粉体密度及流动性ppt课件

合集下载

第章粉体学基础PPT课件

第章粉体学基础PPT课件
粒度分布为重量基准。
有效径的测定法还有离心法、比浊法、沉降天平法、光扫描 快速粒度测定法等
26
4.比表面积法(specific surface area method)
原理:粉体比表面积与粒径关系 • <100μm,吸附法、透过法,不能得到粒度分布
5.筛分法(sieving method)
• 粒径与粒径分布的测量中应用最早、最广,且简单、快 速的方法,> 45μm,重量基准。
• DH—Heywood 径(DH=(4A/π)1/2) • L-粒子的投影周长。
33
(二)形状系数
• 将平均粒径为D,体积为Vp,表面积为S的粒 子的各种形状系数(shape factor)表示如下。
• 1.体积形状系数 v Vp / D3
• 球体体积形状系数?立方体?
• 2.表面积形状系数 • 球体?立方体?
21
• 筛分法测定累积分布时,以筛下粒径累计的 分布叫筛下分布(undersize distribution); 以筛上粒径累积的分布叫筛上分布(oversize distribution)。
• 筛上累积分布函数F(x)和筛下累积分布函数 R(x)与频率分布函数f(x)之间的关系式见课 本:P319 (13-4) (13-5) (13-6)
• 1.体积比表面积:单位体积粉体的表面积,Sv,

cm2/cm3。
Sv
s v
d 2n d 3 n
6 d
(13-13)
6
S-粉体粒子的总表面积 V-粒子的体积 d-面积平均径 n-粒子个数
36
2.重量比表面积:单位重量粉体的表面积,Sw,
cm2/g。
Sw
s w
d 2n d 3n

粉体的流动性PPT课件

粉体的流动性PPT课件
25
休止角
休止角是粉体堆积层的自由斜面在静止的 平衡状态下,与水平面所形成的最大角。
休止角的测定方法有: 注入法、排出法、容器倾斜法等等。
26
休止角的测定
常用的方法是固定圆锥法 (亦称残留圆锥法)。固 定圆锥法将粉体注入到某 一有限直径的圆盘中心上, 直到粉体堆积层斜边的物 料沿圆盘边缘自动流出为 止,停止注入,测定休止 角α。
流态在动有卸性整料。体过物流程料和中,从漏仓料斗内仓流物中两料卸种全部。出处就于是均依匀靠下降这的种运流动动状性态,。这种仓流
状态称为全流式流动或整体流。 若只有料仓的中心部分产生料流,而其他区域的物料停滞不动,流动 的区域呈漏斗状,流动沟道呈圆形截面,其底部截面大致相当于卸料 口面积,这种仓流状态这种仓流状态称为穿流式流动或漏斗流。
流动性的评价方法
瓶或加料斗中的流出 流出速度,壁面摩擦角 重力流动 旋转容器型混合器,充填 休止角,流出界限孔径
振动流动
振动加料,振动筛 充填,流出
休止角,流出速度, 压缩度,表观密度
压缩流动
压缩成形(压片)
压缩度,壁面摩擦角 内部摩擦角
流化层干燥,流化层造粒 流态化流动 颗粒或片剂的空气输送 休止角,最小流化速度
2、将粉体样品加入 槽内,直至加满;
3、调整螺旋升降杆, 使刮刀升起;
4、用量角器量出测 角指针所指的角度。
6 刮铲刀杆 7 刮铲角测定台 8 螺旋升降杆
装粉槽 量角器等
37
综合指数的测定
压缩率的测定
测定装置
1、样品放入上圆筒 中,样品通过筛网落 入下圆筒中;
2、下圆筒加满,取 下;
3、刮刀刮去多余粉 体,称量样品质量。
评价方法
1、信息量大,对粉体的处理有直接的参考作用; 2、只能表示和比较粉体物料的相对流动性。

粉体学和流变学PPT课件

粉体学和流变学PPT课件
15
粉体的充填
松密度与空隙率反映粉体的充填状态, 紧密充填时松密度大,空隙率小; 反之,松散充填时松密度小,空隙率大。
18
(二)影响粉体流动性的因素
1、粒度, 2、粒子形状、表面粗造性, 3、吸湿性 4、加入润滑剂
20
吸湿性
Hale Waihona Puke 吸湿性是指固体表面吸附水分的现象。 粉末吸湿后会导致粉末流动性下降; 但大量吸湿后粉末变成半流体,流动性增强。
21
临界相对湿度(CRH)
药物的吸湿特性可用吸湿平衡曲线来表示。 水溶性药物在相对湿度较低的环境下,几乎不吸
湿,而当相对湿度增大到临界相对湿度(CRH)时, 吸湿量急剧增加。
22
水溶性药物的吸湿平衡曲线
1-尿素 2-枸橼酸 3-酒石酸 4-对氨基水杨酸钠
CRH湿水溶性药物的特征性参数,几种水溶性药物混合后, 其吸湿性有如下特点:混合物CRH约等于各组分的乘积, 即
3
(一)粒子大小
2、比表面积径 3、有效径 4、平均粒径
5
(二)粒子径的测定方法
1、光学显微镜法(中国药典) 2、筛分法 3、库尔特记数法 4、沉降法(Stokes定律) 5、比表面积法
6
Stocks定律: V = 2 r2( 1- 2)g / 9
8
(三)粒度分布
9
三、粉体粒子的比表面积
29
压缩成形性
对于药物粉末来说,压缩性和成形性是紧密联系 在一起的,因此往往把粉体的压缩性和成形性简 称为压缩成形性。
压缩成形性是粉体的重要性质;压缩成形过程是 一个复杂过程,其机制尚未完全清楚。
30
第二节、流变学概述
流变学是研究物体变形和流动的 科学。

第三章粉体力学PPT课件

第三章粉体力学PPT课件

② 在球(球径Dp )与平面间的范德华力
FV
AD p 6l 2
③ 在不同直径的球之间范德华力:
FV
A 12l2
( DP1DP2 ) DP1DP2
A-常数,是材料的固有性质,通常在10-19 J数量级内
6其中一个荷正电 q1,另一个荷 负电 q 2 (库仑单位),两球之间的静电吸引力:
中发现当速度降低时,动摩擦系数值逐渐增加直至达到静摩擦系数值)。
10
3.3 粉体的摩擦角特性
由于颗粒间的摩擦力和内聚力而形成的角统称为摩 擦角。摩擦角分为四类:内摩擦角、安息角、壁面摩擦 角、滑动摩擦角和运动摩擦角. 几种摩擦角的区别:
内摩擦角:反映粉体在密实堆积状态下的颗粒间摩擦特性。
安息角:反映粉体在松散堆积状态下的颗粒间摩擦特性。 壁面摩擦角:反映粉体在密实堆积状态下的颗粒与其它接触体之间的
3
3.1 粉体颗粒接触点上的间力
颗粒接触点上的作用力:使密集态粉体形成一定强度的 力(能抵抗粉体变形、流动的力)
粉体从静止状态到开始变形流动有一个过程,这是 粉体具有一定强度造成的。而粉体的强度是由颗粒间接 触点上存在内聚力和摩擦力所形成的,即内聚力与摩擦 力与促使粉体变形、流动的力相对抗。
4
3.1.2 颗粒间的内聚力
8
图8-1 不同尺寸分离球间液体桥联的粘聚模型
9
3.2 固体表面间的摩擦力 摩擦力等价于由一个固体对抗与其接触的另一个固体运动的 阻力。这个力正切于接触面。 静摩擦系数是物体即将运动时的最大摩擦力与相应的正压力 之比值。 动摩擦系数是两个相对运动的表面间摩擦力与接触面上的正 压力之比值
若不考虑颗粒间内聚力(粘性力)的非线性影响 ,那么就有: ① 摩擦力不取决于接触的表观面积,而仅仅正比于表面上的正荷载; ② 动摩擦系数不取决于相对滑动速度,而且它比静摩擦系数小(但实验

第四章-粉体动力学-PPT

第四章-粉体动力学-PPT
m为料斗形状系数,轴对称圆锥料斗=1,平面对称楔 形料斗=0
料斗中不起拱而流动的 判锯
• 流动函数法: – 在料斗中不起拱而流动的条件是 FF>ff,否则就会起拱堵塞.
– 即在同一预压实应力下, 1 fc 才保证不起拱。
– 如图,粉体a中FF与斗仓 – ff相交于点A,A点为临界 – 流动点,即A左边粉体能 – 流动,右边属于不动区, – 通常改变物料性质或料 – 斗结构就能得到较大的 – FF值和较小的ff值,物料 – 就流出。
第四章 粉体动力学
A、分子间力(London-Vander Weals力) 当颗粒间距小到与分子间距相当时,由于分子力作
用而产生粘附,而各种情况下的分子计算可采用Hamker 理论公式,Bradly公式进行
Bradly公式: F A ( d1d 2 ) 12 a2 d1 d 2
其中d1、 d2为颗粒径,a为颗粒间距,A为常数=10-13~10-12
第四章 粉体动力学
0.
F
2
R2
R2 2
1 (
R1
)
R2
0. f 4r 1 tan( 2)
第四章 粉体动力学
C、静电粘附力(Coulomb fozce)
带有相反电荷的颗粒会产生吸引力
F
QQ 12 d2
(1
2
a) d
其中Q1 Q2 为电荷量,d为颗粒径 ,a为颗粒间
外缘距离。
当d>>a时,则 1 2 a d 1 其中 为表面电荷密度
将载有物料的壁板一端徐徐升起,当物料开始下滑时的板倾角即为下滑 角,由于物料不全滑落,通常这一方法偏大,一般以90%的物料滑落下时作为 实际滑动角称滑动摩擦系数
第四章 粉体动力学

粉体力学流态化课件

粉体力学流态化课件
流化床燃烧技术通过将燃料与大量惰性颗粒混合,在流化状态下进行燃烧,能够实 现燃料与空气的充分混合,提高燃烧效率。
流化干燥技术
流化干燥技术是一种高效、节能的干燥技术,广泛应用于化工、制药、 食品等领域。
流化干燥技术利用流态化原理,将湿物料置于流化床上,通过热空气或 其它热源加热,使物料中的水分蒸发并带走热量,实现物料的干燥。
VS
传质特性
在流态化过程中,固体颗粒的运动和混合 促进了物质传递过程,提高了传质效率。
05
粉体流态化的影响因素
颗粒的物理性质
颗粒形状
颗粒的形状影响其与流体的相 互作用,进而影响流态化行为 。例如,球形颗粒具有最小的 流动阻力,而不规则形状颗粒 可能导致更高的流动阻力。
颗粒大小和粒度分布
颗粒的大小和粒度分布影响流 体的穿透能力和颗粒间的相互 作用,从而影响流态化效果。
流体压力
流体压力影响流体作用于颗粒的 力,从而影响流态化效果。较高 的流体压力可能导致更好的流态 化效果。
操作条件的影响
温度
温度影响流体的粘度和颗粒的物理性质,从而影响流态化 效果。在一定范围内,较高的温度可能导致更好的流态化 效果。
压力
压力影响流体的流动特性和颗粒的物理性质,从而影响流 态化效果。在一定范围内,较高的压力可能导致更好的流 态化效果。
安息角是粉体堆积形成的锥体坡面与水平面之间的夹 角,反映了粉体的松散性和稳定性。
摩擦角和安息角是评价粉体流动性的重要参数,对于 粉体的运输、装填、搅拌等工艺过程具有指导意义。
粉体的屈服值
屈服值是指粉体在受到压力时 开始发生形变所需的力值。
屈服值反映了粉体抵抗形变的 能力,是衡量粉体力学稳定性 的重要参数。
了解粉体的屈服值有助于优化 粉体加工工艺,防止粉体在加 工过程中发生形变或破坏。

粉体的密度及流动性

粉体的密度及流动性
壁摩擦角测定方法
4、滑动角 angle of lide 滑动角代表散体与倾料固体表面的摩擦特性。此角在研究捕
集于旋风分离器或料斗中的颗粒沿器壁下降摩擦时将用到,但是 散体几乎不会一次全部降落,滑动角值的范围相当宽,因此需求 出滑落的散体量与滑动角之间的关系。
滑动角的测量是将载有散体的平板逐渐倾斜,当散体开始滑 动时,平板与水平面间的夹角即滑动角。
比重瓶法是一种应用液相置换的方法测定颗粒的真密度或表观
密度的方法,测定的设备包括比重瓶,精密天平,真空系统和恒
温系统。测定时,称出空比重瓶的质量m,再加入约1/3瓶容量的 试样并称其质量 (试样+瓶) m1 ,然后注入部分湿润介质,轻微振 荡,待试样充分湿润后,继续注入介质直到将瓶注满。接着进行
真空脱气,脱气时间约30分钟,脱气时的真空度约2kPa,脱气后 注入介质至刻线处,盖严瓶盖,擦干、称量,其质量为m2 ,比重 瓶的体积V(cm3)按式(3-1)计算。
存储粮食的各 种料仓结构
搅拌机中沙石混合
2、内摩擦角 angle of internal friction 表示散体内部颗粒层间的摩擦特性。如考虑散体内部的某一
点,则四周散体对该点将产生产力作用。现假定取通过该点的任 一平面,求出作用于该面上的垂直应力σ与切线应力τ之间的关系, 则在极限平衡状态下,多数散体存在如下关系:
MT1001多功能粉体物性分析仪
粉体的流动特性
散体即使处于静止状态,也是一种两相并存的体系。如果将散体从一容器 注入另一容器中,不仅会出现固体颗粒的交换,同时也会伴随有颗粒间隙中流 体的交换。此外,散体中颗粒之间以及颗粒同边界表面的摩擦将会产生一些特 殊的现象,这些对设计散体加工设备,将是十分重要的。
V m3 m (1)

(粉体力学)3粉体静力学5流动性

(粉体力学)3粉体静力学5流动性

粉体的流动模型
剪切流动模型
描述粉体在剪切力作用下 的流动行为,如料仓中物 料在压力差作用下的流动。
压缩流动模型
描述粉体在压缩状态下流 动的行为,如管道中粉体 的流动。
膨胀流动模型
描述粉体在膨胀状态下流 动的行为,如气体在粉体 中的扩散。
粉体的流动参数
流动函数
描述粉体流动性的参数,与休止角、安息角、滑角等 参数相关。
较大。
孔隙率
03
粉体中的孔隙率是指颗粒间的空隙占整个粉体体积的百分比,
孔隙率对粉体的力学性能和流动性有重要影响。
粉体的应力分析
压力
在粉体力学中,压力是指垂直作 用在粉体表面单位面积上的力, 其大小取决于粉体的粒径、密度 和外力的大小。
剪切力
当粉体受到剪切力作用时,颗粒 之间会发生相对位移,剪切力的 大小与颗粒间的摩擦系数、外力 和接触面积有关。
粉体力学之粉体静力学与 流动性
• 粉体静力学概述 • 粉体的流动性 • 粉体静力学与流动性的关系 • 粉体静力学与流动性的实验研究 • 粉体静力学与流动性的工程应用
01
粉体静力学概述
粉体的基本性质
粒径分布
01
粉体由大量固体颗粒组成,颗粒的粒径大小和分布情况是粉体
的基本性质之一。
密度
02
粉体的密度是指单位体积内粉体的质量,不同粉体的密度差异
煤粉燃烧中的粉体静力学 与流动性应用
煤粉燃烧是火力发电厂的重要环节之一,涉 及到煤粉的储存、输送和喷射等过程。在这 些过程中,粉体的静力学和流动性同样发挥 着关键作用。通过优化煤粉的静力学和流动 性特性,可以提高煤粉燃烧的效率和经济性
,降低环境污染。
THANKS
感谢观看

粉体学基础PPT教学课件

粉体学基础PPT教学课件
s d n 6 Sv 3 d v d n 6 .
2
27
2.重量比表面积
单位重量粉体的表面积,Sm,cm2/g。
Sw s d 2 n 6 3 d n w d 6
比表面积是表征粉体中粒子粗细的一种量 度,也是表示固体吸附能力的重要参数。可用 于计算无孔粒子和高度分散粉末的平均粒径。 比表面积不仅对粉体性质、而且对制剂性质和 药理性质都有重要意义。
II: Krummbein径 定方向最大径,即在 一定方向上分割粒子 投影面的最大长度。
. 9
II: Martin径
定方向等分径,即 一定方向的线将粒 子的投影面积等份 分割时的长度。
(3)Heywood径
投影面积圆相当径,即 与粒子的投影面积相同 圆的直径,常用DH表示。
.
10
(4)球相当径
体积等价径,与粒子的体积相同的球体直径, 用库尔特计数器测得。记作DV,粒子的体积 V=DV3/6。
. 7

对于一个不规则粒子,其粒子径的测 定方法不同,其物理意义不同,测定值也 不同。
(一)粒子径的表示方法
1.几何学粒子径 根据几何学尺寸定义的粒子径。 (1)三轴径 长轴径L 、短轴径b 、厚度h 反映粒子的实际尺寸。
. 8
(2)定方向径(投影径) I: Feret径(或Green径)
定方向接线径,即一 定方向的平行线将粒 子的投影面外接时平 行线间的距离。
2.筛分径
又称细孔通过相当径。当粒 子通过粗筛网且被截留在细 筛网时,粗细筛孔直径的算 术或几何平均值称为筛分径。 记作DA。
.
ab DA 2
DA ab
11
• a:粗筛网直径,b:细筛网直径。粒径范围, 即(-a+b ),表示粒径小于a,大于b。

粉体的流动性

粉体的流动性
Your site here
(3)Heywood径:投影面积圆相当径,即与粒子的投 影面积相同圆的直径,常用DH表示。
(4)体积等价径(equivalent volume diameter):与粒 子的体积相同的球体直径,也叫球相当径。用库 尔特计数器测得,记作Dv。 粒子的体积V=πDv3/6
Your site here
2.库尔特计数法(coulter counter method)
❖将粒子群混悬于电解质溶液中,隔壁上设有一 个细孔,孔两侧各有电极,电极间有一定电压, 当粒子通过细孔时,粒子容积排除孔内电解质 而电阻发生改变。
❖利用电阻与粒子的体积成正比的关系将电信号 换算成粒径,以测定粒径与其分布。
❖测得的是等体积球相当径,粒径分布以个数或 体积为基准。
1.真密度与颗粒粒度的测定:常用的方法是用液 体或气体将粉体置换的方法。
(1)液浸法:采用加热或减压脱气法测定粉体 所排开的液体体积,即为粉体的真体积。当测 定颗粒密度时,方法相同,但采用的液体不同, 多采用水银或水。
(2)压力比较法 常用于药品、食品等复杂有 机物的测定。
Your site here
2.松密度与振实密度的测定
❖ 将粉体装入容器中所测得的体积包括粉体真体 积、粒子内空隙、粒子间空隙等。
❖ 测量容器的形状、大小、物料的装填速度及装 填方式等均影响粉体体积。
Your site here
(一)粒子径的表示方法
几何学粒子径 筛分径 有效径
1.几何学粒子径
表面积等价径
❖ 根据几何学尺寸定义的粒子径,一般用显微镜 法、库尔特计数法等测定。
(1)三轴径:在粒子的平面投影图上测定长径l与 短径b,在投影平面的垂直方向测定粒子的厚 度h。反映粒子的实际尺寸。

粉体特性PPT课件

粉体特性PPT课件

2021
3
一、 粉体的基本物理特性
• 粉体(powder):大量固体颗粒的集合体 – 具有原固体(bulk)的特性,如物质结构、密度等; – 粉体自身的特性:流动性、变形、高活性等
• 粉体颗粒(particle):物质本质结构不发生变化,分散的 固体最小单元。一次颗粒
• 团聚体(Agglomerate):在范德华力、毛细管力等作用下 团聚在一起的颗粒,粉体颗粒通常的存在形式。二次颗粒
• 平均粒径(mean diameter)
n
D f di di i1
• 标准差: f(di)(di d50)2
• 分布宽度: SPAN d90 d50
d10
2021
9
粉体粒度测试方法
• 沉降法 • 激光散射法 • 比表面积法 • X射线衍射线宽法(<500nm) • 小角X射线散射法( <100nm ) • 电镜观察统计 • 筛分
• 加热真空脱气后,通入吸附气体氮气,试样管置于液氮瓶 中,测试吸附曲线;
• 然后去掉液氮,测试脱附曲线; • 注入已知量的氮气,获得定标曲线; • 一般采用脱附曲线计算单分子层吸附量Vm
SM
NAVm Am Vmol M s
NA:阿伏伽德罗常数;Am:一个吸附分子所 占面积(16.2*10-20m2for N2);Vmol:气体摩尔 体积;Ms试样质量
• 固体ห้องสมุดไป่ตู้子运动时吸附层会随之一起 运动,而扩散层不然。两层的界面
叫做剪切面。该界面处的电位叫作 ξ电位。
• 电位分布: 0 exp x / 1
1/ 2
1
r 0kBT
F2
N
i
Z
2 i
κ-1:双电层厚度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
4、振实密度(tap density) ρbt
ρbt= w/V 填充粉体时,经一定规律振动或轻敲后测得 的密度称振实密度(tap density) ρbt。
若颗粒致密,无细孔和孔洞,则ρt = ρg 一般: ρt ≥ ρg > ρbt ≥ ρb
6
二、粉体密度的测定方法 (一)真密度与颗粒粒度的测定:
8
(二)松密度与振实密度的测定 将粉体装入容器中所测得的体积包括粉体真体积、 粒子内空隙、粒子间空隙等。 测量容器的形状、大小、物料的装填速度及装填 方式等均影响粉体体积。 不施加外力时所测得的密度为松密度 施加外力而使粉体处于最紧充填状态下所测得的 密度是振实密度。
9
(a) 装配图
(b) 流速漏斗 松装密度测定装置一
3.含湿量
适当干燥有利于减弱粒子间的作用力。
4.加入助流剂的影响
加入0.5%~2%滑石粉、微粉硅胶等助流剂可大大改善粉
体的流动性。但过多使用反而增加阻力。
24
3、内摩擦角 粉体层受力小,粉体层外观上不产生变化 作用力达到极限应力,粉体层突然崩坏 极限应力状态,由一对正压力和剪应力组成 在粉体层任意面上加一垂直应力,并逐渐增
12
四、粉体的填充率 在一定填充状态下,颗粒体积占粉体体积的比率
粉体 粉填 体充 填体 充的 体颗 积 M M 粒体 bg 积 bg
13
第二节 粉体的流动性 一、粉体的流动性 粉体的流动性(flowability)与粒子的形状、大小、 表面状态、密度、空隙率等有关。
粉体的流动包括重力流动、压缩流动、流态化流 动等。
加该层面的剪应力, 当剪应力达到某一值时, 粉体层将沿此面滑移。
25
库仑定律:在粉体层中,压应力和剪应力之间有 一个引起破坏的极限。 即在粉体层的任意面上加一定的垂直应力,若沿 这一面的剪应力逐渐增加,当剪应力达到某一 值时,粉体沿此面产生滑移。
(c) 量杯
10
(1) 漏斗 (2) 阻尼箱 (3) 阻尼隔板 (4) 量杯 (5) 支架
松装密度测定装置二
11
三、粉体的空隙率 空隙率(porosity)是粉体中空隙所占有的比率。 粒子内空隙率 内=(Vg-Vt ) / Vg =1-g / t 粒子间空隙率 间= ( V-Vg ) / V = 1- b/g 总空隙率 总= ( V -Vt ) / V =1- b/t
19
对于细颗粒,安息角与粉体从容器流出的速度、 容器的提升速度、转筒的旋转速度有关。 安息角不是细颗粒的基本物性
几点讨论:
球形颗粒: a =23~28°,流动性好。 规则颗粒: a≈30°, 流动性较好。 不规则颗粒: a ≈35°, 流动性一般。 极不规则颗粒:a >40°, 流动性差。
20
影响休止角的因素
(1) 颗粒的形状,粒子越接近于球形,其休止角 越小
(2) 颗粒的大小 (3 )粉体的填充状态
对于不同粉体,空隙率越大,填充越困难,休止角越大 对于同种粉体,空隙率越小,休止角越大(接触点增多)
(4) 振动 (5) 粉料中通入压缩空气时,休止角显著地减小
21
2、 流出速度(flow velocity) 是将物料加入漏斗中,测量全部物料流出所需的时 间,即为流出速度。 粉体流动性差时可加入100 μm的玻璃球助流。 流出速度越大,粉体流动性越好。
22
流出速度的测定
t MSR t S0 b
M:流出粉体的总质量 S:粉体比表面积 R:粗糙度系数 S0:小孔面积
23
粉体流动性的影响因素与改善方法
1.增大粒子大小
对于粘附性的粉状粒子进行造粒,以减少粒子间的接触点数,降低
粒子间的附着力、凝聚力。
2.粒子形态及表面粗糙度
球形粒子的光滑表面,能减少接触点数,减少摩擦力。
14
种类
现象或操作
流动性的评价方法
瓶或加料斗中的流出 流出速度,壁面摩擦角 重力流动
旋转容器型混合器,充填 休止角,流出界限孔径
振动流动 压缩流动
振动加料,振动筛 充填,流出
压缩成形(压片)
休止角,流出速度, 压缩度,表观密度
压缩度,壁面摩擦角 内部摩擦角
流化层干燥,流化层造粒
流态化流动
休止角,最小流化速度
常用的方法是用液体或气体将粉体置换的方法。 液浸法:采用加热或减压脱气法测定粉体所排开
的液体体积,即为粉体的真体积。
7
比重瓶法
测量原理:将粉体置于加有液体介质的容器中,并让液 体介质充分浸透到粉体颗粒的开孔中。根据阿基米 德原理,测出粉体的颗粒体积,进而计算出单位颗粒 体积的质量。
比重瓶法测定基本步骤: (1)比重瓶体积的标定 (2)粉体质量的称量 (3)粉体体积的测定
3
2、颗粒密度(granule density) ρg ρg = w/Vg
是指粉体质量除以包括开口细孔与封闭细孔在 内的颗粒体积Vg所求得密度。
4
3、松密度(bulk density) ρb
ρb= w/V
指粉体质量除以该粉体所占容器的体积V(堆积体 积:包括颗粒体积及颗粒之间空隙的体积)求得的 密度,亦称堆积密度(表观密度、容积密度)。
第三章 粉体密度及流动性
1
第一节 粉体的密度 一、粉体密度的概念 粉体的密度是指单位体积粉体的质量。
粉体的密度根据所指的体积不同分为: 真密度、颗粒密度、松密度
2
1、真密度(true density) ρt
材料在绝对密实状态下,单位体积的质量
ρt = w/Vt
是指粉体质量(w)除以不包括颗粒内外空隙 的体积(真体积Vt)求得的密度。
颗粒或片剂的空气输送
15
二、粉体流动性的评价与测定方法
粉体的摩擦角 粉体流动即颗粒群从运动状态变为静止状态所形 成的角是表征粉体流动状况的重要参数。
由于颗粒间的摩擦力和内聚力而形成的角统称为 摩擦角。
16
1、休止角(安息角)( angle of repose) 休止角是粉体堆积层的自由斜面在静止的平衡状 态下,与水平面所形成的夹角。 用表示, 越小流动性越好 可视为粉体的“粘度”
常用的测定方法: 注入法 排出法 倾斜角法
<
<
17
休止角的测定方法
将粉体注入到某一有限直径 的圆盘中心上,直到粉体堆 积层斜边的物料沿圆盘边缘 自动流出为止,停止注入, 测定休止角θ。
h
tan=h/r
rቤተ መጻሕፍቲ ባይዱ18
崩塌角:测定休止角后,将重物至某定高处自由 落下,使料堆产生振动,此时形成的锥角。
差角:休止角-崩塌角
相关文档
最新文档