沈阳二中2020-2021学年度上学期高一数学期中考试

合集下载

2020-2021沈阳市高三数学上期中模拟试卷含答案

2020-2021沈阳市高三数学上期中模拟试卷含答案

2020-2021沈阳市高三数学上期中模拟试卷含答案一、选择题1.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭2.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-3.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--4.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.5.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .86.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40377.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .98.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .29.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-10.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13711.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 412.已知正项数列{}n a*(1)()2n n n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________14.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L ,且13k a =,则k =_________.15.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________17.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.18.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c,cos23C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .19.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 20.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 .三、解答题21.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.22.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.23.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T .24.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 25.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值. 26.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =,∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .2.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.3.B解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.D解析:D【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.6.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.7.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.8.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.9.C解析:C 【解析】 【分析】由已知条件计算出等差数列的公差,然后再求出结果 【详解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C . 【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础10.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.11.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2, ∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.12.B解析:B【解析】【分析】()()1122n n n n+-=-的表达式,可得出数列{}n a的通项公式.【详解】(1)(1),(2)22n n n nn n+-=-=≥1=,所以2,(1),nn n a n=≥=,选B.【点睛】给出n S与n a的递推关系求n a,常用思路是:一是利用1,2n n na S S n-=-≥转化为na的递推关系,再求其通项公式;二是转化为n S的递推关系,先求出n S与n之间的关系,再求n a. 应用关系式11,1{,2nn nS naS S n-==-≥时,一定要注意分1,2n n=≥两种情况,在求出结果后,看看这两种情况能否整合在一起.二、填空题13.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发解析:20462047-【解析】【分析】对于()()11132n nn na a-+-+=⋅,当n=1,代入得2a=-4,依次得345a=10a=-22a=46...,,发现规律,利用()()112121nn n nab++=--,求出10S.【详解】由()()11132n nn na a-+-+=⋅,当n=1,代入得2a=-4,依次得23456 34567a=32-2a=-32+2a=32-2a=-32+2a=32-2...⨯⨯⨯⨯⨯,,,,发现规律,利用()()112121nn n nab++=--,得b1=-43,234510224694b=b=-b=b=-...3771515313163⨯⨯⨯⨯,,,,求出1020462047S=-.故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.14.18【解析】观察下标发现4710成等差数列所以同理解析:18 【解析】471017a a a ++=,观察下标发现4,7,10成等差数列,所以74710317a a a a =++=,7173a ∴=同理94561213141177a a a a a a a =++++++=L ,97a ∴=423d ∴=,23d =91376k a a -=-=2693÷=9918k ∴=+=15.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++; 【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;16.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13- 【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果.【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.17.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题解析:-4 【解析】 【分析】根据已知可得6n n b b +=,即可求解. 【详解】121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.故答案为:-4 【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.18.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的解析:5【解析】试题分析:5cos2C=,21cos2cos129CC=-=,45sin C=,cos cos2a Bb A c+==,外接圆直径为952sincRC==,由图可知,当C在AB垂直平分线上时,面积取得最大值.设高CE x=,则由相交弦定理有951x x⎛⎫-=⎪⎪⎝⎭,解得5x=,故最大面积为15522S=⋅⋅=.考点:解三角形.【思路点晴】本题主要考查解三角形、三角函数恒等变换、二倍角公式、正弦定理,化归与转化的数学思想方法,数形结合的数学思想方法.一开始题目给了C的半角的余弦值,我们由二倍角公式可以求出单倍角的余弦值和正弦值.第二个条件cos cos2a Bb A+=我们结合图像,很容易知道这就是2c=.三角形一边和对角是固定的,也就是外接圆是固定的,所以面积最大也就是高最大,在圆上利用相交弦定理就可以求出高了.19.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题解析:1941【解析】【分析】由等差数列的性质和求和公式可得原式1111ST=,代值计算可得.【详解】∵{a n},{b n}为等差数列,∴939393657846666222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴661941a b =, 故答案为1941. 【点睛】本题考查等差数列的性质和求和公式,属基础题.20.【解析】试题分析:方程组无解等价于直线与直线平行所以且又为正数所以()即取值范围是考点:方程组的思想以及基本不等式的应用 解析:(2,)+∞【解析】试题分析:方程组无解等价于直线1ax y +=与直线1x by +=平行,所以1ab =且1a b ≠≠.又a ,b为正数,所以2a b +>=(1a b ≠≠),即+a b 取值范围是(2,)+∞.考点:方程组的思想以及基本不等式的应用.三、解答题21.(1)1665;(2)83. 【解析】 【分析】(1)直接利用三角函数关系式的恒等变换求得结果;(2)利用正弦定理和三角形的面积公式求出结果. 【详解】(1)在ABC V 中,A B C π++=,由5cos 13A =-,2A ππ<<,得12sin 13A =, 由3cos 5B =,02B π<<,得4sin 5B =. 所以()16sin sin sin cos cos sin 65C A B A B A B =+=+=; (2)由正弦定理sin sin AC BCB A=, 解得:sin 13sin 3BC B AC A ⋅==,所以ABC V 的面积:1113168sin 5223653S BC AC C =⋅⋅⋅=⋅⋅⋅=.【点睛】本题考查的知识点:三角函数关系式的恒等变换,三角形内角和定理,正弦定理的应用,三角形面积公式的应用及相关的运算问题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答。

辽宁省沈阳二中2020学年度高一数学(11届)上学期12月月考试题

辽宁省沈阳二中2020学年度高一数学(11届)上学期12月月考试题

辽宁省沈阳二中2020学年度高一数学(11届)上学期12月月考试题辽宁省沈阳二中2020学年度高一(11届)上学期12月月考数学试题命题人:郭运江审校人:任庆柱说明:1.测试时间:120分钟总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷(共60分)一、选择题(本大题共12小题,每小题5分共计60分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号涂在答题卡上)1. 设集合A 和B 都是自然数集合N ,映射B A f ?→?:把集合A 中的元素n 映射到集合B 中的元素n n+2,则在映射下象20的原象是()A. 2B. 3C. 4D. 5 2.下列命题中错误的是()A. 若//,,m n n m βα⊥?,则αβ⊥ B. 若α⊥β,a ?α,则a ⊥β C. 若α⊥γ,β⊥γ,l αβ=I ,则l ⊥γD. 若α⊥β,αI β=AB ,a //α,a ⊥AB ,则a ⊥β3.下面有四种说法:(1)底面是各边相等的四边形的直四棱柱是长方体(2) 如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;(3)对角线相等的平行六面体是长方体(4) 如果一个几何体的三视图是完全相同的,则这个几何体是正方体其中正确的个数是……………………………………………………………………() A. 0 B. 1 C.2D.34.函数()112x f x -??= ?的单调增区间是 ( ).A (1,∞-] .B [1,)∞+ .C (1,-∞-] .D [-1,)∞+ 5.设21)(2++=x x x f 的定义域是[,1],()n n n N ++∈试判断)(x f 的值域中共有( )个整数。

22.+n A 12.+n B n C 2. 12.-n D6. 对于01a <<,给出下列四个不等式①1log (1)log (1)a a aa+<+;②1log (1)log (1)a a a a +>+;③111aaaa ++<;④111aaaa++>,其中成立的是……()A. ①与③B. ①与④C. ②与③D. ②与④ 7. 实数1a >,实数,x y 满足1||log 0a x y-=,则y 关于x 的函数的图象大致是()8.棱台上、下底面面积之比为1∶9, 则棱台的中截面(中截面是过棱台的各侧棱的中点的截面)把棱台分成两部分的体积之比是 ( )A. 1∶7B.2∶7C. 7∶19D. 5∶ 169. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA PB PC ==,则点O 是ΔABC 的()A. 内心B. 外心C. 重心D. 垂心10.已知正方体ABCD-A 1B 1C 1D 1的棱长为a ,长为定值的线段EF 在棱AB 上移动(EF a <),若P 是A 1D 1上的定点,Q 是C 1D 1上的动点,则四面体PQEF 的体积是 ( )A.有最小值的一个变量B.有最大值的一个变量C.没有最值的一个变量D.是一个常量11. 已知棱长都相等的正三棱锥内接于一个球,某人画出四个过球心的平面截球与正三棱锥⑴ ⑵ ⑶ ⑷ A. 以上四个图形都正确 B. 只有⑵、⑷正确 C. 只有⑷错误 D. 只有⑴、⑵正确 12.一个四面体P ABC -,其中PA BC ==PB AC ==,PC AB ==,则该四面体的体积为( )B C C 1 B 1A D 1A 1D MPNA. 25B. 2C.653 D. 2263第Ⅱ卷(共90分)二、填空题(将正确答案写在答题纸上,每题4分,共计16分)13.长方体ABCD-A 1B 1C 1D 1中,8AB =,6BC =,110BB =,已知蚂蚁从点 A 出发沿表面爬行到1C ,则蚂蚁爬行的最短距离为14.斜三棱柱111ABC A B C -的底面是边长等于a 的正三角形,侧棱长等于b ,且11A AB A AC ∠=∠=45?,则这个斜三棱柱的侧面积为15.球面上有三点A 、B 、C 组成球的内接三角形,若6=AB ,8=BC ,10=AC ,且球心到ABC ?所在的平面的距离等于球的半径的21,那么这个球的表面积为 ___16.如图:设正方体ABCD-A 1B 1C 1D 1的棱长为1,长度为1的线段MN 的一个端点M 在11A B 上运动,另一个端点N 在底面11BCC B 上运动,设线段MN 的中点为P ,则动点P 的运动轨迹是三、解答题(共计74分,其中17——21题每题12分,22题14分,解答要写出文字说明、证明过程或演算步骤)17. (本小题满分12分)三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC , D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥 P —ABC 所成两部分的体积比.18. (本小题满分12分)如果一个n 面体共有m 个面是直角三角形,那我们称这个n 面体的直度为m n⑴请构造一个直度是34的四面体;⑵是否存在直度为1的四面体?请说明理由;⑶若一个n 面体的直度为1,棱数为t ,将t 表示成n 的函数;⑷证明不存在直度为1的五面体.19. (本小题满分12分)已知函数()f x 对于一切正实数x 、y 都有()()()f xy f x f y =,且x >1时,()f x <1,f (2)=91(1) 求证:()f x >0;(2)求证:11()[()]f x f x --=(3)求证:()f x 在(0,+∞)上为单调减函数(4)若()f m =9,试求m 的值。

2020年高一数学上期中试题(含答案)

2020年高一数学上期中试题(含答案)

2020年高一数学上期中试题(含答案)一、选择题1.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .2.函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-, D .(11]-, 3.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<4.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)75.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522 C .32D .26.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .17.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<8.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭10.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______. 14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 16.已知函数f(x)=log a x +x -b(a >0,且a≠1).当2<a <3<b <4时,函数f(x)的零点为x 0∈(n ,n +1),n ∈N *,则n= .17.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 18.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.19.函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.22.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 23.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围; (2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 24.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?25.已知函数()lg(2)lg(2)f x x x =++-. (1)求函数()y f x =的定义域; (2)判断函数()y f x =的奇偶性; (3)若(2)()f m f m -<,求m 的取值范围.26.某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 剟时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k 剟. (1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:函数f (x )=2x 2–e |x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D2.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C3.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A .【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.4.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.5.B解析:B 【解析】 【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x 的取值,然后利用数形结合即可得到结论. 【详解】当x≥0时,f (x )=x (|x|﹣1)=x 2﹣x=(x ﹣12)2﹣1144≥-, 当x <0时,f (x )=x (|x|﹣1)=﹣x 2﹣x=﹣(x+12)2+14, 作出函数f (x )的图象如图:当x≥0时,由f (x )=x 2﹣x=2,解得x=2. 当x=12时,f (12)=14-.当x <0时,由f (x )=)=﹣x 2﹣x=14-. 即4x 2+4x ﹣1=0,解得x=24444432248-±+⨯-±=⨯=4421282-±-±=, ∴此时x=122--, ∵[m,n]上的最小值为14-,最大值为2, ∴n=2,12122m --≤≤, ∴n﹣m 的最大值为2﹣122--=5222+, 故选:B .【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.6.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.7.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.8.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a af x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.10.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.11.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.12.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.2【解析】【分析】把要求零点的函数变成两个基本初等函数根据所给的ab 的值可以判断两个函数的交点的所在的位置同所给的区间进行比较得到n 的值【详解】设函数y=logaxm=﹣x+b 根据2<a <3<b <4解析:2 【解析】 【分析】把要求零点的函数,变成两个基本初等函数,根据所给的a ,b 的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n 的值. 【详解】设函数y=log a x ,m=﹣x+b 根据2<a <3<b <4,对于函数y=log a x 在x=2时,一定得到一个值小于1,而b-2>1,x=3时,对数值在1和2 之间,b-3<1在同一坐标系中画出两个函数的图象, 判断两个函数的图形的交点在(2,3)之间,∴函数f (x )的零点x 0∈(n ,n+1)时,n=2.故答案为2.考点:二分法求方程的近似解;对数函数的图象与性质.17.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭,则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.18.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000, 当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200. 【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.19.【解析】【分析】首先保证真数位置在上恒成立得到的范围要求再分和进行讨论由复合函数的单调性得到关于的不等式得到答案【详解】函数所以真数位置上的在上恒成立由一次函数保号性可知当时外层函数为减函数要使为减 解析:()1,2【解析】 【分析】首先保证真数位置20ax ->在[]0,1x ∈上恒成立,得到a 的范围要求,再分01a <<和1a >进行讨论,由复合函数的单调性,得到关于a 的不等式,得到答案.【详解】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为()1,2. 【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.20.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题. (1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈,故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭. 【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.22.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃. 【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故220a a b =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立; ④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<,综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用.23.(1)2,73⎛⎫⎪⎝⎭;(2)12-或4.【解析】 【分析】(1)先利用对数运算求出32a =,可得出函数()y f x =在其定义域上是增函数,由()()3225f m f m -<+得出25320m m +>->,解出即可;(2)由题意得出272x x -=,解该方程即可. 【详解】(1)()log a f x x =Q ,则()()332log 3log 2log 12a a af f -=-==,解得32a =,()32log f x x ∴=是()0,∞+上的增函数,由()()3225f m f m -<+,得25320m m +>->,解得273m <<. 因此,实数m 的取值范围是2,73⎛⎫ ⎪⎝⎭; (2)()332227log log 2f x x x ⎛⎫=-= ⎪⎝⎭Q ,得272x x -=,化简得22740x x --=, 解得4x =或12x =-.【点睛】本题考查对数运算以及利用对数函数的单调性解不等式,在底数范围不确定的情况下还需对底数的范围进行分类讨论,同时在解题时还应注意真数大于零,考查运算求解能力,属于中等题.24.(Ⅰ)()27530225,02,75030,2 5.1x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【解析】 【分析】(1)根据题意可得f (x )=15w (x )﹣30x ,则化为分段函数即可,(2)根据分段函数的解析式即可求出最大利润. 【详解】(Ⅰ)由已知()()()1520101530f x W x x x W x x =--=-()2155330,02,501530,251x x x x x x x ⎧⨯+-≤≤⎪=⎨⨯-<≤⎪+⎩27530225,02,75030,2 5.1x x x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩ (Ⅱ)由(Ⅰ)得()()22175222,02,7530225,02,5=75030,2 5.25780301,2 5.11x x x x x f x x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==; 当25x <≤时,()()257803011f x x x ⎡⎤=-++⎢⎥+⎣⎦ ()2578030214801x x≤-⨯⋅+=+当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【点睛】本题考查了函数的应用、基本不等式的性质,考查了推理能力与计算能力,属于中档题. 25.(1){|22}x x -<<(2)偶函数(3)01m << 【解析】 【分析】 【详解】(Ⅰ)要使函数有意义,则,得.函数的定义域为. (Ⅱ)由(Ⅰ)可知,函数的定义域为,关于原点对称,对任意,.由函数奇偶性可知,函数为偶函数.(Ⅲ)函数由复合函数单调性判断法则知,当时,函数为减函数又函数为偶函数,不等式等价于,得.26.(1)[60,100];(2)当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升;46【解析】 【分析】(1)将120x =代入每小时的油耗,解方程可得100=k ,由题意可得14500(100)95x x-+„,解不等式可得x 的范围; (2)设该汽车行驶100千米油耗为y 升,由题意可得10014500()5y x k x x=-+g ,换元令1t x =、化简整理可得t 的二次函数,讨论t 的范围和对称轴的关系,即可得到所求最小值. 【详解】 解:(1)由题意可得当120x =时,1450014500()(120)11.555120x k k x -+=-+=, 解得100=k ,由14500(100)95x x-+„, 即214545000x x -+„,解得45100x 剟, 又60120x 剟,可得60100x 剟, 每小时的油耗不超过9升,x 的取值范围为[60,100]; (2)设该汽车行驶100千米油耗为y 升,则 2100145002090000()20(60120)5k y x k x x x x x=-+=-+g 剟, 令1t x=,则1[120t ∈,1]60,即有22290000202090000()209000900k k y t kt t =-+=-+-, 对称轴为9000k t =,由60100k 剟,可得1[9000150k ∈,1]90,①若19000120k …即75100k 剟, 则当9000k t =,即9000x k=时,220900min k y =-;②若19000120k <即6075k <„, 则当1120t =,即120x =时,10546min ky =-. 答:当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升;46【点睛】本题考查函数模型在实际问题中的运用,考查函数的最值求法,注意运用换元法和二次函数的最值求法,考查运算能力,属于中档题.。

2020-2021沈阳市高三数学上期中一模试卷(附答案)

2020-2021沈阳市高三数学上期中一模试卷(附答案)

2020-2021沈阳市高三数学上期中一模试卷(附答案)一、选择题1.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102002.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S3.下列命题正确的是A .若 a >b,则a 2>b 2B .若a >b ,则 ac >bcC .若a >b ,则a 3>b 3D .若a>b ,则1a <1b4.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸5.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .36.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 7.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .168.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)9.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.10.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524311.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.14.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=L _________. 15.已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为________. 16.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.17.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 18.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________.19.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .20.已知数列{}n a 的通项1n n a n+=+,则其前15项的和等于_______.三、解答题21.已知数列{}n a 的前n 项和22n n nS +=.(1)求数列{}n a 通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n T . 22.已知函数()3sin cos f x x x =-.(1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围. 23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.24.各项均为整数的等差数列{}n a ,其前n 项和为n S ,11a =-,2a ,3a ,41S +成等比数列.(1)求{}n a 的通项公式;(2)求数列{(1)}nn a -•的前2n 项和2n T .25.已知函数()sin 2(0)f x m x x m =+>的最大值为2. (Ⅰ)求函数()f x 在[0,]π上的单调递减区间; (Ⅱ)ABC ∆中,()()46sin 44f A f B A B ππ-+-=,角,,A B C 所对的边分别是,,a b c ,且060,3C c ==,求ABC ∆的面积.26.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c ,若3asinB bcosA =. (1)求角A ;(2)若ABC ∆的面积为235a =,,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.2.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.3.C解析:C 【解析】对于A ,若1a =,1b =-,则A 不成立;对于B ,若0c =,则B 不成立;对于C ,若a b >,则33a b >,则C 正确;对于D ,2a =,1b =-,则D 不成立.故选C4.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

2020-2021沈阳市高一数学上期中模拟试卷(附答案)

2020-2021沈阳市高一数学上期中模拟试卷(附答案)

2020-2021沈阳市高一数学上期中模拟试卷(附答案)一、选择题1.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,42.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3.若35225a b ==,则11a b+=( ) A .12B .14 C .1 D .2 4.已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭5.设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .86.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>7.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.58.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}9.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .10.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( ) A .1,3-B .1,33C .11,,33-D .11,,33211.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b << 12.已知函数在上单调递减,则实数a 的取值范围是( ) A .B .C .D .二、填空题13.函数y=232x x --的定义域是 .14.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 15.函数的定义域为______________.16.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 17.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x xf x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.18.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.19.若关于的方程有三个不相等的实数根,则实数的值为_______.20.已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.三、解答题21.如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)22.求关于x 的方程2210ax x ++=至少有一个负根的充要条件.23.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.24.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.25.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 26.已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断. 【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.3.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b ==由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.4.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.5.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.6.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.7.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1,令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.8.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.9.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 10.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.11.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.12.C解析:C 【解析】 【分析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可.【详解】 若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值. 二、填空题13.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域14.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.15.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.16.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误 解析:42【解析】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 【考点】指数运算,对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误 17.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x ∈03时f (x )=3x+a4x (a ∈R )当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】 【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案. 【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1. 故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x . 故答案为:f (x )=4﹣x ﹣3﹣x 【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.18.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.19.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3解析:3 【解析】 令,则由题意可得函数与函数的图象有三个公共点.画出函数的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则.答案:320.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题 解析:3【解析】 【分析】 先由()()43ff x x =-求出a 、b 的值,可得出函数()y f x =的解析式,然后再求出()2f 的值.【详解】由题意,得()()()()()243ff x f ax b a ax b b a x ab b x =-=⋅--=-+=-,即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此()23f =,故答案为3.【点睛】本题考查函数求值,解题的关键就是通过题中复合函数的解析式求出函数的解析式,考查运算求解能力,属于中等题.三、解答题21.(Ⅰ)能(Ⅱ)20AB =米且5AD =米 【解析】 【分析】(1)以点A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.设太阳光线所在直线方程为y=34x+b ,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)欲使活动中心内部空间尽可能大,则影长EG 恰为2.5米,即可求出截面面积最大. 【详解】解:如图,以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.(1)因为AB =18米,AD =6米, 所以半圆的圆心为H (9,6),半径r =9. 设太阳光线所在直线方程为y =-34x +b , 即3x +4y -4b =02227+24-4b 3+4=9,解得b =24或b =32(舍). 故太阳光线所在直线方程为y =-34x +24, 令x =30,得EG =1.5<2.5. 所以此时能保证上述采光要求. (2)设AD =h 米,AB =2r 米,则半圆的圆心为H(r,h),半径为r.方法一设太阳光线所在直线方程为y=-34x+b,即3x+4y-4b=0,r,解得b=h+2r或b=h-r2(舍).故太阳光线所在直线方程为y=-34x+h+2r,令x=30,得EG=2r+h-452,由EG≤52,得h≤25-2r.所以S=2rh+12πr2=2rh+32×r2≤2r(25-2r)+32×r2=-52r2+50r=-52(r-10)2+250≤250.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大.方法二欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y-52=-34(x-30),即3x+4y-100=0.由直线l1与半圆H相切,得r=3r+4h-1005.而点H(r,h)在直线l1的下方,则3r+4h-100<0,即r=-3r+4h-1005,从而h=25-2r.又S=2rh+12πr2=2r(25-2r)+32×r2=-52r2+50r=-52(r-10)2+250≤250.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大.【点睛】本题考查利用数学知识直线与圆的相切位置关系解决实际问题,考查二次函数配方法的运用和分析解决实际问题的能力,属于中档题.22.充要条件是1a .【解析】 【分析】当0a ≠时,根据根为“1正1负”、“2负根”进行讨论,由此求得a 的范围.当0a =时,直接解出方程的根.由此求得a 的取值范围. 【详解】①0a ≠时,显然方程没有等于零的根.若方程有两异号实根,则0a <;若方程有两个负的实根,则必有102{001440aa aa >-<∴≤∆=-≥<..②若0a =时,可得12x =-也适合题意.综上知,若方程至少有一个负实根,则1a ≤.反之,若1a ≤,则方程至少有一个负的实根,因此,关于x 的方程2210ax x ++=至少有一负的实根的充要条件是1a ≤. 【点睛】本小题主要考查根据含有参数的一元二次方程根的分布求参数,考查分类讨论的数学思想方法,属于基础题. 23.a=1或a≤﹣1 【解析】试题分析:先由题设条件求出集合A ,再由A∩B=B ,导出集合B 的可能结果,然后结合根的判别式确定实数a 的取值范围. 试题解析:根据题意,集合A={x|x 2+4x=0}={0,﹣4},若A∩B=B,则B 是A 的子集, 且B={x|x 2+2(a+1)x+a 2﹣1=0},为方程x 2+2(a+1)x+a 2﹣1=0的解集, 分4种情况讨论:①B=∅,△=[2(a+1)]2﹣4(a 2﹣1)=8a+8<0,即a <﹣1时,方程无解,满足题意; ②B={0},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根0, 则有a+1=0且a 2﹣1=0,解可得a=﹣1,③B={﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根﹣4, 则有a+1=4且a 2﹣1=16,此时无解,④B={0、﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个的实根0或﹣4, 则有a+1=2且a 2﹣1=0,解可得a=1, 综合可得:a=1或a≤﹣1.点睛:A ∩B=B 则B 是A={0,﹣4}的子集,而B={x|x 2+2(a+1)x+a 2﹣1=0}为方程x 2+2(a+1)x+a 2﹣1=0的解集,所以分四种情况进行讨论①B=∅,②B={0},③B={﹣4},④B={0、﹣4},其中①B=∅不要忘记.24.(1)722x x⎧⎫<≤⎨⎬⎩⎭;(2)34.2p p><-或【解析】【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B时,可得B⊆A,分B为空集和不为空集两种情况即可.【详解】(1)当时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,可得B⊆A;当时,令2p-1>p+3,解得p>4,满足题意;当时,应满足解得;即综上,实数p的取值范围.【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.25.(1)B∩A=[1,4),B∩(∁U A)= [-4,1)∪[4,5);(2)1 [,) 2+∞ .【解析】【分析】(1)利用补集的定义求出A的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B是否是空集,列出不等式组求解即可.【详解】(1)∵A={x|1≤x<4},∴∁U A={x|x<1或x≥4},∵B={x|2a≤x<3-a},∴a=-2时,B={-4≤x<5},所以B∩A=[1,4),B∩(∁U A)={x|-4≤x<1或4≤x<5}=[-4,1)∪[4,5).(2)A∪B=A⇔B⊆A,①B=∅时,则有2a≥3-a,∴a≥1,②B≠∅时,则有,∴,综上所述,所求a的取值范围为.【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心. 26.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解; (2)由21x y =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数, 证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数, ∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭,∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.。

辽宁省沈阳二中2020至2021学年高一下学期期中考试(数学)

辽宁省沈阳二中2020至2021学年高一下学期期中考试(数学)

沈阳二中2020-2021学年度下学期期中考试高一(14届)数学试题命题人:高一数学组 审校人:高一数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸的相应位置上第Ⅰ卷 (满分60分)一. 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 .sin 240的值为( )A .12-B .12C .32-D .322 .已知平面向量(1,2)=a , (2,)m =-b , 且a ∥b , 则m 的值为( )A .1B .1-C .4D .4-3.在ABC ∆中,1,4AD AB E =为BC 边的中点,设=AB a ,=AC b , 则=DE ( ) A .b 21+a 41 B .b 21+a 43 C .b 21-a 41 D .b 21-a 434 .为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )A .向左平移4π个长度单位B .向右平移4π个长度单位C .向左平移2π个长度单位D .向右平移2π个长度单位5 .已知()2,3,(4,7)a b ==-,则a 在b方向上射影的数量为 ( )A http:///13B http:///513C http:///565D http:///656 .函数()2sin cos f x x x =-的最小值是( )A .54-B .1-C .34-D .17 .在ABC ∆中,角2120,tan tan 33C A B =+=,则tan tan A B 的值为( ) A .41 B .13 C .21 D .538 .函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 ( )9.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = ( )A .23-B .23C .-12 D .1210.若等边ABC ∆的边长为32,平面内一点M 满足→→→+=CA CB CM 3261,则=•→→MB MA ( )A.-1B.-2C.1D. 211.若),2(,ππβα∈,且βαcot tan <,那么必有 ( )A .πβα23>+ B .πβα23<+ C .βα> D .βα<12.函数tan()(04)42y x x ππ=-<<的图象与x 轴交于A 点,过点A 的直线l 与函数的图象交于,B C 两点,则()OB OC OA +⋅= ( ) A.4 B.10 C.6 D. 8第Ⅱ卷 (满分90分)二.填空题:(本大题共4小题,每小题5分,共20分)13.已知α的终边经过点(39,2)a a -+,且sin 0,cos 0αα>≤ ,则a 的取值范围是o32ππ2πyA 2-︒B o32ππ2πy2-︒2o 32ππ2πyC -︒o32ππ2πyD2--︒________14.函数)4tan()(x x f -=π的单调减区间为 ;15.平面内不共线的四点O,A,B,C ,若023=+-OC OB OA ,则AB BC=______16.如果)2,0(πθ∈,且θθθθcos )cos 1(sin )sin1(22+>+,那么角θ的取值范围是_____三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17 . (本小题满分10分)化简:00010cos 1)10tan 31(80sin 50sin 2+++18 .(本小题满分12分)设)1,1(=a ,)sin ,(cos αα=b(I )求b a •的最小值;(II )若21=•,求αααtan 12sin sin 22++的值.19 .(本小题满分12分)已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值. 20 .(本小题满分12分)已知向量),1,1(=向量与向量夹角为π43,且1-=⋅. (1)求向量n ;(2)若向量n 与向量q =(1,0)的夹角2,(2sin ,4cos )22Ap A π=向量求|2n +p |的值. 21 .(本小题满分12分)已知函数()4cos sin() 1.6f x x x π=+-(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值和最小值. 22.(本小题满分12分)已知ABC ∆的面积S 满足1S ≤≤,且2,AC CB ABC θ⋅=-∠=(三角形面积公式:111sin sin sin )222ABC S ab C ac B bc A ∆=== (I)若(sin 2,cos 2),(cos 2,sin 2)m A A n B B ==求|23|m n -的取值范围;(II)求函数()sin()cos cos()244f ππθθθθθ=-+-+-的最大值。 沈阳二中2020-2021学年度下学期期中考试高一(14届)数学答案一、选择题 1. C 2. D 3. A 4. B 5. C 6. A 7. B 8. D 9. B 10. B 11. B 12. D 二、填空题13. 32≤<-a 14. ))(43,4(Z k k k ∈+-ππππ 15. 2 16. 5,44ππ⎛⎫⎪⎝⎭三、解答题17.00=00=0050452+====---------------------10分 18. 解:(I ))4sin(2cos sin πααα+=+=•,•∴的最小值为2-------4分(II )αααtan 12sin sin 22++ =ααααααααcos sin 2sin cos )sin (cos cos sin 2=++ 21cos sin =+=•αα,41cos sin 21=+∴αα 43cos sin 2-=∴αα故43tan 12sin sin 22-=++ααα --------------------------------12分 19. 解:(Ⅰ)因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x ---------------2分 54221022210274sin 4cos 4cos 4sin 44sin sin =⨯+⨯=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=ππππππx x x x ---------6分(Ⅱ)因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x -----------------8分 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x -------------12分 20. 解:(1)设1),,(-=⋅=y x 由,有1-=+y x ①由与夹角为π43,有π43cos ||||⋅⋅=⋅.∴.1,1||22=+=y x n 则② ----------------------4分 由①②解得⎩⎨⎧-==⎩⎨⎧=-=.1,0.0,1y x y x 或 ∴即)0,1(||-=n 或).1,0(-=n ---------------6分 (2)由与垂直知).1,0(-= ----------------8分),cos 2,sin 2()22cos 4,sin 2(22A A AA =-=+ ∴2cos 4sin 4|2|22=+=+A A p n ------------------------12分21. 解:(1)因为1()4cos cos )12f x x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+ ---------4分所以()f x 的最小正周期.π -----------------------------------------6分 (2)因为64x ππ-≤≤,所以22663x πππ-≤+≤,所以1sin(2)126x π-≤+≤ 所以()f x 在区间[,]64ππ-上的最大值为2,最小值 1.- ------------------12分22、。

辽宁省沈阳市第二中学2024-2025学年高一上学期10月学科检测数学试题(含答案)

辽宁省沈阳市第二中学2024-2025学年高一上学期10月学科检测数学试题(含答案)

沈阳二中27届2024-2025学年度上学期10月学科检测数学学科试题命题人:高一数学备课组 审校人:高一数学备课组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷(选择题共58分)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的.1.设,已知集合,且,则实数的取值范围是( )A .B .C .D .2.若,定义,则( )A .B .C .D .3.下列命题中,正确的是( )A .B .C .命题“,使”的否定形式是“使D .方程有两个正实数根的充要条件是4.已知一元二次不等式的解集为,则的解集为( )A .B .C .D .5.已知,若恒成立,则实数的取值范围是( )A .B .C .D .6.设命题:关于的不等式与的解集相同;命题:,则命题是命题的( )A .充要条件B .充分非必要条件C .必要非充分条件D .既不充分也不必要条件U R ={}{}1,A x x B x x a =≥=>U )(A B R = ða (,1)-∞(,1]-∞[1,)+∞(1,)+∞111,12A x x B x x ⎧⎫⎧⎫=-<=≥⎨⎬⎨⎬⎩⎭⎩⎭{}A B x x A B x A B ⨯=∈∉ 且A B ⨯=13[,]22-(0,1]13(,0][1,)22- 13(,0](1,22- 2,x R x x∀∈>2000,10x R x x ∃∈-+<,x R n N *∀∈∃∈2n x >,x R n N *∃∈∀∈2n x ≤2(3)0x m x m +-+=[0,1]m ∈20ax bx c ++≤[1,2]20cx bx a ++≤1[,1]2[1,2][2,1]--1[1,]2--0,0,31x y x y >>+=23124m m x y+>++m {}24m m -<<{}42m m -<<{}42m m m <->或{}24m m m <->或P x 2111a x b x c ++22220a x b x c ++>Q 111222a b c a b c ==Q P7.关于的方程有两个实数根,且,那么的值为( )A .B .C .或1D .或48.,满足,则的最小值为( )A .6B .8C .D .二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下列命题正确的是( )AB .,使得C .是的充要条件D .若,则10.下列四个命题中,不正确的是( )A .若,则可取值为0,1,3B .设,则“”是“”的充分不必要条件C .若,则D .命题“”的一个必要不充分条件是11.下列条件是条件的充分条件的是( )A .条件:1是二次方程的一个根B .条件:C .条件:关于的不等式的解集为D .条件:关于的二次方程有两不等实根,且在上恒成立第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设(为实数),,则的充要条件为________.13.定义:区间、、、的长度均为.若不等式的解集中所有区间长度总和为,则用的代数式表示________.14.已知,且满足,则的最小值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.x 222(1)0x m x m m +-+-=,αβ2212αβ+=m 1-4-4-1-,,a b c R +∀∈1b c +=28161ab a bc a +++8-1-+<,a R x R ∀∈∃∈2ax >0ab ≠220a b +≠221a b +=[a b +∈{}21,3,a a ∈a 0,x y R >∈x y >x y >0b a >>b b m a a m+<+2[1,2],30x x a ∀∈-≥4a ≤p :04q a <<p 20x a -=p {}{}11,2x ax =⊆p x 2(4)2(4)40a x a x -+--<R p x 2210ax x -+-=2690ax x -+>R {}2135A x a x a =+≤≤-a {}322B x x =≤≤()A A B ⊆ [,]a b (,]a b [,)a b (,)a b b a -11(0)12m m x x +≥>--l m l =,a b 24380ab a b -+-=22238a b a b ++-15.(本小题13分)(1),求不等式解集;(2),求方程组解集;(3),求不等式解集.16.(本小题15分)已知一元二次函数有两个相等实根,若关于的不等式的解集为.(1)求实数的值;(2)若,求的最小值.17.(本小题15分)已知,是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由;(2)求使为负整数的实数的整数值.18.(本小题17分)(1)恒成立,求实数的取值范围;(2)证明:“”是“关于的方程有一正一负根”的充要条件.19.(本小题17分)设正整数,集合,对于集合中的任意元素和,及实数,定义:当且仅当时;;.若的子集满足:当且仅当时,,则称为的完美子集.(1)当时,已知集合.分别判断这两个集合是否为的完美子集,并说明理由:(2)当时,已知集合.若不是的完美子集,求的值;3221x x +≥-2223235x y x y ⎧+=⎨-=⎩2115x x x -+-≥-2(,)x ax b a b R ++∈x 2x ax b m ++<(,c c +m 1,0,x y x y m >>+=141x y +-12,x x 2(6)20a x ax a -++=a 11224x x x x -+=+a 12(1)(1)x x ++a 2,240x R kx kx k ∀∈+-->k 0m <x 220x x m -+=3n ≥{}12(,,),,1,2,,n k A a a x x x x R k n ==∈= A 12(,,,)n a x x x = 12(,,,)n b y y y = λ(1,2,,)k k x y k n == a b =1122(,,,)n n a b x y x y x y +=+++ 12(,,)n a x x x λλλλ= A {}123,,B a a a =1230λλλ===112233(0,0,0)a a a λλλ++=B A 3n ={}{}12(1,0,0),(0,1,0),(0,0,1),(1,2,3),(2,3,4),(4,5,6)B B ==A 3n ={}(2,,1),(,2,1),(,1,2)B m m m m m m m m m =---B A m(3)已知集合,其中.若对任意都成立,判断是否一定为的完美子集.若是,请说明理由;若不是,请给出反例.答案1—5 ADCAB6—8 DAC 9.AD 10.ABC 11.AD 12.13. 14.15.(1)解:故不等式为解集为(2)解:由得代入得:或则故解集为(3)时,;时,.{}123,,B a a a A =⊆12(,,,)(1,2,3)i i i in a x x x i == 1232ii i i i x x x x >++1,2,3i =B A 9a ≤3m 414-3221x x +≥-32201x x +-≥-401x x +≥-(4)(1)010x x x +-≥⎧⎨-≠⎩(,4](1,)-∞-+∞ 2223235x y x y ⎧+=⎨-=⎩235x y -=352y x +=2223x y +=221(173025)34y y ++=217302512y y ++=21730130y y ++=(1)(1713)0y y ++=1y =-1317-2311711317x x y y ⎧=⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩或2323(1,1),(,1717⎧⎫--⎨⎬⎩⎭210x -=12x =10x ->1x =①时,原式为:又∵ 故②时,原式恒成立产故③时,原式为: 故综上,.16.【答案】解:(1)∵函数的值域为,∴只有一个根,即,则.不等式的解集为.即为的解集为且.则的两个根为∵∴∴;(2),∴,∴当且仅当时,的最小值为. 12x <1215x x x -+-≥-470x -≤74x ≤12x <12x <112x ≤≤2115x x x -+-≥-05≥-112x ≤≤1x >2115x x x -+-≥-32x ≥-1x >x R ∈2()(,,)f x x ax b a b R =++∈[0,)+∞2()0f x x ax b =++=240a b ∆=-=24a b =()f x m <(,c c +2204a x ax m ++-=(,c c +0m >2204a x ax m +=-=,c c +2ax =c c=+-3m =3x y +=12x y -+=1411414(1)(1)[5]12121y x x y x y x y x y-+=+-+=++---19(522≥+=4(1)1y x x y -=-141x y ++9217.【答案】解:(1)因为方程有两个实数根与,所以,所以.因为二次项系数,所以,所以,,由,得,所以,化简得,所以,故当时,成立.(2)因为为负整数,所以的值为1,2,3,6,所以的整数值为7,8,9,1218.【答案】解:(1)当时,成立当时(2)充分性:若,则关于的方程有一正一负根,证明如下:当m <0时,,所以方程有两个不相等的实根,设两根分别为,则,所以方程有一正一负根,故充分性成立,2(6)20a x ax a -++=1x 2x 244(6)240a a a a ∆=--=≥0a ≥60a -≠6a ≠1226a x x a -+=-126a x x a =-11224x x x x -+=+12124x x x x =++2466a a a a -=+--4242a a a =--24a =24a =11224x x x x -+=+12121226(1)(1)11666a a x x x x x x a a a -++=+++=++=----6a -a 0k =40-<0k ≠0k <⎧⎨∆<⎩22444(4)0b ac k k k -=---<2244160k k k ++<28160k k +<220k k +<(2)0k k +<20k -<<0m <x 220x x m -+=2(2)4440m m ∆=--=->220x x m -+=12,x x 120x x m =<220x x m -+=必要性:若“关于的方程有一正一负根”,则,证明如下:设方程一正一负根分别为,则,所以,所以若“关于的方程有一正一负根”,则,故必要性成立.19.【答案】解:由显然只有唯一解,即,所以为的完美子集;同理,对于,,令,即,方程组的解不唯一,比如为方程组的一组解,故不是的完美子集;(2)由题意得,所以,由不是的完美子集,即方程组的解不唯一,因为,由集合的互异性得,且.所以.所以所以.所以或.检验:x 220x x m -+=0m <220x x m -+=12,x x 212(2)44400m m x x m ⎧∆=--=->⎨=<⎩0m <x 220x x m -+=0m <123123(1,0,0)(0,1,0)(0,0,1)(,,)λλλλλλ++=123(,,)(0,0,0)λλλ=1230λλλ===1B A 2B 123123123123(1,2,3)(2,3,4)(4,5,6)(24,235,346)λλλλλλλλλλλλ++=++++++123123123(24,235,346)(0,0,0)λλλλλλλλλ++++++=12312312324023503460λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩1232,3,1λλλ=-==-2B A 123123123(2,2(1),(1)(1)2)(0,0,0)m m m m m m m m m λλλλλλλλλ++++--+-+=123123123202(1)0(1)(1)20m m m m m m m m m λλλλλλλλλ++=⎧⎪++-=⎨⎪-+-+=⎩B A {}(2,,1),(,2,1),(,1,2)B m m m m m m m m m =---0m ≠1m ≠-1233121220,2,(,)(0,0)λλλλλλλλ++==--≠1212(2)(1)0,(31)(1)0.m m m m λλλλ-+++=⎧⎨--+--=⎩1(41)0m λ-+=14m =10λ=当时,存在使得.当时,因为,所以,舍.所以.(3)假设存在不全为0的实数满足,不妨设,则否则与假设矛盾).由,得.所以.与,即矛盾.所以假设不成立.所以.所以.所以一定是完美集.14m =1235,7,3λλλ==-=-112233(0,0,0)a a a λλλ++=10λ=1m ≠-230,0λλ==14m =123,,λλλ112233(0,0,,0)a a a λλλ++= 123λλλ≥≥10λ≠1112213310x x x λλλ++=3211213111x x x λλλλ=--23112131213111x x x x x λλλλ≤+≤+111121312x x x x >++112131x x x >+10λ=230λλ==B。

2020-2021学年沈阳二中高三上学期期中数学试卷(含解析)

2020-2021学年沈阳二中高三上学期期中数学试卷(含解析)

2020-2021学年沈阳二中高三上学期期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 设全集U =R ,集合A ={x|x(x +3)<0},B ={x|x <−1},则如图中阴影部分表示的集合为( )A. {x|−3<x <−1}B. {x|−1≤x <0}C. {x|−3<x <0}D. {x|−1<x <0}2.若复数z 满足iz =1+i ,则z 的虚部为( )A. 1B. iC. −1D. −i3.设实数a ,b 满足b <a <0,则下列不等式①a +b >ab ;②|a|>|b|;③a 2<b 2;④ba +ab >2中,所有正确的不等式的序号为( )A. ①②③B. ③④C. ③D. ④4.在△ABC 中,“∠A =∠B “是“acosA =bcosB ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.已知各项均不为零的数列{a n },定义向量c n ⃗⃗⃗ =(a n ,a n +1),b n ⃗⃗⃗⃗ =(n,n +1),n ∈N ∗.下列命题中真命题是( )A. 若对任意的n ∈N ∗,都有c n ⃗⃗⃗ //b n ⃗⃗⃗⃗ 成立,则数列{a n }是等差数列B. 若对任意的n ∈N ∗,都有c n ⃗⃗⃗ //b n ⃗⃗⃗⃗ 成立,则数列{a n }是等比数列C. 若对任意的n ∈N ∗,都有c n ⃗⃗⃗ ⊥b n ⃗⃗⃗⃗ 成立,则数列{a n }是等差数列D. 若对任意的n ∈N ∗,都有c n ⃗⃗⃗ ⊥b n ⃗⃗⃗⃗ 成立,则数列{a n }是等比数列 6.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f(x)=3x −1,则有( )A. f(13)<f(32)<f(23)B. f(23)<f(32)<f(13)C. f(23)<f(13)<f(32)D. f(32)<f(23)<f(13)7.已知sin(2π3+α)=13,则cos(5π6−α)=( )A. −13B. 13C. −2√23D. 2√238.设函数y =√4−x 2的定义域为A ,函数y =ln(2−x)的定义域为B ,则A ∩B =( )A. (1,2)B. (−2,1)C. [−2,2)D. [−2,2]二、多选题(本大题共4小题,共20.0分) 9.已知各项均为正数且单调递减的等比数列{a n }满足a 3,32a 4,2a 5成等差数列,其前n 项和为S n ,且S 5=31,则( )A. a n =(12)n−5B. a n =2n+3C. S n =32−12n−5 D. S n =2n+4−1610. 已知点P 是平行四边形ABCD 所在平面外的一点,AB ⃗⃗⃗⃗⃗ =(2,−1,−4),AD ⃗⃗⃗⃗⃗⃗ =(4,2,0),AP⃗⃗⃗⃗⃗ =(−1,2,−1),则( )A. AP ⊥BCB. AP ⃗⃗⃗⃗⃗ 是平面PBC 的法向量C. AP ⃗⃗⃗⃗⃗ //BD⃗⃗⃗⃗⃗⃗ D. 直线BP 与平面ABCD 所成角的余弦值为√7311. 已知数列{a n }满足a 1=10,a 5=2,且a n+2−2a n+1+a n =0(n ∈N ∗),则下列结论正确的是( )A. a n =12−2nB. |a 1|+|a 2|+|a 3|+⋯+|a n |={30,n ≤5 n 2+5,n >5C. |a n |的最小值为0D. 当且仅当n =5时,a 1+a 2+a 3+⋯+a n 取最大值3012. 若x ∈R ,f(x)是y =2−x 2,y =x 这两个函数中的较小者,则f(x)( )A. 最大值为2B. 最大值为1C. 最小值为−1D. 无最小值三、单空题(本大题共4小题,共20.0分) 13. 13、已知直线y =kx +1 与曲线恰有四个不同的交点,则实数k 的取值范围为 .14. 若两个平行平面距离为1,其中一个平面截半径为5的球O 得到的截面面积为16π,则另一平面截球O 得到的截面面积为______.15. 已知O 为△ABC 内一点,且满足OA ⃗⃗⃗⃗⃗ +3OB ⃗⃗⃗⃗⃗⃗ +5OC ⃗⃗⃗⃗⃗ =0⃗ ,延长AO 交BC 于点D.若BD ⃗⃗⃗⃗⃗⃗ =λDC ⃗⃗⃗⃗⃗ ,则λ=______. 16. 已知是定义在上的偶函数,且当时,,若对任意实数,都有恒成立,则实数的取值范围是 .四、解答题(本大题共6小题,共70.0分) 17. 设函数f(x)=12x −14sinx −√34cosx .(1)试判定函数f(x)的单调性,并说明理由;(2)已知f′(x)为函数f(x)的导函数,且f′(B)=34且B 为锐角,求sin(B +10°)[1−√3tan(B −10°)]的值.18. 为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:应该取消 应该保留 无所谓 在校学生 2100人 120人 y 人 社会人士600人x 人z 人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.19. 已知等比数列{a n }的公比为q ,等差数列{b n }的公差为d ,若4a 1,2a 2,a 3成等差数列,且a 1=b 3=1,d =q . (1)求{a n },{b n }的通项公式; (2)求{a n ⋅b n }的前n 项和.20. 某商场预计2012年从1月起前x 个月顾客对某种世博商品的需求总量P(x)件与月份x 的近似关系是:p(x)=12x(x +1)(41−2x)(x ≤12且x ∈N +) (1)写出第x 月的需求量f(x)的表达式;(2)若第x 月的销售量g(x)={f(x)−2x,1≤x <7且x ∈R +x 2gx(13x 2−10x +96),7≤x ≤12且x ∈N +(单位:件),每件利润q(x)元与月份x 的近似关系为:q(x)=1000e x−6x,求该商场销售该商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e 6≈403)21. 如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,面PAD ⊥面ABCD ,三角形PAD 为正三角形.(1)若E ,F 为PB ,CD 中点,证明:EF//面PAD ; (2)若∠PAB =90°,证明:面PAD ⊥面PAB .22. 设f(x)=ax −ln(1+x 2), (1)当a =45时,求f(x)在(0,+∞)的极值; (2)证明:当x >0时,ln(1+x 2)<x ;(3)证明:(1+124)(1+134)…(1+1n 4)<e(n ∈N ∗,n ≥2,e 为自然对数的底数)【答案与解析】1.答案:B解析:解:根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁U B),A={x|x(x+3)<0}={x|−3<x<0},B={x|x<−1},则∁U B={x|x≥−1},则A∩(∁U B)={x|−1≤x<0},故选B.2.答案:C解析:首先由iz=1+i,求出z,根据复数的定义求出虚部.本题考查了复数的运算以及概念;属于基础题.解:因为iz=1+i,所以z=−i+1;所以z的虚部为−1;故选C.3.答案:B解析:解:当a=−1,b=−2时,a+b=−3,ab=2,所以a+b<ab,|b|>|a|,故①②错误,③a2−b2=(a+b)(a−b)<0,故③正确.④由于b<a<0,所以ba >0,ab>0故ba +ab>2√ba⋅ab=2,故③正确.故选:B.直接利用不等式的性质和基本不等式求出结果.本题考查的知识要点:不等式的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于基础题型.4.答案:A解析:解:在三角形中,∵A=B,∴a=b且cosA=cosB,则acosA=bcosB成立.若acosA=bcosB,则根据正弦定理可得sinAcosA=sinBcosB,即12sin2A=12sin2B,∴sin2A=sin2B,即2A=2B或2A=π−2B,。

2020-2021沈阳市高一数学上期中模拟试卷含答案

2020-2021沈阳市高一数学上期中模拟试卷含答案

2020-2021沈阳市高一数学上期中模拟试卷含答案一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件4.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,5.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .506.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,77.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭8.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >> B .a b c >>C .c a b >>D .c b a >>9.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z10.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .211.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6 12.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( )A .b a c <<B .a c b <<C .b c a <<D .c b a <<二、填空题13.给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c =; (2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______. 14.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 15.已知函数()32f x x x =+,若()()2330f a a f a -+-<,则实数a 的取值范围是__________. 16.已知2a =5b =m ,且11a b+=1,则m =____. 17.已知函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,则a 取值范围是_________.18.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x xf x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______. 19.若4log 3a =,则22a a -+= .20.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.三、解答题21.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).22.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 23.已知二次函数()2f x ax bx c =++.(1)若方程()0f x =两个根之和为4,两根之积为3,且过点(2,-1).求()0f x ≤的解集;(2)若关于x 的不等式()0f x >的解集为(2,1)-. (ⅰ)求解关于x 的不等式20cx bx a ++>(ⅱ)设函数2(1)(),(1)(1)b x cg x x a x +-=<-,求函数()g x 的最大值 24.设集合A ={x ∈R|x 2+4x =0},B ={x ∈R|x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的值.25.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.26.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.3.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.5.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L ,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.7.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤⎥⎝⎦.本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.8.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .9.D解析:D 【解析】令235(1)x y z k k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.10.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x fx f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.12.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<,0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.二、填空题13.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确解析:(1)(2)(3) 【解析】 【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确. 【详解】解:(1)当0c =时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c =,所以0c =是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20xy x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确. 故答案为:(1)(2)(3) 【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.14.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案.【详解】由240x -=,解得2x =或2x =-,代入0x y +=, 解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组240x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.15.(13)【解析】由题意得为单调递增函数且为奇函数所以点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式然后根据函数的单调性去掉转化为具体的不等式(组)此时要注意与的取值应在外层函数的定义域内解析:(1,3) 【解析】由题意得()f x 为单调递增函数,且为奇函数,所以()()2330f a a f a -+-<22(3)(3)3313f a a f a a a a a ⇒-<-⇒-<-⇒<<点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内16.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.17.;【解析】【分析】分为和两种情形分类讨论利用复合函数的单调性结合对数函数的性质求出取值范围【详解】∵函数(且)在上是减函数当时故本题即求在满足时函数的减区间∴求得当时由于是减函数故是增函数不满足题意解析:(1,4);【解析】【分析】分为1a >和01a <<两种情形分类讨论,利用复合函数的单调性,结合对数函数的性质求出a 取值范围.【详解】∵函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,当1a >时,故本题即求4t ax =-在满足0t >时,函数t 的减区间,∴40a ->,求得14a <<,当01a <<时,由于4t ax =-是减函数,故()f x 是增函数,不满足题意,综上可得a 取值范围为(1,4),故答案为:(1,4).【点睛】本题主要考查复合函数的单调性,对数函数,理解“同增异减”以及注意函数的定义域是解题的关键,属于中档题.18.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x∈03时f (x )=3x+a4x (a∈R)当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案.【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1.故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x .故答案为:f (x )=4﹣x ﹣3﹣x【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.19.【解析】【分析】【详解】∵∴∴考点:对数的计算【解析】【分析】【详解】∵4log 3a =,∴4323a a =⇒=,∴24223333a -+=+=. 考点:对数的计算 20.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x Q 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--.故答案为][()2,33,2⋃--.【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力. 三、解答题21.(1){a|a≤7};(2){a|a <6或a >152} 【解析】【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6.若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A ,所以A∩B =A ,即A ⊆B .显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+> 由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152. 综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}. 考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用 22.(Ⅰ)()27530225,02,75030,2 5.1x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)当施用肥料为4千克时,种植该果树获得的最大利润是480元.【解析】【分析】(1)根据题意可得f (x )=15w (x )﹣30x ,则化为分段函数即可,(2)根据分段函数的解析式即可求出最大利润.【详解】(Ⅰ)由已知()()()1520101530f x W x x x W x x =--=-()2155330,02,501530,251x x x x x x x ⎧⨯+-≤≤⎪=⎨⨯-<≤⎪+⎩ 27530225,02,75030,2 5.1x x x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩ (Ⅱ)由(Ⅰ)得()()22175222,02,7530225,02,5=75030,2 5.25780301,2 5.11x x x x x f x x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪ ⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩ 当02x ≤≤时,()()max 2465f x f ==;当25x <≤时,()()257803011f x x x ⎡⎤=-++⎢⎥+⎣⎦78030480≤-⨯=当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元.【点睛】本题考查了函数的应用、基本不等式的性质,考查了推理能力与计算能力,属于中档题.23.(1){}13x x ≤≤;(2)(ⅰ)1(,)(1,)2-∞-⋃+∞;(ⅱ)2-.【解析】【分析】 (1)由韦达定理及函数过点(2,-1),列方程组()432421b a c af a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩求解即可;(2)(ⅰ)由不等式的解集与方程的根可得012a b ac a⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,则20cx bx a ++>可化为2210x x -->,再解此不等式即可;(ⅱ)由(ⅰ)得()g x =4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦,再利用均值不等式求函数的最大值,一定要注意取等的条件,得解.【详解】 (1)由题意可得()432421b a c a f a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩,解得143a b c =⎧⎪=-⎨⎪=⎩,()243f x x x ∴=-+, 解不等式()0f x ≤,即2430x x -+≤,即()()130x x --≤,解得13x ≤≤, 因此,不等式()0f x ≤的解集为{}13x x ≤≤;(2)(ⅰ)由题意可知012a b ac a⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,所以20cx bx a ++>可化为210c b x x a a ++<, 即2210x x -++<,得2210x x -->,解得21x <-或1x > 所求不等式的解集为1(,)(1,)2-∞-⋃+∞. (ⅱ)由(ⅰ)可知22(1)(1)2()(1)(1)b x c a x a g x a x a x +-++==--=231x x +=- 2(1)2(1)41x x x -+-+=-=4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦ , 因为1,x <所以10x ->,所以4(1)()41x x -+≥-,当且仅当411x x -=-时即1x =-时取等号 , 所以4(1)()41x x ⎡⎤-+≤-⎢⎥-⎣⎦,4(1)()221x x ⎡⎤-≤-++≤-⎢⎥-⎣⎦ 所以当1x =-时,()max 2g x =- .【点睛】本题考查了二次函数解析式的求法及不等式的解集与方程的根的关系,重点考查了利用均值不等式求函数的最大值及取等的条件,属中档题.24.a ≤-1或a =1.【解析】【分析】先解方程得集合A ,再由 B ⊆A 得B 为A 子集,根据子集四种情况分类讨论,解出实数a 的值.注意对结果要验证【详解】解 ∵A ={0,-4},B ⊆A ,于是可分为以下几种情况.(1)当A =B 时,B ={0,-4},∴由根与系数的关系,得22(1)410a a -+=-⎧⎨-=⎩解得a =1. (2)当B ≠A 时,又可分为两种情况.①当B ≠∅时,即B ={0}或B ={-4},当x =0时,有a =±1; 当x =-4时,有a =7或a =1.又由Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件;②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综合(1)(2)知,所求实数a 的取值为a ≤-1或a =1.25.(1)722x x ⎧⎫<≤⎨⎬⎩⎭;(2)3 4.2p p ><-或 【解析】【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B 时,可得B ⊆A ,分B 为空集和不为空集两种情况即可.【详解】(1)当时,B={x |0≤x ≤}, ∴A∩B={x |2<x ≤};(2)当A∩B=B 时,可得B ⊆A ;当时,令2p -1>p +3,解得p >4,满足题意; 当时,应满足解得; 即综上,实数p 的取值范围.【点睛】 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.26.(1)2a =,定义域为()1,3-;(2)2【解析】【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域;(2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值. 【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =.故()()22log 1)g 3(lo f x x x =++-, 则1030x x +>⎧⎨->⎩,解得13x -<<,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦, 由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==. 【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.。

沈阳市高一上学期期中数学试卷(兴国班)(II)卷

沈阳市高一上学期期中数学试卷(兴国班)(II)卷

沈阳市高一上学期期中数学试卷(兴国班)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015高一下·兰考期中) 与405°角终边相同的角是()A . k•360°﹣45°,k∈ZB . k•360°﹣405°,k∈ZC . k•360°+45°,k∈ZD . k•180°+45°,k∈Z2. (2分)如果且,则()A .B .C . 6D . 83. (2分) (2018高二下·虎林期末) 已知定义在上的奇函数满足 ,且当时, . ()A .B .C .D .4. (2分)已知a=2 ,b=log3 ,c=log ,则()A . a>b>cB . a>c>bC . c>a>bD . c>b>a5. (2分) (2020高一上·武汉期末) 如图所示,扇形OAB中,弦AB的长等于半径,则弦AB所对的圆心角的弧度数满足()A .B .C .D . 以上都不是6. (2分) (2019高三上·凉州期中) 函数的最小值和最大值分别为()A . ,B . ,C . ,D . ,7. (2分)设是一个任意角,它的终边与单位圆交于点,由此定义了正弦()、余弦()、正切(),其实还有另外三个三角函数,分别是:余切()、正割()、余割(). 则下列关系式错误的是()A .B .C .D .8. (2分)(2017·湖北模拟) 设,,均为非零向量,已知命题p: = 是• = •的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是()A . p∧qB . p∨qC . (¬p)∧(¬q)D . p∨(¬q)9. (2分)(2018·河北模拟) 将函数图像上的所有点向右平移个单位长度后得到函数的图像,若在区间上单调递增,则的最大值为()A .B .C .D .10. (2分)函数图象的一条对称轴在内,则满足此条件的一个值为()A .B .C .D .11. (2分)如图,在长方形ABCD中,AB=, BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为()A .B .C .D .12. (2分) (2015高一上·衡阳期末) 已知函数f(log4x)=x,则等于()A .B .C . 1D . 2二、填空题 (共4题;共5分)13. (1分)已知cos2α= (其中α∈ ),则sinα的值为________.14. (1分) (2016高三上·湛江期中) 如图,角α的始边与x轴的非负半轴重合,终边与单位圆交于点A (x1 , y1),角β=α+ 的终边与单位圆交于点B(x2 , y2),记f(α)=y1﹣y2 .若角α为锐角,则f (α)的取值范围是________.15. (2分) (2016高二下·宁波期末) 已知定义在R上的奇函数f(x)= ,则f(1)=________;不等式f(f(x))≤7的解集为________.16. (1分) (2016高一下·浦东期中) 函数y=x2+1(x≤﹣2)的反函数为________.三、解答题 (共6题;共60分)17. (15分) (2016高一上·杭州期中) 求下列各题:(1)计算:;(2)计算lg20+log10025;(3)求函数的定义域.18. (5分) (2016高二上·蕉岭开学考) 已知向量 =(sinθ,﹣2)与 =(1,cosθ)互相垂直,其中θ∈(0,).(Ⅰ)求sinθ和cosθ的值;(Ⅱ)若sin(θ﹣φ)= ,0<φ<,求cosφ的值.19. (10分)计算题(1)已知tan α= ,求的值;(2)化简:.20. (15分) (2019高一上·东至期中) 已知是定义在上的奇函数,且 ,若a, ,时,有成立.(1)判断在上的单调性,并用定义证明;(2)解不等式:;(3)若对所有的 ,以及所有的恒成立,求实数的取值范围.21. (10分) (2016高二下·新疆期中) 已知函数f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).(1)当a=1,求函数f(x)的最大值(2)当a<0,且对任意实数x1,x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.22. (5分) (2016高一上·南京期中) 函数f(x)=x2+x﹣2a,若y=f(x)在区间(﹣1,1)内有零点,求a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、。

人教A版数学必修一辽宁省沈阳市第二中学高一上学期期中考试试题.docx

人教A版数学必修一辽宁省沈阳市第二中学高一上学期期中考试试题.docx

第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x -1>0},B ={y |y =2x },则A ∩B =( )A .{x |x >1}B .{x |x >0}C .{x |x <-1}D .∅ 2.下列各组函数中,表示同一函数的是( )A .y =1,y =x 0B .y =lgx 2,y =2lgx C .y =|x|,y =(x )2 D .y =x ,y =33x3.已知x ,y 为正实数,则( )A. 2lg x +lg y=2lg x +2lg y B. 2lg(x +y )=2lg x ·2lg y C. 2lg x ·lg y=2lg x +2lg y D. 2lg(xy )=2lg x ·2lg y4.函数y =的定义域是( )A .[1,+∞)B .(0,+∞)C .[0,1]D .(0,1]5.函数y =x 2与函数y =|lg x |的图象的交点个数为( )A .0B .1C .2D .36.函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)7.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是( )A. 过A 有且只有一个平面平行于a 、bB. 过A 至少有一个平面平行于a 、bC. 过A 有无数个平面平行于a 、bD. 过A 且平行a 、b 的平面可能不存在8.幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A .)2(21x x f +>2)()(21x f x f + B .)2(21x x f +<2)()(21x f x f + C .)2(21x x f +=2)()(21x f x f + D .无法确定9.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f (f (1e2))的值为( )A.1ln 2 B .-1ln2C .-ln 2D .ln 210.f (x ),g (x )分别是R 上的奇函数、偶函数,且f (x )-g (x )=e x ,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)11.定义在R 上的函数R x x fx f ∈-且对于任意的反函数为),()(1,都有=-+-=+---)4()1(,3)()(11x fx fx f x f 则( )A .0B .-2C .2D .42-x12.设定义域为R 的函数()()()⎪⎩⎪⎨⎧=≠+=--11121x ax x f x ,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是( )A .(0,1)B .(0,32) C .(1,2) D .(1,32)∪(32,2)第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.1324lg lg 8lg 45293-+=_____________14.若幂函数y =(m 2-3m +3)x 21m m --的图象不过原点,则实数m 的值是________.15.知a =23.0,b =3.0log2,c =20.3,则a ,b ,c 三个数的大小关系是________ (按从小到大的顺序排列).__________)ln()(),0(21)(.1622的取值范围是则轴对称的点,的图像上存在关于a y a x x x g x e x x f x ++=<-+=三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(满分10分)已知集合A ={x |18≤2x +1≤16},B ={x |m +1≤x ≤3m -1}.(1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围. 18.(满分12分)如图,在三棱锥S ABC -中,D 、E 、F 分别是棱AC 、BC 、SC 上的点, 且2CD DA =,2CE ES =,2CF FB =,G 是AB 的中点.求证:SG ∥平面DEF19.(满分12分)已知函数f (x )=log a (ax -x )(a >0,a ≠1为常数).(1)求函数f (x )的定义域;(2)若a =2,x ∈[1,9],求函数f (x )的值域. 20.(满分12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )的零点; (2)若f (x )有零点,求a 的取值范围. 21.已知函数9()log (91)x f x kx =++(k ∈R )是偶函数. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x b =+没有交点,求b 的取值范围;(3)设()94()log 33x h x a a =⋅-,若函数()f x 与()h x 的图象有且只有一个公共点,求实数a的取值范围.22.已知12()|31|,()|39|(0),x x f x f x a a x R =-=⋅->∈,且112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩ (1)当a =1时,求()f x 的解析式;(2)在(1)的条件下,若方程0)(=-m x f 有4个不等的实根,求实数m 的范围; (3)当29a ≤<时,设2()()f x f x = 所对应的自变量取值区间的长度为l (闭区间[m ,n ]的长度定义为m n -),试求l 的最大值.沈阳二中2014——2015学年度上学期期中考试高一(17 届)数学答案于是-3≤x +1≤4,-4≤x ≤3,则A ={x |-4≤x ≤3}. -----------5 (2)若B =∅,即m +1>3m -1,即m <1时,满足题意,----------------------7 若B ≠∅,即m +1≤3m -1,即m ≥1时, ⎩⎨⎧m +1≥-43m -1≤3得-5≤m ≤43,即1≤m ≤43,综上,实数m 的取值范围为(-∞,43].-------------------------------1018.略 ------------------------12 19.解:(1)ax -x >0⇒x (a x -1)>0,∵x >0,∴a x -1>0,∵a >0,∴x >1a.∴x >1a 2,所以定义域为(1a2,+∞).----------------------------------6(2)a =2时,f (x )=log 2(2x -x ),令2x -x =t 则t =2x -x =2(x -14)2 18---------------------------------8因为x ∈[1,9],所以t ∈[1,15],----------------------------------10 所以log 21≤log 2(2x -x )≤log 215,即0≤f (x )≤log 215所以函数f (x )的值域为[0,log 215].--------------------------12 20.解:(1)当a =1时,f (x )=2·4x -2x -1.令f (x )=0,即2·(2x )2-2x-1=0,解得2x=1或2x=-12(舍去).∴x =0,∴函数f (x )的零点为x =0. --------------------------4 (2)解法一:若f (x )有零点,则方程2a ·4x -2x -1=0有解----------------6 于是2a =2x +14x=(12)x +(14)x ----------------------------------------------------------10 ∵(12)x >0,∴2a >14-14=0,即 a >0.------------------------------12-------------------------------------------10 综上所述,所求实数a 的范围是(0,+∞). --------------------------12 21.(1) 因为()y f x =为偶函数,所以,()()x f x f x ∀∈-=-R , 即 99log (91)log (91)x x kx kx -+-=++对于x ∀∈R 恒成立.于是9999912log (91)log (91)log log (91)9x xxx x kx x -+=+-+=-+=-恒成立, 而x 不恒为零,所以12k =-. ------------------------------------4(2) 由题意知方程911log (91)22x x x b +-=+即方程9log (91)x x b +-=无解.令9()log (91)x g x x =+-,则函数()y g x =的图象与直线y b =无交点.因为99911()log log 199x x x g x ⎛⎫+==+ ⎪⎝⎭()g x 在(),-∞+∞上是单调减函数. 因为1119x +>,所以91()log 109x g x ⎛⎫=+> ⎪⎝⎭.所以b 的取值范围是(],0.-∞---------------8(3) 由题意知方程143333x x x a a +=⋅-有且只有一个实数根.令30x t =>,则关于t 的方程24(1)103a t at ---=(记为(*))有且只有一个正根.-----------10若a =1,则34t =-,不合, 舍去;若1a ≠,则方程(*)的两根异号或有两相等正跟.由304a ∆=⇒=或-3;但3142a t =⇒=-,不合,舍去;而132a t =-⇒=;方程(*)的两根异号()()110 1.a a ⇔-⋅-<⇔> 综上所述,实数a 的取值范围是{3}(1,)-+∞U . -------------------------------------------------------------------12(2)m x f =)(,可画出=y )(x f 和m y =的图像,由数形结合可知,当)1,0(∈m 时方程0)(=-m x f 有4个不等的实根 -----6 (3)当39log x a≥时,因为390x a ⋅-≥,310x ->, 所以由21()()(39)(31)(1)380x x x f x f x a a -=⋅---=--≤,解得38log 1x a ≤-, 从而当3398log log 1x a a ≤≤-时,2()()f x f x = 当390log x a≤<时,因为390x a ⋅-<,310x -≥,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳二中2020-2021学年度上学期期中考试高一(15届)数学试题命题人:金玉花、刘锐、杨宁生 审校人:刘锐、杨宁生说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷 (选择题 共60分)一 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设不等式2-0x x ≤的解集为M ,函数()ln(1-||)f x x =的定义域为N ,则M N 为( )A .[0,1)B 。

(0,1)C 。

[0,1]D 。

(-1,0]2. 若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f (1)=-2 f (1.5)=0.625 f (1.25)=-0.984 f (1.375)=-0.260 f (1.438)=0.165f (1.4065)=-0.052那么方程x 3+x 2A .1.2 B.1.3 C .1.4 D.1.5 3. 设5=log 4a ,25b=log 3(),4c=log 5,则( )A .a <c <b B.b <c <a C .a <b <c D.b <a <c 4.已知幂函数2-2-3=,(m Z)m m y x∈的图像与x 轴,y 轴没有交点,且关于y 轴对称,则m =( )A.1B.0,2C.-1,1,3D.0,1,25. 已知定义域为R 的函数()f x 在(2,+)∞上为增函数,且函数=(+2)y f x 为偶函数, 则下列结论不成立的是( )A .(0)(1)f f >B .(0)(2)f f >C .(1)(2)f f >D .(1)(3)f f > 6.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度7.函数1=(2y 的单调递增区间是( ) A .1[-1,]2B 。

(-,-1]∞C 。

[2,+]∞D 。

1[,2]28.已知函数()f x 满足:x ≥4,则1()()2xf x =;当x <4时()=(+1)f x f x , 则2(2+log 3)f =( ) A.124 B.112 C.18 D.389. 已知函数224,0()4-,0x x x f x x x x ⎧+≥=⎨<⎩若2(2-)>()f a f a 则实数a 的取值范围是( ) A .--12+∞∞(,)(,) B 。

-12(,) C 。

-21(,) D 。

--21+∞∞(,)(,)10. 若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(-∞,-52) B.(52,+∞) C .(-∞,-2)∪(2,+∞)D.(-52,+∞)11. 函数x -xx-xe +e y =e -e 的图像大致为( ).12. 若函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2(12)x -1,x <2是R 上的单调减函数,则实数a 的取值范围是( )A .(-∞,2) B.(-∞,138] C .(0,2) D.[138,2) 第Ⅱ卷(非选择题 共90分)二 填空题 (本大题共4小题,每小题5分,共20分)= .14.已知函数2log (0)(),3(0)xx x f x x >⎧=⎨<⎩则1(())4f f = .AD15.已知18log 9,185,ba ==则36log 45= (用,ab 表示).16.给出下列4个条件(1)01,(,0)a x <<⎧⎨∈-∞⎩(2)01,(0,)a x <<⎧⎨∈+∞⎩(3)1,(,0)a x >⎧⎨∈-∞⎩(4)1,(0,)a x >⎧⎨∈+∞⎩能使21log a y x =为单调减函数的是 .三 .解答题:本大题共6小题,满分74分,写出必要文字说明和演算步骤 . 17.(本题满分10分) (1)计算:1——2038110.25+-lg16-2lg5+()2723() (2)解方程:22log (9-5)log (3-2)2x x=+18.(本题满分12分) 已知对任意x R ∈,不等式222x -mx+m+4x +x11>()22恒成立,求实数m 的取值范围。

19. (本题满分12分)已知函数f (x )=(12x -1+12)x 3.(1)求f (x )的定义域. (2)讨论f (x )的奇偶性.20. (本题满分12分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km). (1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;21. (本题满分12分设121-(x)=log -1axf x 为奇函数,a 为常数, (1)求a 的值;(2)证明()f x 在区间(1,+)∞上单调递增;(3)若[3,4]x ∈,不等式1()()2xf x m >+恒成立,求实数m 的取值范围。

22.(本题满分12分)已知函数()f x 对任意实数x y 、都有()=()()f xy f x f y ,且(-1)=1f ,(27)=9f , 当0<1x ≤时,()[0,1)f x ∈。

(1)判断()f x 的奇偶性;(2)判断()f x 在[0,+∞)上的单调性,并给出证明; (3)若0(+1)a f a ≥≤且a 的取值范围。

2012—2013学年度上学期期中考试 高一(15届)数学答案二、填空题: 13.1;14.19;15.22b a-;16.(1)(4). 三、解答题:17. (1) 解:原式=333316+-lg 4-lg 25+1=16+-2+1=222(2) 解:原方程可化为:22log (9-5)log 4(3-2)x x=则原方程等价于x x 3-2>0.....9-5>09-5=4(3-2)xx ⎧⎪⎨⎪⎩x 2(3)-43+3=0x ∴,即x x (3-3)(3-1)=0,x 3>2,x 3=3∴,1x ∴=18. 解:由题意得,不等式222x -++4+11>()22mx m x x对x R ∈恒成立, ∴x 2+x <2x 2-mx +m +4对x ∈R 恒成立, ∴x 2-(m +1)x +m +4>0对x ∈R 恒成立, ∴Δ=(m +1)2-4(m +4)<0. ∴m 2-2m -15<0,∴-3<m <5.19. 解: (1)由2x -1≠0⇒x ≠0,∴定义域为(-∞,0)∪(0,+∞);(2)f (x )=⎝⎛⎭⎫12x -1+12x 3可化为f (x )=2x+12·(2x -1)x 3,则f (-x )=2-x +12·(2-x -1)(-x )3=2x +12 ·(2x -1)x 3=f (x ), ∴f (x )=⎝⎛⎭⎪⎫12x -1+12x 3是偶函数;20.解: (1)由图象可知:当t =4时,v =3×4=12,∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2,当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上,可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150, t ∈(10,20],-t 2+70t -550, t ∈(20,35].21. 解:(1)∵(-x)=-f(x)f ,∴1112221+1--1log =-log =log --1-11-ax ax x x x ax ∴1+-1=--11-ax x x ax,即(1)(1-)-(1)(-1ax ax x x +=+), ∴=-1a (2)∵1122+12(x)=log =log (1+)-1-1x f x x ,(>1x ),设121<<x x ,则21=->0x x x ∆ ∵1222(1+)>(1+)>1-1-1x x ,∴11122222log (1+)<log (1+)-1-1x x ∴21=f()-f()>0y x x ∆,()f x 在区间(1,+)∞上单调递增 (3)设12+11(x)=log -()-12xx g x ,则(x)g 在[3,4]上是增函数 ∴(x)>g m 对[3,4]x ∈恒成立,∴<(3)=m g -9822. 解:(1)令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数。

(2)设120<x x ≤,∴120<1x x ≤,1112222()()()()x x f x f x f f x x x ==,当0x ≥时,2()()()[()]0f x f x f x f x ==≥,()f x 不恒为零。

∵0<1x ≤时,()[0,1)f x ∈,∴12()<1x f x ,∴f (x 1)<f (x 2), 故f (x )在(0,+∞)上是增函数。

(3)∵f (27)=9,又, ∴,∴,∵,∴,∵,∴,又,故。

优质资料精心挑选。

相关文档
最新文档