24.1圆的有关概念及性质测试题)
人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案
人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。
(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。
(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。
(4)圆心角:顶点在的角叫做圆心角。
(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。
(6)弦心距:到弦的距离叫做弦心距。
(7)等圆:能够的两个圆叫做等圆。
(8)等弧:在同圆或等圆中能的弧叫等弧。
考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。
(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。
(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。
=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。
考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。
(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。
考点4圆周角定理及其推论。
(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。
①直径所对的圆周角是直角.如图c=90°。
①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。
关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。
①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。
九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)
24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。
人教版 九年级数学上册 24.1 圆的有关性质(含答案)
人教版 九年级数学 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图所示的圆规,点A 是铁尖的端点,点B 是铅笔芯尖的端点,已知点A 与点B 的距离是2 cm ,若铁尖的端点A 固定,将铅笔芯尖的端点B 绕点A 旋转一周,则作出的圆的直径是( )A .1 cmB .2 cmC .4 cmD .π cm2. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵ C .△BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,AB是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A .51°B .56°C .68°D .78°4. 如图,OA是⊙O 的半径,B 为OA 上一点(不与点O ,A 重合),过点B 作OA的垂线交⊙O 于点C .以OB ,BC 为边作矩形OBCD ,连接BD .若BD =10,BC =8,则AB 的长为( )A .8B .6C .4D .25. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大小关系是( ) A.AB ︵=3CD ︵B.AB ︵>3CD ︵C.AB ︵<3CD ︵D .3AB ︵<CD ︵6. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A. 5 B .2 5 C .3 D .2 37. 如图,AB 是⊙O的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是( )A.7 B .27 C .6 D .88. 如图,直线l1∥l2,以直线l1上的点A 为圆心、适当长为半径画弧,分别交直线l1,l2于点B ,C ,连接AC ,BC.若∠ABC =54°,则∠1等于( )A .36°B .54°C .72°D .73°9. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°10. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5 B.5 32C .5 2D .5 3二、填空题(本大题共8道小题) 11. 2018·孝感 已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 2018·毕节如图,AB 是⊙O 的直径,C ,D 为半圆的三等分点,CE ⊥AB 于点E ,则∠ACE 的度数为________.13. 如图,平面直角坐标系xOy 中,点M 的坐标为(3,0),⊙M 的半径为2,过点M 的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为________,此时A ,B 两点所在直线与x 轴的夹角等于________°.14. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E =30°,则∠F =________°.18. 如图所示,在半圆O 中,AB为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.三、解答题(本大题共4道小题)19. 如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.20.如图,△ABC 和△ABD 都是直角三角形,且∠C =∠D =90°.求证:A ,B ,C ,D 四点在同一个圆上.21. (2019•包头)如图,在⊙O 中,B 是⊙O 上的一点,120ABC ∠=︒,弦AC =弦BM 平分ABC ∠交AC 于点D ,连接MA MC ,. (1)求⊙O 半径的长; (2)求证:AB BC BM +=.22. 如图,已知AB 为⊙O 的直径,C 为半圆ACB ︵上的动点(不与点A ,B 重合),过点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,则点P 的位置有何规律?请证明你的结论.人教版 九年级数学 24.1 圆的有关性质-答案一、选择题(本大题共10道小题) 1. 【答案】C2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的. 故选B.3. 【答案】A[解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°,∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE ,∴∠AEO =12×(180°-78°)=51°.4. 【答案】C5. 【答案】A[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵,因此有AB ︵=3CD ︵.6. 【答案】D[解析] 如图,过点O 作OD ⊥AB 于点D ,连接OA .根据题意,得OD =12OA =1.再根据勾股定理,得AD = 3.根据垂径定理,得AB =2 3.7. 【答案】B[解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.8. 【答案】C9. 【答案】B10. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题(本大题共8道小题)11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°.∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°, ∴∠ACE =90°-60°=30°.13. 【答案】6 90 [解析] ∵AB 为⊙M 的直径,∴AB =4.当点O 到AB 的距离最大时,△AOB 的面积最大,此时AB ⊥x 轴于点M , ∴△AOB 的面积的最大值为12×4×3=6,∠AMO =90°. 即此时A ,B 两点所在直线与x 轴的夹角等于90°.14. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.15. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.16. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.17. 【答案】40[解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.18. 【答案】(902n -1)[解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45……所以∠A n OB n =(902n -1)°.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B. 又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt △ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt △ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.20. 【答案】证明:如图,取AB 的中点O ,连接OC ,OD.∵△ABC 和△ABD 都是直角三角形,且∠ACB =∠ADB =90°,∴OC ,OD 分别为Rt △ABC 和Rt △ABD 斜边上的中线, ∴OC =OA =OB ,OD =OA =OB ,∴OA =OB =OC =OD ,∴A ,B ,C ,D 四点在同一个圆上.21. 【答案】(1)连接OA OC 、,过O 作OH AC ⊥于点H ,如图1,∵120ABC ∠=︒,∴18060AMC ABC ∠=-∠=︒︒,∴2120AOC AMC ∠=∠=︒, ∴1602AOH AOC ∠=∠=︒, ∵132AH AC ==, ∴2sin60AH OA ==︒, 故⊙O 的半径为2.(2)在BM 上截取BE BC =,连接CE ,如图2,∵120ABC ∠=︒,BM 平分ABC ∠,∴60ABM CBM ∠=∠=︒,∵60MBC BE BC ︒∠==,,∴EBC △是等边三角形,∴60CE CB BE BCE ==∠=︒,, ∴60BCD DCE ∠+∠=︒,∵60ACM ∠=︒,∴60ECM DCE ∠+∠=︒,∴ECM BCD ∠=∠,∴6060CAM CBM ACM ABM ∠︒=∠︒=∠=∠=,, ∴ACM △是等边三角形,∴AC CM =,∴ACB MCE △≌△,∴AB ME =,∵ME EB BM +=,∴AB BC BM +=.22. 【答案】⎝ ⎛⎭⎪⎫360n m 解:P 为半圆ADB ︵的中点. 证明:如图,连接OP .∵∠OCD 的平分线交⊙O 于点P ,∴∠PCD =∠PCO . ∵OC =OP ,∴∠PCO =∠OPC ,∴∠PCD =∠OPC ,∴OP ∥CD .∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵,即P 为半圆ADB ︵的中点.。
圆的有关性质-圆周角定理考点训练课件人教版数学九年级上册
6 【母题:教材P88练习T2】如图,A,B,C,D是⊙O 上的点,则图中与∠A相等的角是( ) A.∠B B.∠C C.∠DEB D.∠D
【点拨】 根据同弧所对的圆周角相等得∠A=∠D.
【答案】 D
7 【2022·朝阳】如图,在⊙O中,点A是B︵C的中点, ∠ADC=24°,则∠AOB的度数是( ) A.24° B.26° C.48° D.66°
∵OA=OB,∴∠OAB=∠OBA=180°- 2 92°=44°.
【答案】 A
5 【2022·枣庄】将量角器按如图所示的方式放置在三 角形纸板上,使点C在半圆上,点A,B的读数分别为 86°,30°,则∠ACB的度数是( ) A.28° B.30° C.36° D.56°
【点拨】 设量角器的中心点为 O,连接 OA,OB. 由题意得∠AOB=86°-30°=56°, ∴∠ACB=12∠AOB=28°.
【点拨】
︵
连接 BD.∵点 A 是BC的中点,
︵︵
∴AC=AB.∴∠ADB=∠ADC=24°.
∴∠AOB=2∠ADB=48°.
【答案】 C
8 【2022·包头】如图,AB,CD是⊙O的两条直径,E 是劣弧BC的中点,连接BC,DE,若∠ABC=22°, 则∠CDE的度数为( ) A.22° B.32° C.34° D.44°
【点拨】 如图,连接OE,根据等腰三角形的性质求出∠OCB,根
据三角形内角和定理求出∠BOC,进而求出∠COE,再根据圆 周角定理计算即可.
【答案】 C
9 【2023·北京四中月考】已知在半径为 4 的⊙O 中, 弦 AB=4 3,点 P 在圆上,则∠APB= _____6_0_°__或__1_2_0_°____.
人教版 九年级数学上册 24.1 --24.4分节测试题含答案)
人教版 九年级数学上册 24.1 --24.4分节测试题含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图所示的圆规,点A 是铁尖的端点,点B 是铅笔芯尖的端点,已知点A 与点B 的距离是2 cm ,若铁尖的端点A 固定,将铅笔芯尖的端点B 绕点A 旋转一周,则作出的圆的直径是( )A .1 cmB .2 cmC .4 cmD .π cm2. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵ C .△BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,AB是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A .51°B .56°C .68°D .78°4. 如图,OA是⊙O 的半径,B 为OA 上一点(不与点O ,A 重合),过点B 作OA的垂线交⊙O 于点C .以OB ,BC 为边作矩形OBCD ,连接BD .若BD =10,BC =8,则AB 的长为( )A .8B .6C .4D .25. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大小关系是( ) A.AB ︵=3CD ︵B.AB ︵>3CD ︵C.AB ︵<3CD ︵D .3AB ︵<CD ︵6. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A. 5 B .2 5 C .3 D .2 37. 如图,AB 是⊙O的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是( )A.7 B .27 C .6 D .88. 如图,直线l1∥l2,以直线l1上的点A 为圆心、适当长为半径画弧,分别交直线l1,l2于点B ,C ,连接AC ,BC.若∠ABC =54°,则∠1等于( )A .36°B .54°C .72°D .73°9. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°10. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5 B.5 32C .5 2D .5 3二、填空题(本大题共8道小题) 11. 2018·孝感 已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 2018·毕节如图,AB 是⊙O 的直径,C ,D 为半圆的三等分点,CE ⊥AB 于点E ,则∠ACE 的度数为________.13. 如图,平面直角坐标系xOy 中,点M 的坐标为(3,0),⊙M 的半径为2,过点M 的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为________,此时A ,B 两点所在直线与x 轴的夹角等于________°.14. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E =30°,则∠F =________°.18. 如图所示,在半圆O 中,AB为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.三、解答题(本大题共4道小题)19. 如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.20.如图,△ABC 和△ABD 都是直角三角形,且∠C =∠D =90°.求证:A ,B ,C ,D 四点在同一个圆上.21. (2019•包头)如图,在⊙O 中,B 是⊙O 上的一点,120ABC ∠=︒,弦AC =弦BM 平分ABC ∠交AC 于点D ,连接MA MC ,. (1)求⊙O 半径的长; (2)求证:AB BC BM +=.22. 如图,已知AB 为⊙O 的直径,C 为半圆ACB ︵上的动点(不与点A ,B 重合),过点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,则点P 的位置有何规律?请证明你的结论.人教版 九年级数学 24.1 圆的有关性质-答案一、选择题(本大题共10道小题) 1. 【答案】C2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的. 故选B.3. 【答案】A[解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°,∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE ,∴∠AEO =12×(180°-78°)=51°.4. 【答案】C5. 【答案】A[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵,因此有AB ︵=3CD ︵.6. 【答案】D[解析] 如图,过点O 作OD ⊥AB 于点D ,连接OA .根据题意,得OD =12OA =1.再根据勾股定理,得AD = 3.根据垂径定理,得AB =2 3.7. 【答案】B[解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.8. 【答案】C9. 【答案】B10. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题(本大题共8道小题)11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°.∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°, ∴∠ACE =90°-60°=30°.13. 【答案】6 90 [解析] ∵AB 为⊙M 的直径,∴AB =4.当点O 到AB 的距离最大时,△AOB 的面积最大,此时AB ⊥x 轴于点M , ∴△AOB 的面积的最大值为12×4×3=6,∠AMO =90°. 即此时A ,B 两点所在直线与x 轴的夹角等于90°.14. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.15. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.16. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.17. 【答案】40[解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.18. 【答案】(902n -1)[解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45……所以∠A n OB n =(902n -1)°.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B. 又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt △ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt △ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.20. 【答案】证明:如图,取AB 的中点O ,连接OC ,OD.∵△ABC 和△ABD 都是直角三角形,且∠ACB =∠ADB =90°,∴OC ,OD 分别为Rt △ABC 和Rt △ABD 斜边上的中线,∴OC =OA =OB ,OD =OA =OB ,∴OA =OB =OC =OD ,∴A ,B ,C ,D 四点在同一个圆上.21. 【答案】(1)连接OA OC 、,过O 作OH AC ⊥于点H ,如图1,∵120ABC ∠=︒,∴18060AMC ABC ∠=-∠=︒︒,∴2120AOC AMC ∠=∠=︒,∴1602AOH AOC ∠=∠=︒, ∵132AH AC ==, ∴2sin60AH OA ==︒, 故⊙O 的半径为2.(2)在BM 上截取BE BC =,连接CE ,如图2,∵120ABC ∠=︒,BM 平分ABC ∠,∴60ABM CBM ∠=∠=︒,∵60MBC BE BC ︒∠==,,∴EBC △是等边三角形,∴60CE CB BE BCE ==∠=︒,, ∴60BCD DCE ∠+∠=︒,∵60ACM ∠=︒,∴60ECM DCE ∠+∠=︒,∴ECM BCD ∠=∠,∴6060CAM CBM ACM ABM ∠︒=∠︒=∠=∠=,, ∴ACM △是等边三角形,∴AC CM =,∴ACB MCE △≌△,∴AB ME =,∵ME EB BM +=,∴AB BC BM +=.22. 【答案】⎝ ⎛⎭⎪⎫360n m 解:P 为半圆ADB ︵的中点. 证明:如图,连接OP .∵∠OCD 的平分线交⊙O 于点P ,∴∠PCD =∠PCO .∵OC =OP ,∴∠PCO =∠OPC ,∴∠PCD =∠OPC ,∴OP ∥CD .∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵,即P 为半圆ADB ︵的中点.24.2.2直线和圆的位置关系一.选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C ,则∠BPC 的度数是( )A.65°B.115°C.115°或65°D.130°或65°2.△ABC中,AB=13,BC=5,点O是AC上的一点,⊙O与BC相切于点C,与AB相切于点D,则⊙O的半径为()A.B.3C.D.53.如图,AB为⊙O的切线,A为切点,BO交⊙O于点C,点D在⊙O上,若∠ABO的度数是32°,则∠ADC的度数是()A.15°B.16°C.29°D.58°4.如图,△ABC中,∠A=80°,点O是△ABC的内心,则∠BOC的度数为()A.100°B.160°C.80°D.130°5.如图,在△ABC中,以AB为直径的圆交AC于点D,⊙O的切线DE交BC于点E,若∠A=35°,则∠CDE是()A.35°B.45°C.55°D.65°6.如图,射线BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.707.如图,P A、PB是⊙O切线,A、B为切点,AC是直径,∠P=40°,则∠BAC=()A.40°B.80°C.20°D.10°8.如图,AB是⊙O的直径,BP是⊙O的切线,AP与⊙O交于点C,D为BC上一点,若∠P=36°,则∠ADC等于()A.18°B.27°C.36°D.54°9.如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.410.如图,AB为⊙O的切线,切点为A,OB交⊙O于点C,点D在⊙O上,且OD∥AC,若∠B=38°,则∠ODC的度数为()A.46°B.48°C.52°D.58°二.填空题11.如图,已知圆O为Rt△ABC的内切圆,切点分别为D、E、F,且∠C=90°,AB=13,BC=12,则圆O的半径为.12.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=23°,则∠OCB=°.13.已知点P是圆外一点,过点P引圆的两条切线P A、PB,切点分别为A、B,点C是圆上异于A、B的点,若∠P=70°,则∠ACB=.14.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,若AB=5,AC=4,则BD的长为.15.如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是.三.解答题16.已知:如图,Rt△ABC中,∠ACB=90°,以AC为弦作⊙O,交BC的延长线于点D,且DC=BC,过点D作⊙O的切线,交AB的延长线于点E.(1)猜想∠CAB与∠BDE的数量关系,并说明理由;(2)若AB=BE,则∠E的度数为°.17.如图,在等腰三角形ABD中,AB=AD,点C为BD上一点,以BC为直径作⊙O,且点A恰好在⊙O上,连接AC.(1)若AC=CD,求证:AD是⊙O的切线.(2)在(1)的条件下,若CD=1,求⊙O的直径.18.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.参考答案1.解:∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∵∠A=50°,∴∠BOC=180°﹣50°=130°,当点P在优弧BC上时,∠BPC=∠BOC=65°,当点P′在劣弧BC上时,∠BP′C=180°﹣65°=115°,故选:C.2.解:依题意画出图形,连接OD,如图:∵⊙O与BC相切于点C,与AB相切于点D,∴∠ACB=90°,∠ADO=90°,∴∠ACB=∠ADO,又∵∠A=∠A,∴△ADO∽△ACB,∴=,在△ABC中,AB=13,BC=5,由勾股定理得:AC==12,设⊙O的半径为r,则有:=,解得:r=.故选:C.3.解:∵AB为⊙O的切线,∴∠OAB=90°,∴∠AOB=90°﹣∠ABO=58°,由圆周角定理得,∠ADC=∠AOB=29°,故选:C.4.解:∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵点O是△ABC的内心,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣50°=130°.故选:D.5.解:连接DB,OD,∵AB是⊙O的直径,∴∠ADB=90°,∵OA=OD,∠A=35°,∴∠ODA=∠A=35°,∴∠ODB=90°﹣35°=55°,∵DE是⊙O的切线,OD是⊙O的半径,∴∠ODE=90°,∴∠BDE=∠ODE﹣∠ODB=90°﹣55°=35°,∴∠CDE=∠CDB﹣∠BDE=90°﹣35°=55°,故选:C.6.解:∵射线BM与⊙O相切于点B,∴BC⊥BM,∴∠MBC=90°,∴∠ABC=∠MBA﹣∠MBC=140°﹣90°=50°,∵BC为直径,∴∠BAC=90°,∴∠ACB=90°﹣50°=40°.故选:A.7.解:连接OB,∵P A、PB是⊙O切线,A、B为切点,∴∠OAP=∠OBP=90°,∵∠P=40°,∴∠AOB=360°﹣∠OAP﹣∠P﹣∠OBP=140°,∵OA=OB,∴∠BAC=∠OBA=(180°﹣∠AOB)=20°,故选:C.8.解:连接BC,∵BP是⊙O的切线,∴AB⊥BP,∴∠ABP=90°,∴∠BAP=90°﹣∠P=54°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣∠BAP=36°,由圆周角定理得,∠ADC=∠ABC=36°,故选:C.9.解:∵P A,PB是⊙O的两条切线,A,B为切点,∴P A=PB,所以①正确;∵OA=OB,P A=PB,∴OP垂直平分AB,所以②正确;∵P A,PB是⊙O的两条切线,A,B为切点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选:C.10.解:连接OA,∵AB为⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=52°,∵OA=OC,∴∠OCA=∠OAC=×(180°﹣52°)=64°,∵OD∥AC,∴∠DOC=∠OCA=64°,∵OC=OD,∴∠ODC=∠OCD=×(180°﹣64°)=58°,故选:D.11.解:在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC==5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,如图,连接OE,OF,∵OE⊥AC,OF⊥BC,OE=OF,∴∠OEC=∠C=∠OFC=90°,∴四边形OECF是正方形,设OE=OF=CE=CF=x,则AD=AE=5﹣x,BF=BD=12﹣x,∵AD+BD=13,∴5﹣x+12﹣x=13,∴x=2,则圆O的半径为2.故答案为:2.12.解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=23°,∴∠OAB=∠OBA=23°,∴∠APO=∠CBP=67°,∵∠APO=∠CPB,∴∠CPB=∠APO=67°,∴∠OCB=180°﹣67°﹣67°=46°,故答案为:46.13.解:①当C和P在O的异侧时,如图1,连接OA,OB,∵P A,PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠P AO=∠PBO=90°,∴∠AOB=360°﹣∠P AO﹣∠PBO﹣∠P=360°﹣90°﹣90°﹣70°=110°,∴∠ACB=∠AOB=55°;②当C和P在O的同侧时,如图2,连接OA,OB,由①知∠AOB=110°,∵∠ACB+∠AOB=180°,∴∠ACB=180°﹣∠AOB=125°;综上所述:∠ACB=55°或125°,故答案为:55°或125°.14.解:∵AC,AP为⊙O的切线,∴AC=AP=4,∵BP,BD为⊙O的切线,∴BP=BD,∴BD=BP=AB﹣AP=5﹣4=1.故答案为:1.15.解:连接OA、OE、OB,OB交DE于H,如图,∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,∵AB=AC,∴AO⊥BC,∴点A、O、E共线,即AE⊥BC,∴BE=CE=3,在Rt△ABE中,AE==4,∵BD=BE=3,∴AD=2,设⊙O的半径为r,则OD=OE=r,AO=4﹣r,在Rt△AOD中,r2+22=(4﹣r)2,解得r=,在Rt△BOE中,OB==,∵BE=BD,OE=OD,∴OB垂直平分DE,∴DH=EH,OB⊥DE,∵HE•OB=OE•BE,∴HE===,∴DE=2EH=.故答案为:.16.解:(1)∠CAB=∠BDE.理由如下:连接AD,如图,∵∠ACB=90°,∴∠ACD=90°,∴AD为⊙O的直径,∵DE为切线,∴AD⊥DE,∴∠ADC+∠BDE=90°,∵DC=BC,AC⊥BD,∴AD=AB,∴∠ADC=∠ABC,∵∠BAC+∠ABC=90°,∴∠BAC=∠BDE;(2)∵∠ADE=90°,AB=BE,∴BD=AB=BE,而AD=AB,∴△ABD为等边三角形,∴∠BAD=60°,∴∠E=90°﹣60°=30°.故答案为30.17.解:(1)如图,连接OA.∵OA=OB,∴∠B=∠OAB,∵AB=AD,∴∠B=∠D,∵AC=CD,∴∠D=∠CAD,∴∠OAB=∠CAD,∵BC为直径,∴∠BAC=90°,∴∠OAD=90°,即OA⊥AD,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)设⊙O的半径为x,则OA=OC=x,BC=2x,∵∠B=∠D,AB=AD,∠BAC=∠OAD=90°,∴△BAC≌△DAO,∴BC=DO,∵CD=1,∴DO=OC+CD=x+1,∴2x=x+1,∴x=1,即⊙O的直径为2.18.(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,∴AP=AC=3.在Rt△P AO中,OA=OP=3,∴⊙O的半径为3.24.3正多边形和圆一.选择题1.下列说法错误的是()A.平分弦的直径垂直于弦B.圆内接四边形的对角互补C.任意三角形都有一个外接圆D.正n边形的中心角等于2.下列说法中正确的是()A.直角三角形只有一条高B.三角形任意两个内角的和大于第3个内角C.在同圆中任意两条直径都互相平分D.如果一个多边形的各边都相等,那么它是正多边形3.如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.154.如图,在正五边形ABCDE中,连结AC,以点A为圆心,AB为半径画圆弧交AC于点F,连接DF.则∠FDC的度数是()A.18°B.30°C.36°D.40°5.下列说法中,正确的个数为()①三角形的外角等于两个内角的和;②有两边和一角分别相等的两个三角形全等;③各边都相等的多边形是正多边形;④到角两边距离相等的点,在这个角的平分线上.A.1B.2C.3D.06.如图,正六边形ABCDEF内接于⊙O,点P是上的任意一点,则∠APB的大小是()A.15°B.30°C.45°D.60°7.如图,四边形ABCD是⊙O的内接正方形,点P是上不同于点C的任意一点,则∠BPC的大小是()A.22.5°B.45°C.30°D.50°8.如图,⊙O的周长等于4πcm,则它的内接正六边形ABCDEF的面积是()A.B.C.D.9.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.1210.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C、D外任意一点,则∠CPD 的度数为()A.30°B.30°或150°C.60°D.60°或120°二.填空题11.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为°.12.已知正方形的半径是4,那么这个正方形的边心距是.13.已知正三角形ABC的半径长为R,那么△ABC的周长是.(用含R的式子表示)14.如图,正五边形ABCDE内接于⊙O,点F为BC上一点,连接AF,若∠AFC=126°,则∠BAF的度数为.15.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠BOQ=.三.解答题16.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.17.如图,⊙O的半径等于4cm,正六边形ABCDEF内接于⊙O(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.参考答案1.解:A、∵平分弦(不是直径)的直径垂直于弦,∴选项A符合题意;B、∵圆内接四边形的对角互补,∴选项B不符合题意;C、∵任意三角形都有一个外接圆,∴选项C不符合题意;D、∵正n边形的中心角等于,∴选项D不符合题意;故选:A.2.解:A、直角三角形有3条高,故原命题错误,不符合题意;B、钝角三角形的两个较小的锐角的和小于最大的钝角,故原命题错误,不符合题意;C、在同圆中任意两条直径都互相平分,正确,符合题意;D、如果一个多边形的各角相等,各边都相等,那么它是正多边形,故原命题错误,不符合题意;故选:C.3.解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意30°=,∴n=12,故选:C.4.解:∵五边形ABCDE是正五边形,∴∠AED=∠EAB=∠ABC=108°,∵BA=BC,∴∠BAC=∠BCA=36°,∴∠EAC=72°,∴∠AED+∠EAC=180°,∴DE∥AF,∵AE=AF=DE,∴四边形AEDF是菱形,∴∠EDF=∠EAF=72°,∵∠EDC=108°,∴∠FDC=36°,故选:C.5.解:①三角形的外角等于两个内角的和,错误,应该是三角形的外角等于和它不相邻两个内角的和.②有两边和一角分别相等的两个三角形全等,错误,应该是有两边和夹角分别相等的两个三角形全等.③各边都相等的多边形是正多边形,错误.缺少各个角相等这个条件.④到角两边距离相等的点,在这个角的平分线上.错误,这个点必须在这个角的内部.故选:D.6.解:连接OA、OB、如图所示:∵∠AOB==60°,∴∠APC=∠AOC=30°,故选:B.7.解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选:B.8.解:如图,连接OA、OB,作OG⊥AB于点G,∵⊙O的周长等于4πcm,∴⊙O的半径为:=2,∵ABCDEF是⊙O的内接正六边形,∴OA=OB=AB=2,∵OG⊥AB,∴AG=BG=AB=1,∴OG=,∴S△AOB=AB•OG=2×=.∴它的内接正六边形ABCDEF的面积是6S△AOB=6(cm2).故选:C.9.解:连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷6=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.10.解:连接OC、OD,如图,∵⊙O是正六边形ABCDEF的外接圆,∴∠COD=60°,当P点在弧CAD上时,∠CPD=∠COD=30°,当P点在弧CD上时,∠CPD=180°﹣30°=150°,综上所述,∠CPD的度数为30°或150°.故选:B.11.解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.12.解:如图,根据正方形的性质知:△BOC是等腰直角三角形,过O作OE⊥BC于E,∵正方形的半径是4,∴BO=4,∴OE=BE=BO=2,故答案为:2.13.解:如图所示:连接OA、OB、OC,过O作OD⊥BC于D,∵△ABC是半径为R的等边三角形,∴OA=OB=OC=R,∠ABC=60°,∴∠OBD=30°,∵OD⊥BC,∴∠ODB=90°,OD=OB=R,∴BD=OD=R,∴BC=2BD=R,∴该三角形的周长为3R,故答案为:3R.14.解:∵正五边形ABCDE内接于⊙O,∴∠ABC==108°,∵∠AFC=126°,∴∠BAF=∠AFC﹣∠ABF=126°﹣108°=18°.故答案为18°.15.解:连结OA,OD,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POQ=×360°=120°,∵BC∥QR,OP⊥QR,∵BC∥QR,∴OP⊥BC,∵四边形ABCD是⊙O的内接正方形,∴OP⊥AD,∠AOD=90°,∴=,∴∠AOP=∠DOP,∴∠AOP=×90°=45°,∴∠AOQ=∠POQ﹣∠AOP=75°.∵∠AOB=90°,∴∠QOB=15°,故答案为:15°.16.(1)解:∵六边形ABCDEF是正六边形,∴∠F AB==120°;(2)证明:连接OA、OB,∵OA=OB,∴∠OAB=∠OBA,∵∠F AB=∠CBA,∴∠OAG=∠OBH,在△AOG和△BOH中,,∴△AOG≌△BOH(SAS)∴OG=OH.17.解:(1)过O作OH⊥AF于H,连接OA,OF,∵在正六边形ABCDEF中,∠BAF=120°,∴∠OAF=60°,∵OA=4,∴AH=OA=2,∴OH===2;∴圆心O到AF的距离为2;(2)∵OA=OF,∠OAF=60°,∴△OAF是等边三角形,∴AF=OA=4,∴S△AOF=×4×2=4,∴正六边形ABCDEF的面积=6S△AOF=24.24.4 弧长和扇形面积一、选择题1. 如图,AB,CD是⊙O的两条互相垂直的直径,O1,O2,O3,O4分别是OA,OB,OC,OD的中点.若⊙O的半径是2,则阴影部分的面积为()A.8 B.4C.4π+4 D.4π-42. 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计).如果圆锥形帽子的底面圆半径为10 cm,那么这张扇形纸板的面积是()A.240π cm2B.480π cm2C.1200π cm2D.2400π cm23. 一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是( )A .120°B .180°C .240°D .300°4. 如图,在边长为4的正方形ABCD 中,以点B 为圆心,AB 长为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是(结果保留π)( )A .8-πB .16-2πC .8-2πD .8-12π5. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED =52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π6. 如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )A .πB .2πC .2 2πD .4π7. 如图0,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CD =2 3,则图中阴影部分的面积为( )A .4πB .2πC .π D.2π38. 如图,△ABC 是等腰直角三角形,且∠ACB =90°.曲线CDEF…叫做“等腰直角三角形的渐开线”,其中CD ︵,DE ︵,EF ︵,…的圆心依次按A ,B ,C ,…循环.如果AC =1,那么曲线CDEF 和线段CF 围成图的面积为( )图A .(12+72)4πB .(9+52)4πC .(12+72)π+24D .(9+52)π+249. 如图,点I 为△ABC 的内心,AB =4,AC =3,BC =2,将∠ACB 平移使其顶点与点I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .210. 如图所示,矩形纸片ABCD 中,AD =6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形BAF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A.3.5 cm B.4 cm C.4.5 cm D.5 cm二、填空题11. 用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面圆的面积为________.12. 如图所示,有一直径是2米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC,则:(1)AB的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.13. 如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.AB=,将半圆绕点A顺时针旋转14. (2019•十堰)如图,AB为半圆的直径,且660︒,点B旋转到点C的位置,则图中阴影部分的面积为__________.15. 如图,∠AOB=90°,∠B=30°,以点O为圆心,OA长为半径作弧交AB于点A,C,交OB于点D.若OA=3,则阴影部分的面积为________.三、解答题16. 已知扇形的圆心角为120°,面积为300π cm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?17. 已知一个圆锥的轴截面△ABC(如图0)是等边三角形,它的表面积为75π cm2,求这个圆锥的底面圆的半径和母线长.18. 当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷.如图是某汽车的一个雨刷的转动示意图,雨刷杆AB与雨刷CD在B处固定连接(不能转动),当杆AB绕点A转动90°时,雨刷CD扫过的面积是图中阴影部分的面积,现量得CD=90 cm,∠DBA=20°,AC=115 cm,DA=35 cm,试从以上信息中选择所需要的数据,求出雨刷扫过的面积.19. 如图是两个半圆,点O 为大半圆的圆心,AB 是大半圆的弦且与小半圆相切,AB =24,求图中阴影部分的面积.20. 如图①,在等腰三角形ABC 中,∠BAC =120°,AD 平分∠BAC ,且AD =6,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F.(1)求由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠(如图②),求这个圆锥的高h.人教版 九年级数学 24.4 弧长和扇形面积 针对训练 -答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵扇形的弧长l=2·π·10=20π(cm),∴扇形的面积S=12lR=12×20π×24=240π(cm2).3. 【答案】B[解析] 设母线长为R,底面圆的半径为r,则底面圆的周长=2πr,底面积=πr2,侧面积=πrR.∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r.设该圆锥侧面展开图的圆心角为n°,则nπR180=2πr,∴nπR180=πR,∴n=180.故选B.4. 【答案】C[解析] 在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=12AD·AB=8,S扇形BAE=45·π·42360=2π,∴S阴影=S△ABD-S扇形BAE=8-2π.故选C.5. 【答案】D6. 【答案】B7. 【答案】D[解析] 如图,连接OD.∵CD⊥AB,∴CE=DE=3,∠CEO=∠DEO=90°.又∵OE=OE,∴△COE≌△DOE,故S△COE=S△DOE,即可得阴影部分的面积等于扇形OBD的面积.∵∠CDB=30°,∴∠COB=60°,∴∠OCD =30°,∴OE =12OC.在Rt △COE 中,CE =3,由勾股定理可得OC =2,∴OD =2.∵△COE ≌△DOE ,∴∠DOE =∠COE =60°,∴S 扇形OBD =60π·22360=23π,即阴影部分的面积为2π3.故选D.8. 【答案】C [解析] 曲线CDEF 和线段CF 围成的图是由三个圆心不同,半径不同的扇形以及△ABC 组成的,所以根据面积公式可得 135π×1+135π×(2+1)2+90π×(2+2)2360+12×1×1=(12+7 2)π+24.9. 【答案】B [解析] 设CA ,CB 平移后分别交AB 于点M ,N ,连接AI ,BI.由平移可知AC ∥MI ,∴∠CAI =∠AIM.∵∠CAI =∠BAI ,∴∠BAI =∠AIM ,∴AM =MI.同理BN =NI.∴△MNI 的周长=MI +NI +MN =AM +BN +MN =AB =4.故选B.10. 【答案】B [解析] AF ︵的长=14·2π·AB ,右侧圆的周长为π·D E.∵裁出的扇形和圆恰好能作为一个圆锥的侧面和底面,∴14·2π·AB =π·DE ,∴AB =2DE ,即AE =2DE.∵AE +DE =AD =6,∴AB =4.故选B.二、填空题11. 【答案】4π [解析] 设此圆锥的底面圆的半径为r.由题意可得2πr =120π×6180,解得r =2,故这个圆锥的底面圆的半径为2,所以底面圆的面积为πr2=4π.12. 【答案】(1)1 (2)14 [解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2.∵AB =AC ,AB2+AC2=BC2=2,∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米.根据题意,得2πr =90·π·1180,解得r =14.13. 【答案】12 [解析] 设这个圆锥底面圆的半径是r.∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°.又∵OA =OC ,∴△OAC 为等边三角形,∴OA =OC =AC =3,∴lAC ︵=60π×3180=2πr ,解得r =12,∴这个圆锥底面圆的半径是12.14. 【答案】6π【解析】由图可得, 图中阴影部分的面积为:22260π6π(62)π(62)6π36022⨯⨯⨯÷⨯÷+-=,故答案为:6π.15. 【答案】34π [解析] 如图,连接OC ,过点C 作CN ⊥AO 于点N ,CM ⊥OB于点M.∵∠AOB =90°,∠B =30°,∴∠A =60°.∵OA =OC ,∴△AOC 为等边三角形,∴∠AOC =60°,AC =OA.∵OA =3,∴AC =OA =3.∵CN ⊥OA ,∴AN =ON =12OA =32,∴CN =32 3,∴S △AOC =12OA·CN =94 3.∵∠AOB =90°,CN ⊥OA ,CM ⊥OB ,∴四边形CNOM 为矩形,∴CM =ON =32.在Rt △AOB 中,∠B =30°,OA =3,∴AB =2OA =6,∴OB =3 3,∴S △OCB =12OB·CM =94 3. ∵∠AOC =60°,OA =3,∴S 扇形OAC =60π·32360=32π.∵∠COD =90°-60°=30°,∴S 扇形OCD =30π·32360=34π,∴S 阴影=S 扇形OAC -S △AOC +S △OCB -S 扇形OCD =34π.三、解答题16. 【答案】解:(1)设扇形的半径为r cm.由题意,得120π×r2360=300π,解得r =30,∴扇形的弧长=120π×30180=20π(cm).(2)设圆锥的底面圆的半径为x cm ,则2π·x =20π,解得x =10, ∴圆锥的高=302-102=20 2(cm),∴圆锥的体积=13·π·102·20 2= 2000 23π(cm3).17. 【答案】解:∵轴截面△ABC 是等边三角形,∴AC =BC =2OC.由题意,得π·OC·AC +π·OC 2=75π,∴3π·OC2=75π,∴OC2=25.∵OC>0,∴OC =5 cm ,∴AC =2OC =2×5=10(cm).即这个圆锥的底面圆的半径为5 cm ,母线长为10 cm.18. 【答案】解:由题意可知△ACD ≌△AC′D′,所以可将△AC′D′旋转到△ACD 处,使阴影部分面积成为一部分环形面积,可通过两扇形面积之差求得,即雨刷CD 扫过的面积S 阴影=S 扇形ACC′-S 扇形ADD′=90π×1152360-90π×352360=π4(115+35)×(115-35)=3000π(cm2).答:雨刷扫过的面积为3000π cm2.19. 【答案】 [解析] 小圆向右平移,使它的圆心与大圆的圆心重合,于是阴影部分的面积可转化为大半圆的面积减去小半圆的面积.解:将小半圆向右平移,使两半圆的圆心重合,如图,连接OB ,过点O 作OC ⊥AB 于点C ,则AC =BC =12.∵AB 是大半圆的弦且与小半圆相切,∴OC 为小半圆的半径,∴S 阴影=S 大半圆-S 小半圆=12π·OB2-12π·OC2=12π(OB2-OC2)=12π·BC2=72π.20. 【答案】解:(1)∵在等腰三角形ABC 中,∠BAC =120°,∴AB =AC ,∠B =∠C =30°.∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD.在Rt △ABD 中,由∠B =30°,AD =6,可得AB =12,BD =6 3,∴BC =2BD =12 3,∴由EF ︵及线段FC ,CB ,BE 围成的图形(图中阴影部分)的面积=S △ABC -S 扇形AEF =12×6×12 3-120·π·62360=36 3-12π. (2)设圆锥的底面圆的半径为r.根据题意,得2πr =120·π·6180,解得r =2,∴这个圆锥的高h =62-22=4 2.。
24.1圆的测试题
24.1 圆 同步学习检测 姓名:一、选择题1.⊙O 的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离为( ) A . 2cm B . 6cm C . 8cm D . 10cm2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,∠CDB =30°, ⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cmC .D .9cm3.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD AB 的长为( )A .2B .3C .4D .5 4.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80° 5.如图,BD 是⊙O 的直径,∠CBD=30,则∠A 的度数为( )A.30B.45C.60D.756.如图, AB 是⊙O 的直径,弦CD ⊥AB 于点M, AM = 2,BM = 8. 则CD 的长为( ) A .4 B .5C .8D .167.如图,在半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆心角的度数为( ) A .600B . 900C .1200D .15008.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .59.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .210.如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )A.25ºB.29ºC.30ºD.32°11.如下图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cmC .32cmD .52cm12.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米13.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A .0.4米B .0.5米C .0.8米D .1米 14.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A .5米B .8米C .7米D .53米15.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD =,则直径AB 的长是( )A .B .C .D .16.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .AE BE= D .OD =DE17.如图,在Rt ABC △中,C ∠=90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A . B .5 C .D .618.如图,正三角形ABC 内接于⊙O,动点P在圆周的劣弧AB 上,且不与A 、B 重合,则∠BPC 等于( ) A .30 B .60 C .90 D .4519.⊙O 的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离( )A . 2cmB . 6cmC . 8cmD . 10cm20. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( )A .30°B .45°C .60°D .90°21.如图,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB 等于( )A . 30°B . 45°C . 55°D . 60°22.如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( )A .70°B .60°C .50°D .40° 23.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70° 24.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为( )A .30°B .60°C .30°或150°D .60°或120°25. 如图,么AOB 是⊙0的圆心角,∠AOB=80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80° 26.如图,已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50°,则∠C 的度数是( ) A .25° B .40° C .30° D .5027.如图,A、D是⊙O上的两个点,BC是直径,若∠D = 35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°28.下列命题中,正确的个数是()个⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆⑶半径相等的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 B.2 C.3 D.429.⊙O中,AOB=∠84°,则弦AB所对的圆周角的度数为()A.42°B.138°C.69°D.42°或138°30.如图,⊙O的直径CD⊥EF于G,若∠EOD=40°,则∠DCF等于()A.80°B. 50°C. 40°D. 20°31.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 32.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠E=25°,则∠AOC等于()A.25°B.50°C.75°D.80°33.圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为() A. 1π B. π C. 2π D. 4π234.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B +∠C=()度.A.30 B.60 C.90 D.12035.如图,AB是⊙O的直径,∠ACD=15°则∠BAD的度数为()A.15°B.30°C.60 °D.75°36.AC是⊙O的直径,∠BAC=20°,P是弧AB的中点,则∠PAB=()A.35° B.40 C.60° D.70°∠的度数是()37.如图∠BAC=24°,∠CED=31°BODA.550 B.1100C.1250 D.1500B38.如右图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的= .39.如图,在“世界杯” 足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到 B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择______种射门方式. 40.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则弧所在圆的圆心坐标为 . 41.⊙O 中,圆心角∠AOB =1000,点C 在劣弧AB 上,点D 在优弧AB 上,则∠ACB = ,∠D = . 42.如图,⊙O 中,若∠AOB 的度数为360,∠ACB = .43.如图,AB 是⊙O 的直径,CD 是弦,∠BDC =250,则∠AOC = .44.如图等边ΔABC 的三个顶点在⊙O 上,BD 是直径,则∠BDC = ,∠ACD = .若CD =10,则⊙O 的半径长为 .45.如图,已知AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且∠D=130°则∠BAC 的度数是 .46.如图,⊙O 的直径AC =2,∠BAD =75°,∠ACD =45°,则四边形ABCD 的周长为 (结果取准确值) . 47.如上右在⊙O 中,AD ∥BC ,AC 、BD 相交于点E ,连接AB 、CD ,图中的全等三角形共有 对,面积相等的三角形共有 对.48.如图,△ABC 内接于⊙O ,∠C=45°AB=4,求⊙O 的半径 . 二、解答题49.图4,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长B A 交圆于E.求证:EF=FG.50.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1.求⊙O 1的半径.51.如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长.GFEDCBABD CBA52.⊙O 的半径是6cm ,弦AB=10cm ,弦CD=8cm 且AB ⊥CD 于P ,求OP 的长.53.如图所示,等腰△ABC 的顶角∠A = 120°,BC = 12 cm ,求它的外接圆的直径.54.如图,∆ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,求BC 的长.55.如图,⊙O 是△ABC 的外接圆,AB 为直径,AC =CF ,CD ⊥AB 于D ,且交⊙O 于G ,AF 交CD 于E . (1)求∠ACB 的度数;(2)求证:AE =CE ;56.如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 中弧AB 上一点,延长DA 至点E ,使CE CD =. (1)求证:AE BD =;(2)若AC BC ⊥,求证:AD BD +.57.如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,以DC 为直径的⊙O 交△ABC 的边于G ,F ,E 点. 求证:(1)F 是BC 的中点;(2)∠A =∠GEF.58.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧CD ,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E .求证:DE =BF ;59.已知,如图,四边形ABCD 内接于圆,延长AD 、BC 相交于点E ,点F 是BD 的延长线上的点,且DE 平分∠CDF.⑴求证:AB =AC ;⑵若AC =3cm ,AD =2cm ,求DE 的长.60.如图,已知圆内接四边形ABCD 的对角线AC 、BD 交于点N ,点M 在对角线BD 上,且满足∠BAM=∠DAN ,∠BCM=∠DCN .求证:(1)M 为BD 的中点;(2)CMAMCN AN . AB CD E FG OB A。
部编数学九年级上册专题24.1圆【七大题型】(人教版)(解析版)含答案
专题24.1 圆【七大题型】【人教版】【题型1 圆的概念】 (1)【题型2 圆的有关概念】 (4)【题型3 确定圆的条件】 (6)【题型4 点与圆的位置关系】 (9)【题型5 圆中角度的计算】 (12)【题型6 圆中线段长度的计算】 (15)【题型7 圆相关概念的应用】 (18)定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.【题型1 圆的概念】【例1】(2022•金沙县一模)下列说法中,不正确的是( )A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【变式1-1】(2022•武昌区校级期末)由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C .【变式1-2】(2022•杭州模拟)现有两个圆,⊙O 1的半径等于篮球的半径,⊙O 2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是( )A .⊙O 1B .⊙O 2C .两圆增加的面积是相同的D .无法确定【分析】先由L =2πR 计算出两个圆半径的伸长量,然后再计算两个圆增加的面积,然后进行比较大小即可.【解答】解:设⊙O 1的半径等于R ,变大后的半径等于R ′;⊙O 2的半径等于r ,变大后的半径等于r ′,其中R >r .由题意得,2πR+1=2πR ′,2πr +1=2πr ′,解得R ′=R +12π,r ′=r +12π;所以R ′﹣R =12π,r ′﹣r =12π,所以,两圆的半径伸长是相同的,且两圆的半径都伸长12π.∴⊙O 1的面积=πR 2,变大后的面积=π(R +12π)2,面积增加了π(R +12π)2−πR 2=R +14π,⊙O 2的面积=πr 2,变大后的面积=π(r +12π)2,面积增加了π(r +12π)2−πr 2=r +14π,∵R >r ,∴R +14π>r +14π,∴⊙O 1的面积增加的多.故选:A .【变式1-3】(2022•浙江)如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长l 2=12πa =12l ;(2)把AB 分成三条相等的线段,每个小圆的周长l 3= 13l ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= 14l ;(4)把AB 分成n 条相等的线段,每个小圆的周长l n = 1n l .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 1n .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.【分析】把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是l n =π(1n a )=1n l ,即每个小圆周长是大圆周长的1n ;根据圆的面积公式求得每个小圆的面积和大圆的面积后比较.【解答】解:(2)13l ;(3)14l ;(4)1n l ;1n ;每个小圆面积=π(12•1n a )2=14•πa 2n 2,而大圆的面积=π(12•a )2=14πa 2即每个小圆的面积是大圆的面积的1.n2【题型2 圆的有关概念】【例2】(2022•远安县期末)下列说法:①弦是直线;②圆的直径被该圆的圆心平分;③过圆内一点P的直径仅有一条;④弧是圆的一部分.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据弦,直径,弧的定义一一判断即可.【解答】解:①弦是直线,错误,弦是线段.②圆的直径被该圆的圆心平分,正确.③过圆内一点P的直径仅有一条,错误,点P是圆心时,直径有无数条.④弧是圆的一部分,正确.故选:B.【变式2-1】(2022图木舒克月考)有一个圆的半径为5,则该圆的弦长不可能是( )A.1B.4C.10D.11【分析】根据直径是圆中最长的弦,判断即可.【解答】解:∵一个圆的半径为5,∴圆中最长的弦是10,∴弦长不可能为11,故选:D.【变式2-2】(2022•嘉鱼县期末)如右图中有 1 条直径,有 4 条弦,以点A为端点的优弧有 2 条,有劣弧 2 条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A为端点的优弧有ACD、ADC 这2条,劣弧有AC、AD这2条,故答案为:1、4、2、2.【变式2-3】(2022仪征市期末)如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 4 个.【分析】解法一:过点P最长的弦是12,根据已知条件,△OAB的面积为18,可以求出AB<12,根据三角形面积可得OC=OP的长有两个整数:5,6,且OP=6是P在A或B点时,每一个值都有两个点P,所以一共有4个.解法二:根据面积可知,OA上的高为6,也就是说OA与OB互相垂直,然后算出OC长度即可.【解答】解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,+y2=362y⋅x=18,则y=18x,∴x2+(18x)2=36,解得x=∴OC=4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则12×OAℎ=18,即12×6ℎ=18,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=OC=同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.【题型3 确定圆的条件】【例3】(2022•绥中县一模)小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【变式3-1】(2022春•射阳县校级期末)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3) 能 确定一个圆(填“能”或“不能”).【分析】根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.【解答】解:∵B(0,﹣3)、C(2,﹣3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,﹣3)、C(2,﹣3)能确定一个圆.故答案为:能.【变式3-2】(2022•西城区期末)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 (2,1) .【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).【变式3-3】(2022•任城区校级月考)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.【分析】(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,BC,BC交OA于D.∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,∴R2=82+(R﹣6)2,cm,解得:R=253cm.∴圆片的半径R为253【题型4 点与圆的位置关系】【例4】(2022秋•宜州区期末)如已知:如图,△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C长为半径画圆,则点A、B、M与⊙C的关系如何?【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.【解答】解:根据勾股定理,有AB=cm);∵CA=2cm,∴点A在⊙O内,∵BC=4cm,∴点B在⊙C外;由中线定理得:CM=∴M点在⊙C上.【变式4-1】(2022春•龙湖区校级月考)⊙O的面积为25πcm2,⊙O所在的平面内有一点P,当PO =5cm 时,点P在⊙O上;当PO <5cm 时,点P在⊙O内;当PO >5cm 时,点P在⊙O外.【分析】根据圆的面积求出圆的半径,然后确定圆上点,圆内点以及圆外的到圆心的距离.【解答】解:因为圆的面积为25πcm2,所以圆的半径为5cm.当点P到圆心的距离等于5cm时,点P在⊙O上,此时OP=5cm.当点P到圆心的距离小于5cm时,点P在⊙O内,此时OP<5cm.当点P到圆心的距离大于5cm时,点P在⊙O外,此时OP>5cm.故答案分别是:PO=5cm,PO<5cm,PO>5cm.【变式4-2】(2022•广东模拟)如图,已知⊙A的半径为1,圆心的坐标为(4,3).点P(m,n)是⊙A 上的一个动点,则m2+n2的最大值为 36 .【分析】由于圆心A的坐标为(4,3),点P的坐标为(m,n),利用勾股定理可计算出OA=5,OP=这样把m2+n2理解为点P与原点的距离的平方,利用图形可得到当点P运动到射线OA上时,点P离圆点最远,即m2+n2有最大值,然后求出此时的PO长即可.【解答】解:作射线OA交⊙O于P′点,如图,∵圆心A的坐标为(4,3),点P的坐标为(m,n),∴OA5,OP=∴m2+n2是点P点圆点的距离的平方,∴当点P运动到P′处,点P离圆点最远,即m2+n2有最大值,此时OP=OA+AP′=5+1=6,则m2+n2=36.故答案为:36.【变式4-3】(2022秋•金牛区期末)如图.A(3,0).动点B到点M(3,4)的距离为1,连接BO,BO 的中点为C,则线段AC的最小值为 2 .【分析】先确定AC最小值时点B的位置:过B作BD∥AC交x轴于D,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,根据勾股定理和三角形中位线定理可得AC的长.【解答】解:过B作BD∥AC交x轴于D,∵C是OB的中点,∴OA=AD,BD,∴AC=12∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,∵A(3,0),∴D(6,0),∵M(3,4),∴DM==5,∴BD=5﹣1=4,BD=2,即线段AC的最小值为2;∴AC=12故答案为:2.【题型5 圆中角度的计算】【例5】(2022•江宁区校级期中)如图,BD=OD,∠AOC=114°,求∠AOD的度数.【分析】设∠B=x,根据等腰三角形的性质,由BD=OD得∠DOB=∠B=x,再根据三角形外角性质得∠ADO=2x,则∠A=∠ADO=2x,然后根据三角形外角性质得2x+x=114°,解得x=38°,最后利用三角形内角和定理计算∠AOD的度数.【解答】解:设∠B=x,∵BD=OD,∴∠DOB=∠B=x,∴∠ADO=∠DOB+∠B=2x,∵OA=OD,∴∠A=∠ADO=2x,∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.【变式5-1】(2022•汉阳区校级月考)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.【变式5-2】(2022•金牛区期末)如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= 48° .【分析】根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.【解答】解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,(180°﹣84°)=48°,∴∠A=12又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.【变式5-3】(2022•大丰市月考)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O 上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.【分析】点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB 上,点P在OA的延长线上.分这三种情况进行讨论即可.【解答】解:①根据题意,画出图(1),在△QOC中,OC=OQ,∴∠OQC=∠OCP,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×1①,2∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×1②,2在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,把①②代入③得∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQC=(180°﹣∠COQ)×1①,2∵OQ=PQ,∴∠P=(180°﹣∠OQP)×1②,2∵∠AOC=30°,∴∠COQ+∠POQ=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°、20°、100°.【题型6 圆中线段长度的计算】【例6】(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为( )A .B .8C .6D .5【分析】连结CD ,根据直角三角形斜边中线定理求解即可.【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5.故选:D .【变式6-1】(2022•海港区校级自主招生)如图,圆O 的周长为4π,B 是弦CD 上任意一点(与C ,D 不重合),过B 作OC 的平行线交OD 于点E ,则EO +EB = 2 .(用数字表示)【分析】根据圆的周长公式得到OD =2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O 的周长为4π,∴OD =2,∵OC =OD ,∴∠C =∠D ,∵BE ∥OC ,∴∠EBD =∠C ,∴∠EBD =∠D ,∴BE =DE ,∴EO +EB =OD =2,故答案为:2.【变式6-2】(2022•龙湖区校级开学)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,AD <BD ,若CD =2cm ,AB =5cm ,求AD 、AC 的长.【分析】由直径AB =5cm ,可得半径OC =OA =12AB =52cm ,分别利用勾股定理计算AD 、AC 的长.【解答】解:连接OC ,∵AB =5cm ,∴OC =OA =12AB =52cm ,Rt △CDO 中,由勾股定理得:DO =32cm ,∴AD =52−32=1cm ,由勾股定理得:AC ==则AD 的长为1cm ,AC .【变式6-3】(2022秋•邗江区期中)如图,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E 、F ,求EF 的长.【分析】连接OD ,利用三个角是直角的四边形是矩形判定四边形DEOF 是矩形,利用矩形的对角线相等即可得到所求结论.【解答】解:连接OD .∵OC ⊥AB DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.【题型7 圆相关概念的应用】【例7】(2022秋•南岗区校级期中)某中学原计划修一个半径为10米的圆形花坛,为使花坛修得更加美观,决定向全校征集方案,在众多方案中最后选出两种方案:方案A如图1所示,先画一条直径,再分别以两条半径为直径修两个圆形花坛;方案B如图2所示,先画一条直径,然后在直径上取一点,把直径分成2:3的两部分,再以这两条线段为直径修两个圆形花坛;(花坛指的是图中实线部分)(1)如果按照方案A修,修的花坛的周长是 .(保留π)(2)如果按照方案B修,与方案A比,省材料吗?为什么?(保留π)(3)如果按照方案B修,学校要求在5天内完成,甲工人承包了此项工程,甲每天能完成工程的1,他15做了1天后,发现不能完成任务,就请乙来帮忙,乙的速度是甲的2倍,乙加入后,甲的速度也提高了1,结果正好按时完成任务,若修1米花坛可得到10元钱,修完花坛后,甲,乙各得到多少钱?(π取23)【分析】(l)根据圆的周长公式:c=xd,把数据代入公式求此直径是10米的两个圆的周长即可.(2)首先根据圆的周长公式:c=元d,求出直径是4米、和6米的圆的周长和,然后与图1进行比较.(3)求出乙的钱数,再用总钱数﹣乙是钱数,可得结论.【解答】解:(1)10÷2=5(米),2π×5×2=20π(米).故答案为:20π米.=8(米),8÷2=4(米),(2)10×2=20(米),20×223=12(米),12÷2=6(米),20×323方案B花坛周长:2π(4+6)=20π(米),20π=20π,方案B与A周长一样,用的材料一样.×2×(5﹣1)×20π×10=320(元).(3)乙的钱数=115甲的钱数=20π×10﹣320=280(元),答:修完花坛后,甲,乙分别得到320元和280元.【变式7-1】(2022•南岗区期末)一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进( )米.A.51πB.102πC.153πD.204π【分析】首先根据圆的周长公式C=πd,求出前轮的底面圆周长,然后用前轮的底面周长乘每分钟转的周数(6周),求出1分钟前进多少米,再乘工作时间10分钟即可.【解答】解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.【变式7-2】(2022•罗田县校级模拟)一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长 51.81 m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:4÷2=2(cm),7÷2=3.5(cm),胶带的体积是:π(3.52﹣22)•1=8.25πcm3=8.25π×10﹣6(m3),一米长的胶带的体积是:0.01×1×5×10﹣5=5×10﹣7(m3),因而胶带长是:(8.25π×10﹣6)÷(5×10﹣7)≈51.81(m).故答案为:51.81.【变式7-3】(2022•张店区期末)如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点 E .【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010πcm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm 到E点.故答案是:E.。
初中数学人教版九年级上册第二十四章能力测试题含答案
初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE =()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()1/ 45A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的3/ 45最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.5/ 45答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.7/ 45【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,9/ 45图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩形,根据垂径定理,可求得AE与AD的长,然后利用勾股定理即可求得⊙O的半径OA11/ 45长.此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,∴∠AOD=50°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,13/ 45BQ=OB=12CD=2,即PA+PB的最小值为2.故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,15/ 45【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∴∠ABO=30°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?17 / 453、直线和圆的公共点的数目不能超过 ,这是因为 。
人教版九年级数学上册 24.1圆的有关 性质 同步检测题【含答案】
圆24.1 圆的有关性质同步检测题一.选择题(共13 小题)1.已知⊙O 的半径为2,A 为圆内一定点,AO=1.P 为圆上一动点,以A P 为边作等腰△APG,AP=PG,∠APG=120°,OG 的最大值为()A.1+B.1+2C.2+D. 12.如图,AB,BC 是⊙O 的弦,∠B=60°,点 O 在∠B 内,点 D 为AC上的动点,点 M,N,P分别是A D,D C,C B 的中点.若⊙O 的半径为2,则P N+MN 的长度的最大值是()A.1+B.1+2C.2+2D.3.如图,AB 是⊙O 的直径,AB=10,P 是半径O A 上的一动点,PC⊥AB 交⊙O 于点C,在半径O B 上取点Q,使得O Q=CP,DQ⊥AB 交⊙O 于点D,点C,D 位于A B 两侧,连接C D 交A B 于点F,点P从点A出发沿A O 向终点O运动,在整个运动过程中,△CFP 与△DFQ 的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大4.如图,在⊙O 中,弦A B=6,点C是A B 所对优弧上一点,∠ABC=120°,BC=8,点P 为 AB 上方一点,记△PAB 的面积为 S1,△AOB 的面积为 S2,且 S1=12S2,则 OP+PC的最小值为()A .BCD .105.如图,AB 是⊙O 的直径,点 D ,C 在⊙O 上,∠DOC =90°,AD ,BC =1,则⊙O的半径为()A B .2 C .2D .26.如图,在⊙O 中,AB =2CD ,那么()A . 2CD AB >B .2CD AB <C .=2CD ABD .AB 与2CD 的大小关系无法比较 7.如图,BC 是⊙O 的直径,A ,D 是⊙O 上的两点,连接 A B ,AD ,BD ,若∠ADB =70°, 则∠ABC 的度数是( )A.20°B.70°C.30°D.90°8.如图,点A、B、C 是⊙O 上的点,OA=AB,则∠C 的度数为()A.30°B.45°C.60°D.30°或60°9.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC上的点.若∠BOC =500,则∠D 的度数()A.105°B.115°C.125°D.85°10.如图,四边形A BCD 内接于⊙O,连结O A、OC.若∠AOC=∠ABC,则∠D 的大小为()A.50°B.60°C.80°D.120°11.如图,在⊙O 中∠O=50°,则∠A 的度数为()A.50°B.20°C.30°D.25°12.如图,AB 为⊙O 的直径,弦CD⊥OB 于E,且点E为半径O B 的中点,连结A C,则∠A 的度数为()A.20°B.30°C.45°D.60°13.如图,点A、B、C、D 在⊙O 上,OB∥CD.若∠A=28°,则∠BOD 的大小为()A.152°B.134°C.124°D.114°二.填空题(共9小题)14.如图,在⊙O 中,弦B C,DE 交于点P,延长B D,EC 交于点A,BC=10,BP=2CP,若BDAD=23,则D P 的长为.15.如图,△ABC 内接于半径为AB 为直径,点 M 是弧AC的中点,连结 BM交AC 于点E,AD 平分∠CAB 交B M 于点D.(1)∠ADB=°;(2)当点D恰好为B M 的中点时,BC 的长为.16.如图,四边形A BCD 内接于⊙O,∠BOD=120°,则∠DCE=.17.如图,点A,B,C,D 是⊙O 上的四个点,已知∠BCD=110°,格据推断出∠BAD 的度数为70°,则她判断的依据是点.18.如图,⊙O 的半径为2,点A为⊙O 上一点,如果∠BAC=60°,OD⊥弦B C 于点D,那么O D 的长是.19.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是弧AC上的中点,AC=8,OA=5,连接AD、BD,则△ABD 的面积是.20.已知:如图,在△ABC 中,AB=AC,以A B 为直径作圆交B C 于D,交A C 于E.若∠A=84°,则弧AE的度数为.21.如图,点A,B,C,D 是⊙O 上的四个点,点B是弧A C 的中点,如果∠ABC=70°,那∠ADB=.22.如图,MN 为⊙O 的直径,MN=10,AB 为⊙O 的弦,已知M N⊥AB 于点P,AB=8,现要作⊙O 的另一条弦C D,使得C D=6 且C D∥AB,则P C 的长度为.三.解答题(共3小题)23.如图,AB 是⊙O 的直径,点C、D 是⊙O 上的点,且O D∥BC,AC 分别与B D、OD 相交于点E、F.(1)求证:点D为弧AC的中点;(2)若C B=6,AB=10,求D F 的长;(3)若⊙O 的半径为5,∠DOA=80°,点P是线段A B 上任意一点,试求出P C+PD 的最小值.24.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC,BC 的交点分别为D,E,且弧DE=弧BE(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求B D 的长.25.如图,AB 为半圆O的直径,CD 是半圆上两点,AC=2BC,F 在B D 上且C F⊥CD,求证:AD=2BF.。
九年级数学上学期 24.1 圆的有关性质 同步练习卷 含解析
24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。
部编数学九年级上册专题24.1圆的有关性质(基础)(解析版)含答案
专题24.1 圆的有关性质目录圆的认识 (1)圆的相关概念 (3)求相关角度 (4)求相关长度 (6)有关证明 (8)垂径定理的计算 (10)垂径定理的应用 (13)圆周角圆心角相关概念 (18)圆周角与圆心角求角度 (20)圆周角与圆心角求长度 (22)垂径定理的推论 (26)内接四边形 (28)证明综合....................................................................................................................................................31圆的认识【例1】下列结论正确的是( )A .半径相等的两条弧是等弧B .半圆是弧C .半径是弦D .弧是半圆【解答】解:A 、在等圆或同圆中,半径相等的两条弧是等弧,原结论不正确;B 、半圆是弧,原结论正确;C 、半径只有一个端点位于圆上,不是弦,原结论不正确;D、根据半圆的定义可知,半圆是弧,但弧不一定是半圆,原结论不正确;【变式训练1】数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是( )A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”B.车轮做成圆形,应用了“圆是中心对称图形”C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”D.地板砖可以做成矩形,应用了“矩形对边相等”【解答】解:A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“四边形的不稳定性”,故本选项错误,不合题意;B.车轮做成圆形,应用了“圆上各点到圆心的距离相等”,故本选项错误,不合题意;C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故本选项正确,符合题意D.地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故本选项错误,不合题意.故选:C.【变式训练2】下列说法错误的是( )A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.【变式训练3】在平面内与点P的距离为1cm的点的个数为( )A.无数个B.3个C.2个D.1个【解答】解:在平面内与点P的距离为1cm的点的个数为为:所有到定点P的距离等于1cm的点的集合,故选:A.圆的相关概念【例2】已知⊙O的半径是3cm,则⊙O中最长的弦长是( )A.3cm B.6cm C.1.5cm D【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【变式训练1】已知⊙O中最长的弦为12厘米,则此圆半径为 6 厘米.【解答】解:∵直径是圆中最长的弦,⊙O中最长的弦为12厘米,∴⊙O的直径是12厘米.∴⊙O的半径是6厘米.故答案为:【例3】下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有( )A.1个B.2个C.3个D.4个【解答】解:①直径是弦,正确,符合题意;②弦不一定是直径,错误,不符合题意;③半径相等的两个半圆是等弧,正确,符合题意;④能够完全重合的两条弧是等弧,故原命题错误,不符合题意;⑤根据半圆的定义可知,半圆是弧,但弧不一定是半圆,正确,符合题意,正确的有3个,故选:C.【变式训练1】下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A.1个B.2个C.3个D.4个【解答】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)同圆或等圆中相等的圆心角所对的弧相等,故错误;(3)同圆或等圆中劣弧一定比优弧短,故错误;(4)直径是圆中最长的弦,正确,正确的只有1个,故选:A.求相关角度【例4】如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )A.38°B.52°C.76°D.104°【解答】解:∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°﹣2×52°=76°.故选:C.【变式训练1】如图,将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则∠ACO的度数为( )A.150°B.120°C.100°D.60°【解答】解:∵OC=OB,∴∠OCB=∠B=60°,∴∠ACO=180°﹣60°=120°.故选:B.【例5】如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.若∠A=25°,求∠DCE的度数.【解答】解:∵∠C=90°,∠A=25°,∴∠B=90°﹣∠A=65°,∵CB=CD,∴∠CDB=∠B=65°,∵∠CDB=∠DCE+∠A,∴∠DCE=65°﹣25°=40°.【变式训练1】如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O 于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.【解答】解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E ,∴∠E =2∠A ,∴∠DOE =∠A +∠E =3∠A =60°.求相关长度【例6】如图,在△ABC 中,∠C =90°,AB =若以点C 为圆心,CA 长为半径的圆恰好经过AB 的中点D ,则⊙C 的半径为( )A .B .8C .6D .5【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5故选:D .【变式训练1】如图,AB 是⊙O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH ⊥AB ,垂足为H ,点M 是BC 的中点.若⊙O 的半径是3,则MH 长的最大值是( )A.3B.4C.5D.6【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=12 BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.【变式训练2】如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若CD=6,BC=8,则AB的长为( )A.6B.5C.4D.2【解答】解:如图,连接OC.∵四边形OBCD是矩形,∴∠OBC=90°,OB=CD=6,∴OC=OA10,∴AB=OA﹣OB=4,故选:C .【变式训练3】如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为( )A .2B .52C .3D 【解答】解:连接AM ,∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵AC =5,AM =AB =3,∴CM =5﹣3=2,故选:A .有关证明【例7】已知,如图,在⊙O 中,C 、D 分别是半径OA 、BO 的中点,求证:AD =BC .【解答】解:∵OA 、OB 是⊙O 的两条半径,∴AO =BO ,∵C、D分别是半径OA、BO的中点,∴OC=OD,在△OCB和△ODA中,AO=BO∠O=∠O,OD=OC∴△OCB≌△ODA(SAS),∴AD=BC.【变式训练1】已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?【解答】解:AC与BD相等.理由如下:连接OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,OE=OFOC=OD,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC=BD,∴AC=BD.垂径定理的计算【例8】如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的半径为( )A .10B .8C .5D .3【解答】解:连接OC ,∵AB ⊥CD ,AB 过圆心O ,CD =8,∴CP =DP =4,设⊙O 的半径为R ,∵AP =8,∴OP =8﹣R ,在Rt △COP 中,由勾股定理得:CP 2+OP 2=OC 2,即(8﹣R )2+42=R 2,解得:R =5,∴⊙O 的半径为5,故选:C.【变式训练1】如图,CD 是圆O 的弦,直径AB ⊥CD ,垂足为E ,若AB =12,BE =3,则四边形ACBD 的面积为( )A .B .C .D .【解答】解:如图,连接OC ,∵AB =12,BE =3,∴OB =OC =6,OE =3,∵AB ⊥CD ,在Rt △COE 中,EC =∴CD =2CE =∴四边形ACBD 的面积=12AB ⋅CD =12×12×=故选:A .【变式训练2】如图,正方形ABCD 和正方形BEFG 的顶点分别在半圆O 的直径和圆周上,若BG =4,则半圆O 的半径是( )A.4+B.9C.D.【解答】解:连接OC,OF,设OB=x,∵四边形ABCD是正方形且顶点D和C在圆上,∴AB=BC=2x,∠OBC=90°,∵BG=4,四边形BEFG是正方形,∴OE=x+4,EF=BE=BG=4,∠FEB=90°,在Rt△BCO中,OC=,在Rt△FEO中,OF=∵OF=OC,∴5x2=x2+8x+32,解得x=4或x=﹣2(舍去)当x=4时,OC=则半圆O的半径是故选:C.【变式训练3】已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A .1个B .3个C .6个D .7个【解答】解:∵CD 是直径,∴OC =OD =12CD =12×10=5,∵AB ⊥CD ,∴∠AMC =∠AMD =90°,∵AM =4.8,∴OM ==1.4,∴CM =5+1.4=6.4,MD =5﹣1.4=3.6,∴AC =8,AD ==6,∵AM =4.8,∴A 点到线段MD 的最小距离为4.8,最大距离为6,则A 点到线段MD 的整数距离有5,6,A 点到线段MC 的最小距离为4.8,最大距离为8,则A 点到线段MC 的整数距离有5,6,7,8,直径CD 上的点(包含端点)与A 点的距离为整数的点有6个,故选:C .垂径定理的应用【例9】往圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,水的最大深度为16cm ,则圆柱形容器的截面直径为( )cm .A .10B .14C .26D .52【解答】解:如图所示:由题意得,OC⊥AB于D,DC=16cm,∵AB=48cm,∴BD=12AB=12×48=24(cm),设半径为rcm,则OD=(r﹣16)cm,在Rt△OBD中,r2=242+(r﹣16)2,解得r=26,所以2r=52,故选:D.【变式训练1】一装有某种液体的圆柱形容器,半径为6cm,高为18cm.小强不小心碰倒,容器水平静置时其截面如图所示,其中圆心O到液面AB的距离为3cm,若把该容器扶正竖直,则容器中液体的高度为( )A.12πcm B.2πcm C.πcm D.2cm【解答】解:连接OA,OB,如图,根据题意得:OA=6cm,弦心距OC=3cm,∴cos∠AOC=OCOA=36=12,∴∠AOC =60°,则∠AOB =120°,∴AC =,AB =2AC =,∴S 阴影=S 扇形OAB ﹣S △OAB =120π×62360−12××3=cm 2).设把该容器扶正竖直后容器中液体的高度为h (cm ),依题意得:62πℎ=,∴ℎ故选:B .【变式训练2】往直径为78cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =72cm ,则水的最大深度为( )A .36cmB .27cmC .24cmD .15cm【解答】解:连接OA ,过点O 作OD ⊥AB 交AB 于点C 交⊙O 于D .∵OC ⊥AB ,∴AC =CB =36(cm ),∵OA =OB =39cm ,∴OC ==15(cm ),∴CD =39﹣15=24(cm ),故选:C .【变式训练3】如图,某同学测试一个球体在水中的下落速度,他测得截面圆的半径为5cm ,假设球的横截面与水面交于A ,B 两点,AB =8cm .若从目前所处位置到完全落入水中的时间为4s ,则球体下落的平均速度为( )A.0.5cm/s B.0.75cm/s C.1cm/s D.2cm/s 【解答】解:设圆心为O,连接OB,则OB=5,过点O作OC⊥AB,交⊙O于点C,交AB于点D,则BD=12AB=4cm,在Rt△BOD中,OD=3cm,∴CD=OC﹣OD=5﹣3=2cm,∴从目前所处位置到究全落入水中,球体下落的平均速度为2÷4=0.5cm/s.故选:A.【例10】如图所示,某地有一座圆弧形的拱桥,桥下的水面宽度AB为7.2m,拱顶高出水面(CD)2.4m,现有一艘宽EF为3m且船舱顶部为长方形并高出水面1.5m的货船要经过这里,则货船能顺利通过这座拱桥吗?请作出判断并说明理由.【解答】解:货船能顺利通过这座拱桥,理由如下:如图,连接ON、OA.∵OC⊥AB,AB=7.2m,∴AD=12AB=3.6(m),设OB=OC=ON=rm,则OD=(r﹣2.4)m,在Rt△AOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得:r=3.∵CD=2.4m,船舱顶部为正方形并高出水面1.5m,∴CH=2.4﹣1.5=0.9(m),∴OH=3.9﹣0.9=3(m),在Rt△OHN中,HN2=ON2﹣OH2=3.92﹣32=6.21(m2),∴HN=m),∴MN=2HN=m)>3m,∴货船能顺利通过这座拱桥.【变式训练1】诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【解答】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN=∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.圆周角圆心角相关概念【例11】下列说法中,正确的个数为( )(1)在同圆或等圆中,弦相等则所对的弧相等;(2)优弧一定比劣弧长;(3)弧相等则所对的圆心角相等;(4)在同圆或等圆中,圆心角相等则所对的弦相等.A.1个B.2个C.3个D.4个【解答】解:(1)在同圆或等圆中,弦相等则所对的弧相等,错误,弦所对的弧有优弧或劣弧,不一定相等.(2)优弧一定比劣弧长,错误,条件是同圆或等圆中;(3)弧相等则所对的圆心角相等.正确;(4)在同圆或等圆中,圆心角相等则所对的弦相等.正确;故选:B.【变式训练1】下列说法正确的是( )A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦【解答】解:A、同弧或等弧所对的圆心角相等,正确,本选项符合题意;B、所对圆心角相等的弧是等弧,错误,条件是同圆或等圆中,本选项不符合题意;C、弧长相等的弧一定是等弧,错误,条件是同圆或等圆中,本选项不符合题意;D、平分弦的直径必垂直于弦,错误此弦不能是直径,本选项不符合题意.故选:A.【变式训练2】下列说法中,正确的是( )A.同心圆的周长相等B.面积相等的圆是等圆C.相等的圆心角所对的弧相等D.平分弧的弦一定经过圆心【解答】解:A、错误,同心圆的周长不相等,本选项不符合题意.B、正确,本选项符合题意.C、错误,条件是同圆或等圆中,本选项不符合题意.D、错误,平分弧的弦不一定经过圆心,本选项不符合题意.故选:B.【变式训练3】下列说法中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径也平分弦所对的弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线将圆分成两条等弧A.1个B.2个C.3个D.4个【解答】解:①在同圆或等圆中,相等的圆心角所对的弧相等,本小题说法错误;②平分弦(不是直径)的直径也平分弦所对的弧,本小题说法错误;③能够重合的两条弧是等弧,本小题说法错误;④经过圆心的每一条直线将圆分成两条等弧,本小题说法正确;故选:A.圆周角与圆心角求角度【例12】如图,AB是⊙O的直径,∠D=32°,则∠AOC等于( )A.158°B.58°C.64°D.116°【解答】解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.【变式训练1】如图,在⊙O中,AB是弦,C是弧AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的度数为( )A.30°B.40°C.50°D.60°【解答】解:∵OA=OB,∠OAB=25°,∴∠OBA=∠OAB=25°,∴∠AOB=180°﹣∠OAB﹣∠OBA=130°,∵OA=OC,∠OCA=40°,∴∠OAC=∠OCA=40°,∴∠AOC=180°﹣∠OAC﹣∠OCA=100°,∴∠BOC=∠AOB﹣∠AOC=130°﹣100°=30°,故选:A.【变式训练2】如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是( )A.25°B.50°C.65°D.75°【解答】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=23×75°=50°,∵OA=OC,∴∠OAC=∠OCA=12(180°﹣∠AOC)=65°,故选:C.【变式训练3】如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=( )A.100°B.110°C.115°D.120°【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC=12×(360°−130°)=115°.故选:C.圆周角与圆心角求长度【例13】如图,AB是⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AE=2,⊙O的直径为10,则AC长为( )A.5B.6C.7D.8【解答】解:连接OF,如图:∵DE⊥AB,AB过圆心O,∴DE=EF,AD=AF,∵D为弧AC的中点,∴AD=DC,∴ADC=DAF,∴AC=DF,∵⊙O的直径为10,∴OF=OA=5,∵AE=2,∴OE=OA﹣AE=5﹣2=3,在Rt△OEF中,由勾股定理得:EF==4,∴DE=EF=4,∴AC=DF=DE+EF=4+4=8,故选:D.【变式训练1】如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AE=3,⊙O的直径为15,则AC长为( )A.10B.13C.12D.11【解答】解:连接OF,∵DE⊥AB,AB过圆心O,∴DE=EF,AD=AF,∵D为弧AC的中点,∴AD=DC,∴ADC=DAF,∴AC=DF,∵⊙O的直径为15,∴OF=OA=15 2,∵AE=3,∴OE=OA﹣AE=9 2,在Rt△OEF中,由勾股定理得:EF==6,∴DE=EF=6,∴AC=DF=DE+EF=6+6=12,故选:C.【变式训练2】如图,在半径为⊙O中,弦AB,CD互相垂直,垂足为点P.若AB=CD=8,则OP的长为( )A.B.C.4D.2【解答】解:连接OA、OC,过O作OE⊥CD于E,OF⊥AB于F,则∠OFP=∠OEP=∠CEO=∠AFO=90°,∵AB⊥CD,∴∠EPF=90°,∴四边形OFPE是矩形,∴OE=FP,EP=OF,∵OF⊥AB,OF过O,AB=8,∴AF=BF=4,由勾股定理得:OF==2,同理OE=2,即FP=OE=2,在Rt△OFP中,由勾股定理得:OP==故选:B.【变式训练3】如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为( )A.10B.13C.15D.16【解答】解:如图,连接OF.∵DE ⊥AB ,∴DE =EF ,AD =AF ,∵点D 是弧AC 的中点,∴AD =CD ,∴AC =DF ,∴AC =DF =12,∴EF =12DF =6,设OA =OF =x ,在Rt △OEF 中,则有x 2=62+(x ﹣3)2,解得x =152,∴AB =2x =15,故选:C .垂径定理的推论【例14】如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC =BCD .AD =BD【解答】解:∵弦AB ⊥CD ,CD 过圆心O ,∴AM =BM ,AC =BC ,AD =BD,即选项A、C、D都正确,当根据已知条件不能推出CM和DM一定相等,故选:B.【变式训练1】如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是( )A.AE=BE B.OE=DE C.AC=BC D.AD=BD【解答】解:∵AB⊥CD,CD过圆心O,∴AE=BE,AC=BC,AD=BD,不能推出OE=DE,所以选项A、选项C、选项D都不符合题意,只有选项B符合题意;故选:B.【变式训练2】如图,AB是⊙O的直径,弦CD与AB相交于点E.不能推出CE=DE的条件是( )A.AB⊥CD B.AC=AD C.BC=BD D.OE=ED【解答】解:当AB⊥CD时,CE=DE.故A正确;当BC=BD或AC=AD时,CE=DE,故BC都正确;故选:D.【变式训练3】如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD于点E,下列结论:①AC=AD;②BC=BD;③EO=EB;④EC=ED.其中一定成立的是( )A .①③B .①④C .①②④D .①②③④【解答】解:∵AB 是直径,AB ⊥CD ,∴AC =AD ,BC =BD ,EC =DE ,故①②④正确.故选:C .内接四边形【例15】如图,四边形ABCD 是⊙O 的内接四边形,连接OA ,OC .若∠ABC =108°,则∠AOC 的度数为( )A .72°B .108°C .144°D .150°【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠D +∠ABC =180°,∵∠ABC =108°,∴∠D =72°,∴∠BOC =2∠D =144°,故选:C .【变式训练1】如图,四边形ABCD 内接于⊙O ,对角线BD 垂直平分半径OC ,若∠ABD =50°,则∠ADC的大小为( )A.130°B.120°C.110°D.100°【解答】解:设BD交OC于E,连接OD,OA,∵BD垂直平分OC,∴OE=12OC=12OD,∠OED=90°,∴∠ODE=30°,∴∠DOC=90°﹣30°=60°,∵OC=OD,∴△OCD是等边三角形,∴∠ODC=60°,∵∠ABD=50°,∴∠AOD=2∠ABD=100°,∵OA=OD,∴∠ADO=∠OAD=12(180°﹣∠AOD)=40°,∴∠ADC=∠ADO+∠ODC=40°+60°=100°,故选:D.【变式训练2】如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=( )A.85°B.75°C.70°D.65°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.【变式训练3】如图,AB是⊙O的直径,弦CD垂直平分OB,P是AD上一点,则∠APD等于( )A.120°B.125°C.135°D.150°【解答】解:连接OC,AC.∵弦CD垂直平分OB,∴OE=12OB=12OC,∴∠OCD=30°,∴∠COB=60°,∵OA=OC,∴∠BAC=30°,∴∠ACD=60°.∴∠APD=180°﹣60°=120°,故选:A.证明综合【例16】如图,AB为⊙O的直径,CD为弦,CD⊥AB于点E,连接DO并延长交⊙O于点F,连接AF交CD于点G,连接AC,且AC∥DF.(1)求证:CG=AG;(2)若AB=12,求∠CAO和GD的长.【解答】(1)证明:∵AC∥DF,∴∠CDF=∠ACD,∵CF=CF,∴∠CAF=∠CDF,∴∠ACD=∠CAF,∴AG=CG;(2)解:如图,连接CO,∵AB⊥CD,∴AC=AD,CE=DE,∵∠DCA=∠CAF,∴AD=CF,∴AC=AD=CF,∴∠AOD=∠AOC=∠COF,∵DF是直径,∴∠AOD=∠AOC=∠COF=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=AO=6,∠CAO=60°,∵CE⊥AO,∴AE=EO=3,∠ACD=30°,∴CE=DE,∵AG2=GE2+AE2,∴AG2=(AG)2+9,∴AG=∴GE=∴DG=【变式训练1】如图,AB是⊙O的直径,点C在⊙O上,AC=BC,点D是BC的中点,连结OC,AD,交于点E,连结BE,BD.(1)求∠EBA的度数.(2)求证:AE=.(3)若DE=1,求⊙O的面积.【解答】解:(1)连接AC,∵AC=BC,∴∠AOC=∠BOC=90°∴∠CAB=45°,∵点D是BC的中点,∴CD=BD,∴∠CAD=∠EAB=22.5°;(2)由(1)知,OC垂直平分AB,∴AE=BE,∴∠DEB=2∠EAB=45°,∵AB是直径,∴∠D=90°,∴BD=sin45°BE,∴BE=,∴AE=;(3)∵DE=1∴BD=DE=1,∴AE=BE=∴AD=+1,在Rt△ABD中,AD2+BD2=(2OA)2,)2+1=4OA2,∴OA2∴圆的面积为πOA2=一.选择题(共8小题)1.下列说法正确的是( )A .直径是圆中最长的弦,有4条B .长度相等的弧是等弧C .如果A e 的周长是B e 周长的4倍,那么A e 的面积是B e 面积的8倍D .已知O e 的半径为8,A 为平面内的一点,且8OA =,那么点A 在O e 上【解答】解:A 、直径是圆中最长的弦,有无数条,故该选项不符合题意;B 、在同圆或等圆中长度相等的弧是等弧,故该选项不符合题意;C 、如果A e 的周长是B e 周长的4倍,那么A e 的面积是B e 面积的16倍,故该选项不符合题意;D 、已知O e 的半径为8,A 为平面内的一点,且8OA =,那么点A 在O e 上,故该选项符合题意.故选:D .2.小明在半径为5的圆中测量弦AB 的长度,下列测量结果中一定是错误的是( )A .4B .5C .10D .11【解答】解:Q 半径为5的圆,直径为10,\在半径为5的圆中测量弦AB 的长度,AB 的取值范围是:010AB <…,\弦AB 的长度可以是4,5,10,不可能为11.故选:D .3.如图,O e 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE OB =,已知72DOB Ð=°,则E Ð等于( )A .36°B .30°C .18°D .24°【解答】解:如图:CE OB CO ==,得1E Ð=Ð.由2Ð是EOC D 的外角,得212E E Ð=Ð+Ð=Ð.由OC OD =,得22D E Ð=Ð=Ð.由3Ð是三角形ODE D 的外角,得323E D E E E Ð=+Ð=Ð+Ð=Ð.由372Ð=°,得372E Ð=°.解得24E Ð=°.故选:D .4.如图,O e 的直径12AB =,弦CD 垂直AB 于点P .若2BP =,则CD 的长为()A .B .C .D .【解答】解:如图,连接OC ,12AB =Q ,6OC OB \==,2PB =Q ,4OP \=,在Rt OPC D 中,CP ==,CD AB ^Q ,CP DP \=,2CD PC\==.故选:C.5.已知Oe的半径为5,点O到弦AB的距离为3,则Oe上到弦AB所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个【解答】解:过O点作OC AB^,交Oe于P,如图,3OC\=,而5OA=,2PC\=,即点P到直线AB的距离为2;在直线的另一边,圆上的点到直线的最远距离为8,而圆为对称图形,\在直线AB的这边,还有两个点M,N到直线AB的距离为2.故选:B.6.如图所示的是一圆弧形拱门,其中路面2AB m=,拱高3CD m=,则该拱门的半径为( )A.53m B.2m C.83m D.3m【解答】解:如图,取圆心为O ,连接OA ,设O e 的半径为r m ,则OC OA r ==m ,Q 拱高3CD m =,(3)OD r m \=-,OD AB ^,2AB m =Q ,112AD BD AB m \===,222OA AD OD =+Q ,2221(3)r r \=+-,解得:53r =,\该拱门的半径为53m ,故选:A .7.如图,在Rt ACB D 中60ACB Ð=°,以直角边AB 为直径的O e 交线段AC 于点E ,点M 是弧AE 的中点,OM 交AC 于点D ,O e 的半径是6,则MD 的长度为( )A B .32C .3D .【解答】解:90ABC Ð=°Q ,60ACB Ð=°,30A \Ð=°,M Q 为弧AE 的中点,OM 过圆心O ,OM AD \^,90ADO \Ð=°,116322OD OA \==´=,633MD OM OD \=-=-=,故选:C .8.如图,在O e 中,¶¶¶AB BCCD ==,连接AC ,CD ,则AC 与CD 的关系是( )A .2AC CD =B .2AC CD <C .2AC CD >D .无法比较【解答】解:如图,连接AB 、BC ,在O e 中,¶¶¶AB BCCD ==,AB BC CD \==,在ABC D 中,AB BC AC +>.2AC CD \<.故选:B .二.填空题(共4小题)9.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于125p 米,则跑道的宽度为 65 米.【解答】解:设运动场上的小环半径为r 米,大环半径半径为R 米,根据题意得:122()5R r p p -=,解得:65R r -=,即跑道的宽度为65米.故答案为:65.10.大圆的半径是R ,小圆的半径是大圆半径的一半,则大圆面积比小圆面积大 234R p .【解答】解:由题意得,大圆面积为2R p ,小圆面积为21()24R R p p ×=,1344R R R p p p -=,\大圆面积比小圆面积大234R p ,故答案为:234R p .11.我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等分线”,“等分线”被这个平面图形截得的线段叫做该图形的“等分线段”(例如圆的直径就是圆的“等分线段” ).已知等边三角形的边长为4,则它的“等分线段”长度x 的取值范围是 x …【解答】解:如图,①等边三角形的高AD 是最长的“等分线段”,4AD ==;②当//EF BC 时,EF 为最短“等分线段”,此时,21()2EF BC =,即4EF =,解得EF =.所以,它的“等分线段”长x …故答案为:x ….12.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x 轴正方向滚动2022圈(滚动时在x 轴上不滑动),此时该圆圆心的坐标为 (40441,1)p + .【解答】解:如图,点(1,1)P ,点(1,0)A ,该圆向x 轴正方向滚动2022圈,点A 移动过的距离为2120224044p p ´´=,这点到原点O 的距离为40441p +,因此点P 的对应点的坐标为(40441,1)p +,故答案为:(40441,1)p +.三.解答题(共3小题)13.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于(r r 为常数),到点O 的距离等于r 的所有点组成图形G ,ABC Ð的平分线交图形G 于点D ,连接AD ,CD .求证:AD CD =.【解答】证明:根据题意作图如下:BD Q 是圆周角ABC 的角平分线,ABD CBD \Ð=Ð,\¶¶AD CD =,AD CD \=.14.如图,O e 的半径OC AB ^,D 为¶BC上一点,DE OC ^,DF AB ^,垂足分别为E 、F ,3EF =,求直径AB 的长.【解答】解:OC AB ^Q ,DE OC ^,DF AB ^,\四边形OFDE 是矩形,3OD EF \==,6AB \=.15.已知:如图,BD 、CE 是ABC D 的高,M 为BC 的中点.试说明点B 、C 、D 、E 在以点M 为圆心的同一个圆上.【解答】证明:连接ME 、MD ,BD Q 、CE 分别是ABC D 的高,M 为BC 的中点,12ME MD MC MB BC \====,\点B 、C 、D 、E 在以点M 为圆心的同一圆上.。
初中数学人教版九年级上册第二十四章能力测试题含答案
初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE=()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩AE AD OA此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,BQ=OB=1CD=2,即PA+PB的最小值为2.2故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,∴DB平分∠ADC.【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?3、直线和圆的公共点的数目不能超过,这是因为。
九年级数学上册 圆24.1圆的有关性质24.1.2垂直于弦的直径同步检测含解析
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④2.(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是( )A.3B.2.5C.2D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为( )A.不受影响B.1 hC.2 hD.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5.(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6.如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24.1.2 垂直于弦的直径一、选择题1.答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.2.答案 C 连接OA,设CD=x,∵OA=OC=5,∴OD=5-x,∵OC⊥AB,AB=8,∴由垂径定理可知AD=AB=4,由勾股定理可知52=42+(5-x)2,∴x=2(x=8舍去),∴CD=2.故选C.3.答案 C 如图,假设D、E为刚好受影响的点,过A作AC⊥BE于点C,连接AE、AD,可得出AE=AD=50 km,∵∠ABE=45°,∠ACB=90°,AB=40km,∴AC=BC=40 km,在Rt△ADC中,AD=50km,AC=40 km,∴根据勾股定理得DC==30 km,∴ED=2DC=60 km,又台风速度为30km/h,∴该岛受到台风影响的时间为60÷30=2(h).故选C.二、填空题4.答案 5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.5.答案4≤OP≤5解析如图:连接OA,过O作OM⊥AB于M,∵☉O的直径为10,∴半径为5,∴OP的最大值为5.∵OM⊥AB,∴AM=BM,∵AB=6,∴AM=3.在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.三、解答题6.解析(1)∵☉O的半径是5,∴OC=5,∵CD=1,∴OD=OC-CD=5-1=4.(2)如图,连接AO,∵OC⊥AB,∴AB=2AD,在Rt△OAD中,根据勾股定理得AD===3,∴AB=6,因此弦AB的长是6.7.解析设直径CD的长为2x寸,则半径OC=x寸, ∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2, 解得x=13,∴CD=2x=2×13=26(寸).答:CD的长为26寸.。
24.1圆的有关概念及性质测试题)
, 2B .3cm5 题 7 题,圆第一节测试题 (圆有关概念及性质 )姓名分数 .一、 选择题(每小题 4 分,共 32 分)1、李沫沫想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是()CAD B(2 小题)2、如图 2,在Rt △ A BC 中,∠C =90°, AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过 AB 的中点 D ,则 BC 的长等于().A .5B . 5 3C . 5 2D .63、已知:如图 3,⊙O 的半径为 5,AB 所对的圆心角为 120°,则弦 AB 的长是()A.. 2 3cmB. 5 3C.5D.84、下列判断中正确的是() (A )平分弦的直径垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦5 、如 图, AB 是⊙ O 的 直径 ,弦 CD ⊥ AB 于点E ,∠CDB = 30°⊙O 的半径为 3cm , 则弦 CD 的 长为().A . 3cmC . 2 3cmD . 9cmCAOE B9 题图D8 题图6.AB 是⊙O 的弦,∠AOB =80°则弦 AB 所对的圆周角是( )。
A .40° B.140°或 40° C .20° D.20°或 160°7.如图,边长为 12 米的正方形池塘的周围是草地,池塘边 A 、B 、C 、D 处各有一棵树,且 AB=BC=CD=3 米.现用 长 4 米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。
A . A 处 B . B 处 C .C 处 D .D 处8、如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°二、填空题(每小题 4 分,共 28 分) 9、某公园的一石拱桥是圆弧形(劣弧),其跨度为 24 米,拱的半径为 13 米,则拱高为_____.10、已知一个直角三角形的面积为 12cm 2,周长为 12 cm ,那么这个直角三角形外接圆的半径是______cm. △11、如图,在 ABC 中,AB 是⊙O 的直径,∠B =60°,∠C =70°,则∠BOD 的度数是________. △12、如图, ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =50°,则∠D =_ _____. 13、如图, △ A BC 内接于⊙O , AB = BC , ∠ABC = 120° AD 为⊙O 的直径, AC = 6 ,那么 BD =.最新试卷 word 电子文档-可编辑14、平面上一点P到⊙O上一点的距离最长6cm,最短为2cm,则⊙O的半径为_______cm.15、如图,已知AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠DBE=______.DOA CB16题图9题15题11题13题三、解答题(每小题10分,共40分)16、如图24—A—13,AD、BC是⊙O的两条弦,且AD=BC.求证:AB=CD。
专题24.1圆的有关性质(测试)(解析版)
专题 24.1 圆的相关性质(测试)一、单项选择题1.以下各角中,是圆心角的是()A.B.C.D.【答案】 D【分析】极点在圆心,两边和圆订交的角是圆心角,选项 D 中,是圆心角,应选 D.2.一个周长是 l 的半圆,它的半径是()A .l B.2l C.l 2 D.l 1【答案】 C【分析】半圆的周长为半径的倍加上半径的 2 倍,因此一个周长是l 的半圆,它的半径是l 2 ,因此选 C. 3.如图, AB, AC 分别是⊙ O 的直径和弦,OD AC 于点D,连结BD,BC,且 AB 10, AC8 ,则BD 的长为()A.25B.4C.213D.【答案】 C【分析】∵ AB 为直径,∴ACB 90 ,∴BC AB 2 AC 2 10 2 82 6,∵ OD AC ,∴ CD AD 14 ,AC2.在 Rt CBD 中,BD42 62 2 13应选 C.4.如图,AB是O 的弦, OC AB 交O 于点 C ,点D是O 上一点,ADC 30 ,则BOC 的度数为().A . 30°B. 40°C.50°D. 60°【答案】 D【分析】解:如图,∵ADC 30 ,∴AOC 2 ADC 60 .∵ AB是O的弦, OC AB交O于点 C,∴.AC BC∴AOC BOC 60 .应选: D..5.如图,有一圆形展厅,在其圆形边沿上的点 A 处安装了一台监督器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边沿上共安装这样的监督器()台.A.3B. 4C.5D.6【分析】设需要安装n( n 是正整数)台相同的监控器,由题意,得:65°×2×n≥360°,解得 n≥36,∴起码要安装 3 台这样的监控器,才能监控整个展厅.应选:A.136.如图,一条公路的转弯处是一段圆弧,点 O 是这段弧所在圆的圆心,AB 40m ,点 C 是AB的中点,且 CD 10m,则这段弯路所在圆的半径为()A .25m B.24m C.30m D.60m【答案】 A【分析】解:OC AB,AD DB20m ,在 Rt AOD 中,OA2 OD 2 AD2,设半径为 r 得:r2 r2202,10解得: r25m ,这段弯路的半径为25m应选: A.7.若AB和CD的度数相等,则以下命题中正确的选项是()A.AB = CDB.AB和CD的长度相等C.AB所对的弦和CD 所对的弦相等D.AB所对的圆心角与CD 所对的圆心角相等【答案】 D【分析】如图,AB 与CD的度数相等,A、依据度数相等,不可以推出弧相等,故本选项错误;B、依据度数相等,不可以推出两弧的长度相等,故本选项错误;C、依据度数相等,不可以推出所对应的弦相等,故本选项错误;D、依据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;应选 D.8.如图, C、D 为半圆上三均分点,则以下说法:①AD =CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD = OC;④△ AOD 沿 OD 翻折与△COD 重合.正确的有()A.4 个B.3个C.2 个D.1 个【答案】 A【分析】∵ C、D 为半圆上三均分点,∴ ???,故①正确,AD CD BC∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD = CD = OC,∠ AOD= ∠ DOC= ∠ BOC=60°,故②③正确,∵OA=OD=OC=OB ,∴△ AOD ≌△ COD ≌△ COB ,且都是等边三角形,∴△ AOD 沿 OD 翻折与△COD 重合.故④正确,∴正确的说法有:①②③④共 4 个,应选 A.9.以下说法:①优弧必定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点能够作无数条弦;⑤经过圆内必定点能够作无数条直径.A.1 个B.2个C.3 个D.4 个【答案】 C【分析】解:在同圆或等圆中,优弧必定比劣弧长,因此①错误;面积相等的两个圆半径相等,则它们是等圆,因此②正确;能完整重合的弧是等弧,因此③错误;经过圆内一个定点能够作无数条弦,因此④正确;经过圆内必定点能够作无数条直径或一条直径,因此⑤错误.应选: C.10.如下图,AB 是半圆 O 的直径。
人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
人教版九年级数学上册24.1圆的有关性质训练题(含知识点)
24.1 圆的有关性质 姓名1.如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( ). A .CE=DE B .BC BD = C .∠BAC=∠BAD D .AC>AD2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )A .AB ⊥CD B .∠AOB=4∠ACDC .AD BD = D .PO=PD 4.下列命题中,真命题的个数为( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个 5.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对 6.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A.AB =2CD B.AB >CD C.AB <2CD D.不能确定7.如图,⊙O 中,如果AB =2AC ,那么( )A .AB=ACB .AB=AC C .AB<2ACD .AB>2AC8.如图,A, B, C, D 是同一个圆上的顺次四点,则图中相等的圆周角共有( ) A.2对 B.4 对 C.8 对 D.16对9.如图,MN 是半圆O 的直径,K 是MN 延长线上一点,直线KP 交半圆于点Q ,P .若∠K=200,∠PMQ =400,则∠MQP 等于( )A. 300B. 350C. 400D . 50010.如图,△ABC 是⊙O 的内接三角形,且AB ≠AC ,∠ABC 和∠ACB 的平分线分别交⊙O 于点D, E ,且BD=CE ,则∠A 是( )A.300B.450C.600D.90011.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个12.如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.13.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______. 14.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____.15.如图,A, B, C, D 是⊙O 上的点,已知∠1=∠2,则与AD 相等的弧是 ,与BCD 相等的弧是 ,于是AD= , BD= . 16.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求BE 的度数和EF 的度数.7题 8题1题 2题 3题9题 10题 11题 12题14题 15题 16题17.如图, AB是⊙O的直径,C, D是AB上的点,且AC=BD; P,Q是⊙O上在AB同侧的两点,且AP BQ=,延长PC, QD分别交⊙O于点M, N.求证:AM BN=.18.如图,Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB、AD的长。
人教版 九年级数学上册 24.1 圆的概念和性质专项练习(包含答案)
圆的概念和性质专项练习【例1】 判断题:(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆 ( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等 ( ) (7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧 ( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R ( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√.【举一反三】如图,在两半径不同的同心圆中,''60AOB A OB ∠=∠=︒,则( )A .''AB A B = B .''AB A B >C .AB 的度数=''A B 的度数D .AB 的长度=''A B 的长度【解析】因为在圆中,圆心角的度数与它所对的弧的度数相等,而''60AOB A OB ∠=∠=︒,所以AB 的度数=''A B 的度数.所以答案是C .【答案】C【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【解析】连结OM OD OA 、、由矩形对角线相等可知OM NH c OD EF b OA BC a ======,,, 又OM OD OA ==,ON MHG FE DC B A∴a b c ==. 选B .【答案】B【举一反三】如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.【解析】如图,连两条半径由已知小正方形半径为4cm ,设大正方形半径为2x则()222544x x =++,整理得2280x x --=解得1242x x ==-,(舍去) ∴大正方形半径为8cm则半圆的半径为.【答案】【例3】 如图①,,,,为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,,,,,为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【解析】略【答案】(1),,如图①(提示:答案不惟一,过与交点O 的任意直线都能将四个圆分成面积相等的两部分);1O 2O 3O 4O 1O 2O 3O 4O 5O 图1图1图2图21O 3O 31O O 42O O(2),,如图②(提示:答案不惟一,如,,,等均可).二、圆的性质定理1. 圆周角定理【例4】 如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是( )A .40︒B .45︒C .50︒D .80︒【解析】略 【答案】A .【举一反三】如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.【解析】略 【答案】40︒.【例5】 如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.【解析】略 【答案】45︒【例6】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.5O O 4AO 3DO 2EO 1CO PO BA【解析】()117040152∠=︒-︒=︒【答案】略【举一反三】如图,量角器外缘边上有A P Q,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ∠的大小为()A.10︒B.20︒C.30︒D.40︒【解析】考察同弧所对圆心角是圆周角的2倍.答案选B.【答案】B【例7】如图,O⊙是ABC∆的外接圆,已知60B∠=︒,则CAO∠的度数是()A.15︒B.30︒C.45︒D.60︒【解析】略【答案】B【举一反三】如图,AB是O的直径,CD是⊙O的弦,连接AC AD,,若35CAB∠=︒,则ADC∠的度数为.【解析】直径所对圆周角是90︒且同弧所对圆周角相等.所以得55︒.【答案】55︒【例8】如图所示的半圆中,AD是直径,且32AD AC==,,则sin B的值是________.【解析】略.DCAB【举一反三】如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.【解析】略 【答案】1【例9】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.【解析】连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【答案】54︒.【举一反三】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且A B O C =,求A ∠的度数.【解析】连结OB∵AB OC =,OBOC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,EEDD∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【答案】29︒.【例10】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【解析】()136018022mD E m ∠+∠=︒-=︒- 【答案】1802m ︒-【举一反三】如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.【答案】40︒【例11】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4C. D.5【解析】如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB =,所以半径为OA OB ==【答案】【举一反三】如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠=︒=,,则O ⊙的半径O PFEDCBA BABA为______cm .【解析】连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【答案】2【举一反三】如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD 的长.【解析】延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在Rt BCE ∆中,BE =,∴BD DE ==,∴AD =.【答案】【例12】 如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=.(1)当35α=︒时,求β的度数;(2)猜想α与β之间的关系,并给予证明.【答案】(1)解:连接OB ,则OA OB =,∴35OBA OAB ∠=∠=︒.∴180110AOB OAB OBA ∠=︒-∠-∠=︒.∴1552C AOB β=∠=∠=︒.(2)答:α与β之间的关系是90αβ+=︒.证一:连接OB ,则OA OB =.OBA OAB α∴∠=∠=. ∴1802AOB α∠=︒-.∴11(1802)9022C AOB βαα=∠=∠=︒-=︒-.∴90αβ+=︒.证二:连接OB ,则OA OB =. ∴22AOB C β∠=∠=.过O 作OD AB ⊥于点D ,则OD 平分AOB ∠.∴12AOD AOB β∠=∠=.在Rt AOD △中,90OAD AOD ∠+∠=︒, ∴90αβ+=︒证三:延长AO 交O 于E ,连接BE , 则E C β∠=∠=.∵AE 是O 的直径,∴90ABE ∠=︒. ∴90BAE E ∠+∠=︒,∴90αβ+=︒.【举一反三】如图,O ⊙与P ⊙相交于B 、C 两点,BC 是P ⊙的直径,且把O ⊙分成度数比为12∶的两条弧,A 是BmC 上的动点(不是B 、C 重合),连结AB 、AC 分别交P ⊙于D 、E 两点.(1)当ABC ∆是钝角三角形时,判断PDE ∆的形状. (2)当ABC ∆是直角三角形时,判断PDE ∆的形状.(3)当ABC ∆是锐角三角形时,判断PDE ∆的形状.这种情况加以证明.【解析】三种情况下,PDE ∆的形状都是等边三角形.如图,连结CD ,显然30ACD ∠=︒,所以PDE ∆是等边三角形.【答案】PDE ∆是等边三角形【例13】 圆1S 及2S 相交于点A 及B .圆1S 的圆心O 落在2S 的圆周上,圆1S 的弦AC 交2S 于点D (如图),证明:线段OD 与BC 是互相垂直的.【答案】作线段AB 、OB 及OC .这时有BAD BOD ∠=∠,另一方面有12BAD BOC ∠=∠,ABC D OS 1S 2S 2S 1OD C B A所以12BOD BOC ∠=∠,即BOD DOC ∠=∠,而BO CO =,故OD BC ⊥.【举一反三】两圆相交于A 、B ,P 是大圆O 上一点,过A 、P 和B 、P 分别作直线交小圆于C 、D ,过O 、P 作直径PE .求证:PE CD ⊥【答案】证法一:设直线CD 交大圆于F ,连接BA 并延长,则CAB CDB PDF ∠=∠=∠,∴12m DPO BE ∠,()12m PDF CAB AP AB ∠=∠=+.∴()119022m m DPO PDF BE AP AB PABE ∠+∠=++==︒,∴CD PE ⊥.证法二:如图,设CD 交圆O 于G 、F ,连接AB 、PG 、BG , 则ACD ABD ∠=∠.APG ABG ∠=∠.∴ACD APG ABD ABGJ GBP ∠+∠=∠+∠=∠. 而PGF ACD APG ∠=∠+∠, ∴PGF GBP ∠=∠.∴PF PG =,∴PE CD ⊥.证法三:如图,设CD 交圆O 于G 、F ,连接BA 并延长.∵CDB CAB ∠=∠,又()12m CDB BG PF ∠=+.()()1122m CAB PA AG BG PG BG ∠++=+,∴PF PG =.∴PE CD ⊥.【例14】 如图,已知AB 是O ⊙的直径,点C 是O ⊙上一点,连结BC AC 、,过点C 作直线CD AB ⊥于点D ,点E 是AB 上一点,直线CE 交O ⊙于点F ,连结BF ,与直线CD 交于点G .求证:2BC BG BF =⋅.PG FEDCBAE FCOD G BAPEPABG D OCF【答案】解法一:连结AF∵AB 是直径,∴90ACB AFB ∠=∠=︒,∵CD AB ⊥,∴2BC BD AB =⋅,90BDG ∠=︒∴BDG BFA ∆∆∽,∴BD BGBF BA=, ∴BG BF BD BA ⋅=⋅, ∴2BC BG BF =⋅.解法二:延长AG 交O ⊙于H ,∵AG BD ⊥,且BD 是直径,∴AB BH =, ∴BAG C ∠=∠,∵ABG CBA ∠=∠,∴ABG CBA ∆∆∽, ∴AB BG CB BA=,即2AB BG BC =⋅.【举一反三】如图,已知:在O ⊙中,直径4AB =,点E 是OA 上任意一点,过E 作弦CD AB ⊥,点F 是BC 上一点,连接AF 交CE 于H ,连接AC CF BD OD 、、、. ⑴ 求证:ACH AFC ∆∆∽;⑵ 猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; ⑶ 探究:当点E 位于何处时,:1:4AEC BOD S S ∆∆=?并加以说明.【解析】⑴ ∵AB 是直径,且AB CD ⊥,∴AC AD =,∴AFC ACD ∠=∠,∵CAH FAC ∠=∠,∴ACH AFC ∆∆∽. ⑵ AH AF AE AB ⋅=⋅解法一:由⑴ACH AFC ∆∆∽可得:2AC AH AF =⋅, 连结BC ,∵C 在O ⊙上,∴90ACB ∠=︒, 又CD AB ⊥,∴2AC AE AB =⋅, ∴AH AF AE AB ⋅=⋅. 解法二:连结FB∵F 在O ⊙上,∴90AFB ∠=︒,又EAH FAB ∠=∠,∴AEH AFB ∆∆∽,∴AE AHAF AB=,即AH AF AE AB ⋅=⋅. ⑶ 12AEC S AE CE ∆=⋅,12BOD S BO DE ∆=⋅,∵:1:4AEC BOD S S ∆∆=,∴112142AEC BOD AE CE S AE S BO BO DE ∆∆⋅===⋅,∵4AB =,∴122OB AB ==, ∴1142AE OB ==,∴当12AE =时,:1:4AEC BOD S S ∆∆=.【答案】见解析【例15】 如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB AC AE ==.请你说明以下各式成立的理由:(1)2CAD DBE ∠=∠;(2)22AD AB BD DC -=⋅.【解析】(1)如图,连接BC ,∵AB AC AE ==, ∴52∠=∠,236∠+∠=∠. 又45623∠+∠=∠=∠+∠, ∴43∠=∠.而143∠=∠+∠,∴124∠=∠.即2CAD DBE ∠=∠. (2)设BC 与AD 的交点为G , ∵25∠=∠,BAG DAB ∠=∠,∴BAG DAB ∆∆∽,∴2AB AG AD =⋅. ∴222AD AB AD AG AD -=-⋅ ()AD AD AG =-AD DG =⋅.又∵5ADC ∠=∠,1DBG ∠=∠, ∴BDG ADC ∆∆∽. ∴DB DG AD DC=,AD DG BD DC ⋅=⋅. ∴22AD AB BD DC -=⋅.【举一反三】在ABC ∆中,60ABC ∠=︒,点O 、H 分别是ABC ∆的外心、垂心.点D 、E分别在边BC 、AB 上,使得BD BH =,BE BO =,已知1BO =.求B D E ∆的面积.【解析】如图,作ABC ∆外接圆的直径AF ,联结CF 、BF 、CH . 因为BH AC ⊥,FC AC ⊥, 所以,BH FC ∥. 同理,CH FB ∥.E DC BAG654321A BCDE 图 12HOFE DCBA故四边形BHCF 是平行四边形.又因FO CO =,60AFC ABC ∠=∠=︒ 所以,FOC ∆是正三角形.于是,BD BH CF CO BO BE =====. 故BDE ∆也是正三角形.由已知1BO =,知BDE S ∆=。
圆的有关概念及性质练习卷
圆的有关概念练习题(一)练习1 圆【练习题】1. 要确定一个圆,需要知道_________和___________.2.到定点O的距离等于2cm 的点的集合是以_________为圆心,_________为半径的圆.3. 在同圆中,如果B A=2D C ,那么弦AB 、CD 的关系为AB____2CD.4.正方形ABCD 的边长为1,以A 为圆心,1为半径做⊙A ,则点B 在⊙A ________,C 点在⊙A ________,D 点在⊙A ________.5、 A、B是半径为2的⊙O 上不同两点,则AB 的取值范围是_________6、圆是轴对称图形,它有____条对称轴,是_________直线;圆还是中心对称图形,对称中心是_____7、 弧分为_________,_________,_________8、 一个圆的最长弦长为10cm ,则此圆的半径是_________ 9、 判断:(1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧,但弧不一定是半圆.( )(4)半径相等的两个半圆是等弧.( ) (5)长度相等的两条弧是等弧.( ) (6)周长相等的圆是等圆.( ) (7)面积相等的圆是等圆.( )。
(8)优弧一定比劣弧长。
( ) 10.如图,半圆的直径AB =___ .11.如图(1)若∠A =40°,则∠ABO =______,∠C =______, ∠ABC =______.12.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,则∠C=______,∠AOC=______.第10题13.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP =6厘米时,点A 与⊙O 的位置关系是( ) A.点A 在⊙O 内B.点A 在⊙O 上C.点A 在⊙O 外D.不能确定14.过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm15.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( ) A 、AB ⊥CD B 、∠AOB =4∠ACD C 、D 、PO =PD16.如图所示,以O 为圆心的两个同心圆中,小圆的弦AB 的延长线交大圆于C ,若AB =3,BC =1,则与圆环的面积最接近的整数是( ) A.9B.10C.15D.13D(第13题) (第14题) (第15题)17.下图中BOD ∠的度数是( )A 、550B 、1100C 、1250D 、15018.已知:如图,在同心圆中,大圆的弦AB 交小圆于C ,D 两点. (1)求证:∠AOC =∠BOD ;(2)试确定AC 与BD 两线段之间的大小关系,并证明你的结论.19、如图:AB、AC是⊙O的两条弦,且AB=AC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆第一节测试题(圆有关概念及性质)
姓名 分数 .
一、 选择题(每小题4分,共32分)
1、李沫沫想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是( )
(2小题)
2、如图2,在Rt ABC △中,C ∠=90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则BC 的长等于( ).A .5
B .53
C .52
D .6
3、已知:如图3,⊙O 的半径为5,AB 所对的圆心角为120°,则弦AB 的长是( ) A..23cm B. 53 C.5 D.8
4、下列判断中正确的是( )
(A )平分弦的直径垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦
5、如图,AB O 是⊙的直径,弦303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为,则弦CD 的长为( ).A .3
cm 2
B .3cm
C .23cm
D .9cm
9题图
6.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。
A .40° B.140°或40° C .20° D.20°或160°
7.如图,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。
A . A 处 B . B 处 C .C 处 D .D 处
8、如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°
二、填空题(每小题4分,共28分) 9、某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.
10、已知一个直角三角形的面积为12cm 2,周长为12 cm ,那么这个直角三角形外接圆的半径是______cm. 11、如图,在△ABC 中,AB 是⊙O 的直径,∠B =60°,∠C =70°,则∠BOD 的度数是________. 12、如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =50°,则∠D =_ _____.
13、如图,ABC △内接于O ⊙,AB BC =,120ABC ∠=°,AD 为O ⊙的直径,6=AC ,那么BD = .
B
C
D
A
5题
C
A
B O
E
D
8题图
7题
14、平面上一点P 到⊙O 上一点的距离最长6cm ,最短为2cm ,则⊙O 的半径为_______cm. 15、如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠DBE =______.
三、解答题(每小题10分,共40分)
16、如图24—A —13,AD 、BC 是⊙O 的两条弦,且AD=BC.
求证:AB=CD 。
17. 如图所示,圆O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠CEA=30°,求CD 。
A
C
F
O
E
B D
18、 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。
9题 16题图
O
D
C
B A
11题
13题 15题 12题
图24—A —13
600
19、如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;
A
B
C
D
O。