呀,要好看就得搭对。
”像算 5x^2-6x+1,5 分成 1 和 5,1 还是 1,找找就能发现搭配的窍门啦!5. “哈哈,十字相乘法其实很简单呀,只要多试试就能掌握啦,就像骑自行车一样,一开始难,后来就熟练啦!”比如面对 6x^2+5x-6,6 可以有很多分法,慢慢试就找到合适的啦!6. “哎呀呀,十字相乘法不就是那么回事嘛,把数字拆来拆去,总能找到合适的组合呀!”就好像搭积木,要找到合适的那块放上去。
比如算3x^2-4x-4,3 分成 1 和 3,-4 可以分成 2 和-2,找找规律呀!7. “十字相乘法呀,可别小瞧它哦,这可是解决好多问题的好办法呢!就像我们的秘密武器!”就像碰到 2x^2+3x-2,2 分成 1 和 2,-2 分成 1 和-2,动动脑筋就能搞定啦!8. “嘿,学十字相乘法得有点耐心哦,就像钓鱼一样,得等鱼儿上钩。
”比如解 6x^2-7x+2,6 有多种分法,耐心点就能找到啦!9. “哇,十字相乘法可神奇啦,能让那些复杂的式子变简单呢,就像魔法一样!”比如算 4x^2-9x+2,4 分成 2 和 2,2 还是 2,是不是很神奇呀!10. “十字相乘法真的很有用呀,学会了它就像有了一把钥匙,能打开好多难题的大门呢!”就像面对 5x^2+6x-8,5 分成 1 和 5,-8 分成 2 和-4,用十字相乘法不就解开啦!。
十字相乘法
一、十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式方法叫做十字相乘法。
即对于二次三项式x²+bx+c,若存在p+q=b,pq=c ,则x²+bx+c=(x+p)(x+q)
1.在对x²+bx+c分解因式时,要先从常数项c的正、负入手,若c>0,则p、q同号,若c<0,则p、q异号,然后依据一次项系数b的正负再确定p、q的符号。
2.若x²+bx+c中的b、c为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b,直到凑对为止。
二、首项系数不为1的十字相乘法
在二次三项式ax²+bx+c (a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a₁a₂,常数项c可以分解成两个因数之积,即c=c₁c₂,
把a₁,a₂,c₁,c₂排列如下:
若a₁c₂+a₂c₁=b,即ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。
(1)十字相乘法分解思路为“看两端,凑中间”。
(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。
三、分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分组处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解即先对题目进行分组,然后再分解因式。
十字相乘法
十字相乘法十字相乘法数学公式十字相乘法(Cross Multiplication)是因式分解中十四种方法之一,主要用于对多项式的因式分解,基本式子:x² (p q)x pq=(x p)(x q)。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,其实就是运用乘法公式(x a)(x b)=x² (a b)x ab的逆运算来进行因式分解。
中文名十字相乘法外文名Cross multiplication适用领域范围因式分解、数学应用学科数学别称十字相乘表达式x² (a b)x ab=(x a)(x b)适用领域范围二次多项式原理十字相乘法一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设总量为S, A所占的数量为M,B为S-M。
则:[A*M B*(S-M)]/S=CA*M/S B*(S-M)/S=CM/S=(C-B)/(A-B)1-M/S=(A-C)/(A-B)因此:M/S∶(1-M/S)=(C-B)∶(A-C)上面的计算过程可以抽象为:A ^C-B^CB^ A-C这就是所谓的十字分解法。
X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。
判定对于形如ax² bx c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b²-4ac进行判定。
当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
运算举例a² a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ?)×(a -?),然后我们再看第二项,a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
高中化学十字相乘法原理及经典题目
高中化学的十字相乘法十字交叉法又称图解法,应用于二元混合体系所产生的具有平均意义的计算问题,表现出实用性强,能准确、简便、迅速求解的特点。
适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。
例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。
可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。
这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100%=72.4% 答案:C 。
(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。
如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b解之,得: ba c a xb a bc x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在:十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。
究其原因,无外乎乱用平均量(即上述a 、b 、c 不知何物)、交叉相减后其差值之比不知为何量之比。
关于上述a 、b 、c 这些化学平均量,在这里是指其量纲为(化学量1 ÷化学量2)的一些比值,如摩尔质量(g/mol )、溶液中溶质的质量分数(溶质质量÷溶液质量)或关于物质组成、变化的其它化学量等等。
十字相乘的公式
十字相乘的公式
(实用版)
目录
1.十字相乘公式的定义与结构
2.十字相乘公式的运算规则
3.十字相乘公式的应用实例
4.十字相乘公式的优点与局限性
正文
十字相乘公式是一种常用的数学公式,尤其在代数学和微积分学中具有重要的地位。
其结构简单,运算规则明确,应用广泛,是数学研究中的一种基本工具。
一、十字相乘公式的定义与结构
十字相乘公式,顾名思义,就是将一个数或一个代数式分解成两个数或代数式的乘积,其形式为:(a+b)(a-b)=a^2-b^2。
这种公式因其结构像一个十字架,故称为十字相乘公式。
二、十字相乘公式的运算规则
十字相乘公式的运算规则简单明了,即任何形式的 (a+b)(a-b) 都可以化简为 a^2-b^2。
例如,(2x+3)(2x-3)=4x^2-9,(5y-4)(5y+4)=25y^2-16 等。
三、十字相乘公式的应用实例
十字相乘公式在解决实际问题中具有广泛的应用。
例如,在求解平方差公式、解决勾股定理等问题时,都可以运用十字相乘公式进行简化。
同时,在求解一些复合函数的值,如 (f(x)+f(y))(f(x)-f(y)) 等,也可以运用十字相乘公式进行化简。
四、十字相乘公式的优点与局限性
十字相乘公式的优点在于其结构简单,运算规则明确,易于理解和掌握。
同时,其应用广泛,可以大大简化一些复杂的数学运算。
然而,十字相乘公式也有其局限性,即只能应用于 (a+b)(a-b) 的形式,对于其他形式的代数式,无法运用。
(完整版)十字相乘法因式分解
当q>0时,q分解的因数a、b( 当q<0时, q分解的因数a、b(
) 同号 ) 异号
观察:p与a、b符号关
系
x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5) x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b(
) 异号
(其中绝对值较大的因数符号)与p符号相同
练习:在 横线上 填 、 符号
__ __ x2 4x 3 =(x + 3)(x + 1)
_-_ __ x2 2x 3 =(x
3)(x + 1)
_-_ _-_ y2 9y 20 =(y
4)(y 5)
_-_ __ t2 10t 56 =(t
4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为 -1 时 , 先提出负号再因式分解 。
十字相乘法②
试因式分解6x2+7x+2。
这里就要用到十字相乘法(适用于二次三项式)。
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
十字相乘因式分解法
十字相乘因式分解法(实用版)目录1.十字相乘法简介2.十字相乘法的基本原理3.十字相乘法的具体步骤4.十字相乘法的应用举例5.十字相乘法的优点与局限性正文【1.十字相乘法简介】十字相乘法,又称为“十字相乘因式分解法”,是一种常用的因式分解方法。
这种方法主要适用于两个数的乘积为四位数或者更高位数的情况。
它通过将两个数的个位数相乘得到一个两位数,然后将这个两位数分解为两个一位数的乘积,再将这两个一位数分别乘以两个数的十位数,最后将四个乘积相加,从而得到原数的因式分解式。
【2.十字相乘法的基本原理】十字相乘法的基本原理是将一个四位数分解为两个两位数的乘积,而这两个两位数分别是由原数的个位数和十位数相乘得到的。
具体来说,设原数为 abcd,其中 a 和 b 为十位数,c 和 d 为个位数,则可以将原数分解为 (10a+c)(10b+d) 的形式。
【3.十字相乘法的具体步骤】(1) 将原数的个位数与十位数相乘,得到一个两位数 ac。
(2) 将这个两位数 ac 分解为两个一位数的乘积,即 a 和 c。
(3) 将原数的十位数分别乘以 a 和 c,得到两个乘积 10a 和 10c。
(4) 将原数的个位数分别乘以 b 和 d,得到两个乘积 bd 和 cd。
(5) 将这四个乘积相加,即 10a+ac+10b+bd=10(a+b)+(ac+bd),得到原数的因式分解式。
【4.十字相乘法的应用举例】以原数 325 为例,按照十字相乘法的步骤进行分解:(1)3×2=6,得到两位数 62。
(2)62 分解为 2 和 31,即 62=2×31。
(3)3×2=6,1×3=3,得到两个乘积 6 和 3。
(4)2×3=6,5×1=5,得到两个乘积 6 和 5。
(5) 将四个乘积相加,即 6+3+6+5=20,得到原数的因式分解式325=(5×6)(3×4)=15×12。
十字相乘法例子
十字相乘法例子十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。
原理就是运用二项式乘法的逆运算来进行因式分解。
十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。
对于像ax²+bx+c=(a₁x+c₁)(a₂x+c₂)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a₁,a₂的积,把常数项c分解成两个因数c₁,c₂的积,并使a₁c₂+a₂c₁正好等于一次项的系数b。
那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数为1时,可表达为x²+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
运算举例例1:a²+a-42首先看第一项,是a²,代表是两个a相乘得到的,则推断出(a+?)×(a-?),然后再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,-42是(-6)×7 或者6×(-7)也可以分解成(-21)×2 或者21×(-2)或者±3×±14。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除前者。
然后,再确定是(-7)×6还是7×(-6)。
(-7)+6=-1,7-6=1,因为一次项系数为1,所以确定是7×(-6)。
所以a²+a-42就被分解成为(a+7)×(a-6),这就是通俗的十字分解法分解因式。
十字相乘法和分式
十字相乘法及分组分解法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号 (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有: 方法分类分组方法特点分组分解法四项二项、二项 ①按字母分组②按系数分组 ③符合公式的两项分组 三项、一项先完全平方公式后平方差公式 五项三项、二项 各组之间有公因式 六项三项、三项二项、二项、二项 各组之间有公因式 三项、二项、一项可化为二次三项式要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2)21016x x -+; (3)2310x x --举一反三:【变式1】分解因式:(1)1072++x x ; (2)822--x x ; (3)2718x x --+【变式2】因式分解:m 2n ﹣5mn+6n.2、将下列各式分解因式: (1)22355x x +-; (2)25166x x ++(3)22616x xy y --; (4).举一反三:【变式】将下列各式分解因式:(1)10722+-xy y x ; (2)()()342++-+b a b a .3、将下列各式分解因式: (1); (2)举一反三:【变式】分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;类型二、分组分解法4、先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法: ax+ay+bx+by=(ax+ay )+(bx+by ) =a (x+y )+b (x+y ) =(x+y )(a+b ) 如“3+1”分法:2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1 =(x+y+1)(x+y ﹣1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.举一反三:【变式】分解因式:22244a b ab c +--【巩固练习】 一.选择题1. 将21016a a ++因式分解,结果是( ) A.()()28a a -+ B.()()28a a +- C.()()28a a ++ D.()()28a a --2.(2014•保定二模)下列因式分解正确的是( ) A . x 2﹣7x+12=x (x ﹣7)+12B . x 2﹣7x+12=(x ﹣3)(x+4)C . x 2﹣7x+12=(x ﹣3)(x ﹣4) D . x 2﹣7x+12=(x+3)(x+4)3. 如果()()2x px q x a x b -+=++,那么p 等于( )A.abB.a b +C.ab -D.a b --4. 若()()236123x kx x x +-=-+,则k 的值为( ) A.-9 B.15 C.-15 D.95. 如果,则b 为 ( )A .5B .-6C .-5D .6 6.把2222a b c bc --+进行分组,其结果正确的是( ) A. 222()(2)a c b bc --- B. 222()2a b c bc --+ C. 222()(2)a b c bc --- D. 222(2)a b bc c --+ 二.填空题7. 若()()21336m m m a m b -+=++,则a b -= .8. 因式分解22a b ac bc -++___________. 9.因式分解:4a 2+4a ﹣15= .10. 因式分解:ax bx cx ay by cy +++++=_______________; 11. 因式分解()2064x x -+= . 12.分解因式:321a a a +--=________.三.解答题 13.分解因式:(1)268x x -+; (2)21024x x +-;(3)215238a a -+; (4)22568x xy y -++;(5)225533a b a b --+.分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件 1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零. 要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值. 要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言. 【典型例题】 类型一、分式的概念1、下列式子中,哪些是整式?哪些是分式?2a ,3x ,1m m +,23x +,5π,2a a ,23-.类型二、分式有意义,分式值为02、下列各式中,m 取何值时,分式有意义? (1)2m m +;(2)1||2m -;(3)239mm --.举一反三:【变式1】在什么情况下,下列分式没有意义?(1)3(7)x x x +;(2)21x x +;(3)222x x ++.【变式2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.类型三、分式的基本性质3、不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-.举一反三:【变式1】如果把分式yx x232-中的y x ,都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式2】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----.4、 不改变分式的值,使下列分式的分子和分母不含“-”号. (1)2a b -;(2)45x y --;(3)3m n -;(4)23bc--.类型四、分式的约分、通分5、 将下列各式约分:(1)23412ax x ;(2)243153n n x y x y +-;(3)211a a --;(4)321620m m m m -+-.举一反三: 【变式】通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.【巩固练习】 一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个 B.3个C.4个D.5个2.使分式5+x x值为0的x 值是( ) A .0 B .5 C .-5D .x ≠-53. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22aba b-有意义 C .当21-=x 时,分式214x x+值为0 D .当x y ≠时,分式22x y y x --有意义4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的32D .不变6.下列各式中,正确的是( )A .a m ab m b+=+ B .0a ba b+=+ C .1111ab b ac c +-=-- D .221x y x y x y-=-+二.填空题7.当x =______时,分式632-x x无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x xx --=- (2).y x xy x22353)(= 10.(1)22)(1yx y x -=+ (2)⋅-=--24)(21y y x11.分式2214a b 与36xab c的最简公分母是_________. 12. 化简分式:(1)3()x yy x -=-_____;(2)22996x x x -=-+_____. 三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y ay b-+当y =-3时无意义,当y =2时分式的值为0, 求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --(2)2ba a-- (3)2211x x x x---+(4)2231m m m ---。
(word完整版)十字相乘法分解因式知识点,文档
十字相乘法分解因式1.二次三项式〔1〕多项式ax2bx c ,称为字母的二次三项式,其中称为二次项,为一次项,为常数项.比方:x22x3和 x25x 6 都是关于x 的二次三项式.〔2〕在多项式x26xy 8 y2中,若是把看作常数,就是关于的二次三项式;如果把看作常数,就是关于的二次三项式.〔3〕在多项式2a2 b27ab 3 中,把看作一个整体,即,就是关于的二次三项式.同样,多项式(x y)27(x y) 12 ,把看作一个整体,就是关于的二次三项式.2.十字相乘法的依据和详尽内容(1) 关于二次项系数为 1 的二次三项式x2(a b) x ab( x a)( x b)方法的特色是“拆常数项,凑一次项〞当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号同样;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号同样.(2)对于二次项系数不是1的二次三项式ax2bx c a1a2 x2( a1c2a2c1) x c1 c2(a1x c1)(a2 x c2 )它的特色是“ 拆两头,凑中间〞当二次项系数为负数时,先提出负号,使二次项系数为正数,尔后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号同样;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号同样注意:用十字相乘法分解因式,还要注意防范以下两种错误出现:一是没有认真地考据交织相乘的两个积的和可否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例 1把以下各式分解因式:(1) x22x 15 ;(2) x25xy 6y2.例 2把以下各式分解因式:(1) 2x25x 3;(2) 3x28x 3.例3 把以下各式分解因式:(1)x4 10 x29;(2)7(x y)35( x y) 22( x y) ;(3) (a28a) 222(a28a)120 .例 4分解因式:( x22x 3)( x22x 24) 90 .例 5分解因式 6 x45x338 x25x 6.例 6分解因式x22xy y25x 5y 6 .例 7 分解因式: ca(c- a)+ bc(b- c) +ab(a- b).例 8、x4 6 x2x 12 有一个因式是x 2ax 4 ,求a值和这个多项式的其他因式.试一试:把以下各式分解因式:(1)2x215x 7(2) 3a28a 4(3) 5x27 x 6(4) 6 y211 y10(5)5a2b223ab 10(6) 3a2b217 abxy 10 x2y2(7) x27xy 12 y2(8)x47x218(9) 4m28mn 3n2(10) 5x515 x3 y20xy2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解 : (1)x2+6x+9
(2)x2- 8x+16 (3)2x2+5x-3 (4)3x2-8x+4
①5a2+7a-6 ②6y2-11y-10 ③ 7x2-13x+6
• 小结:十字相乘法的一般步骤
• 课后作业:一 6、7 三 2、4 写在作业本上
思考2:
(1)若多项式x2-3x+a可分解为(x-5)(x-b)
则m的值为( )
解:由已知 x2+mx-10= (x+a)(x+b) =x2+bx+ax+ab =x2+(a+b)x+ab
对应系数相等,则 a+b,-10=ab
a,b 1,-10 -1,10 2,-5 -2,5
m=a+b -9 9
-3 3
公式法中常用的乘法公式
• 平方差公式:a2-b2=(a+b)(a-b) • 完全平方和公式: a2+2ab+b2=(a+b)2 • (a+b+c)2= a2+b2+c2+2ab+2ac+2bc • 立方和公式:a3+b3=(a+b)(a2-ab+b2) • 立方差公式:a3-b3=(a-b)(a2+ab+b2)
你能找到什么规律吗?
例1:把下列二次三项式分解因式: (1)x2-3x+2 (2) x2+4x-12
解:(1)x2-3x+2
x
-1 x(-2)+x(-1)=-3x
x -2
十字相乘法
所以,x2-3x+2=(x-1)(x-2)
(2)x2+4x-12
x
-2 x(-2)+x(+6)=4x
x
+6 所以,x2+4x-12=(x-2)(x+6)
(3) b4-2b2-8 (4) a3-5a2b+6ab2
分析:整体代换
思考1:如何把下列多项式分解因式:
6(2p-q)2-11(q-2p)+3
分析:整体代换
2(2p-q) +3
6(2p-q)2-11(q-2p)+3 3(2p-q)
+1
=6(2p-q)2+11(2p-q)+3
=[2(2p-q)+3][3(2p-q)+1] =(4p-2q+3)(6p-3q+1)
③ (x+1)(x-4)= x2 – 3x-
4
④ (x+a)(x+b)= x2+(a+b)x+ab
观察与思考
① x2 5x 6 (x 2)(x 3) ② y2- 8y+15 =(y-3)( y-5) ③ x2 – 3x-4=(x+1)(x-4)
④ x2+(a+b)x+ab=(x+a)(x+b)
则a,b的值为(
)
分析:x2-3x+a
x
-5
x
-b
+a=(-5)(-b) -3x=-bx-5x
a=-10 b=-2
另解:由已知 x2-3x+a= (x-5)(x-b) =x2-(5+b)x+5b
对应系数相等,则 3=5+b,a=5b
可得 b=-2 , a=-10
(2)若 x2+mx-10=(x+a)(x+b)其中a,b为整数,
用十字相乘法分解下列因式
1、x4-13x2+36 2、x2+3xy-4y2 3、x2y2+16xy+48 4、(2+a)2+5(2+a)-36
5、x4-2x3-48x2
例2:把下列二次三项式分解因式: (1)12x2-5x-2 (2) 5x2+6xy-8y2
解:(1)12x2-5x-2 =(3x-2)(4x+1) 3x -2 4x +1
x2-5x+6 x2-5x-6 X2+5x-6 X2+5x+6
对于x2+px+q
(1)当常数项q为正数时,把它分解为两个同号 因数的积,因式的符号与一次项系数的符号相同;
(2)当常数项q为负数时,把它分解为两个异号 因数的积,其中绝对值较大的因数的符号与一次 项系数的符号相同.
注意:当常数项是正数时,分解 的两个数必同号,即都为正或都 为负,交叉相乘之和得一次项系 数。当常数项是负数时,分解的 两个数必为异号,交叉相乘之和 仍得一次项系数。因此因式分解 时,不但要注意首尾分解,而且 需十分注意一次项的系数,才能 保证因式分解的正确性。
十字相乘法分解因式
濮阳市第一中学数学组
课前复习
• 什么是因式分解? 把一个多项式分解成几个整式的积的形式, 叫做把这个多项式因式分解,也叫把这个 多项式分解因式.
• 前面我们都学习了那些分解因式的方法? 提取公因式法、公式法.
计算
① (x 2)(x 3) x2 5x 6 ② (y-3)( y-5)= y2- 8y+15
试将 x2 6x 16 分解因式
x2 6x 16 x2 6x 16
x8 x2
提示:当二次项系数为-1时 ,先提 出负号再因式分解 。
将下列多项式因式分解
1) x2+3x-4
(2) x2-3x-43
3) x2+6xy-16y2 (4) x2-11xy+24y2
5) x2y2-7xy-18 (6) x4+13x2+36
十字相乘法的一般步骤:
(1)把二次项和常数项分解; (2)尝试十字图,使经过十字交叉线相乘相加 后得到一次项; (3)确定合适的十字图并写出因式分解的结果.
“拆两头,凑中间”练一练:一、1-6
练一练: 一、将下列各式分解因式
x2 5x 6 x2 7x 12 x2 x 6 x2 3x 10
x2-4x-12
(2)5x2+6xy-8y2 =(x+2y)(5x-4y) x +2y 5x -4y
练习: 1、6x2-23x+10
2、8x2-22x+15 2、14a2-29a-15 3、4m2+7mn-36n2
4、10(y+1)2-
思考1:如何把下列多项式分解因式: (1) (a+b)2+8(a+b)-20 (2) 6(2p-q)2-11(q-2p)+3