第3章_光学谐振腔 PPT
合集下载
光学谐振腔
(c) TEM20
2009
18
第18页/共36页
激光谐振腔内电场横模分布示意图
TEM00
2009
19
第19页/共36页
激光谐振腔内电场横模分布示意图
TEM11
2009
20
第20页/共36页
激光多横模振荡示意图
2009
21
第21页/共36页
横模(自再现模)的形成
u1 u3 …
理想开腔:两块反射镜的
2009
11
第11页/共36页
激光器中出现的纵模数
• 工作原子自发辐射 的荧光线宽越大, 可能出现的纵模数 越多。
• 激光器腔长越大, 相邻纵模的频率间 隔越小,同样的荧 光谱线线宽内可以 容纳的纵模数越多。
2009
12
第12页/共36页
激光谐振腔内低阶纵模分布示意图
2009
13
第13页/共36页
2009
4
第4页/共36页
第一节 光学谐振腔的作用
1. 提供光学正反馈作用 : 2. 产生对振荡光束的控制作用
使得振荡光束在腔内行进一
改变腔的参数如:反射镜、几何形状、
次时,除了由腔内损耗和通 过反射镜输出激光束等因素
曲率半径、镜面反射率及配置
引起的光束能量减少外,还 能保证有足够能量的光束在
1.
• 纵模的测量方法:法卜里-珀洛F-P扫描干涉仪测量,实 验中利用球面扫描干涉仪
2009
23
第23页/共36页
纵模的测量方法:球面扫描干涉仪测量
测量原理:通过测量激光输出的频率谱来判定模式
2009
24
第24页/共36页
球面扫描干涉仪
第3章光学谐振腔理论
•
•
凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组
光学谐振腔的模式
氦氖激光器 0.6328 m 谱线宽度为 总 =1.3×109 HZ
因此,在总区间中,可以存在的纵模个数为 1.3 109 N 8 8 q 1.5 10
2.光学谐振腔的横模:电磁场在腔内横向存在多个模式(横模),它们 是经过一次往返传输能够再现的稳定电磁场 分布。一般的人们愿意使用具有最高对称性 的模(基模),标记为TEM00。其他模式TEMmn 可以使用窄的激光介质,反射镜尺寸等来抑 制。TEM00模的截面是对称的,强度是高斯分 布的。
..
在谐振腔中,光信号能多次反复地沿着 腔轴的方向通过工作物质,不断获得光放 大,信号越来越强,达到饱和, 形成激光输 出。
2.改善激光方向性。
凡是传播方向偏离腔轴方向的光子,很快逸 出腔外被淘汰,只有沿着腔轴方向传播的光子才 能在管中不断地往返运行而得到光放大,所以输 出激光具有很好的方向性。 3.改善激光单色性。 激光在谐振腔中来回反射,相干叠加,形 成以反射镜为波节的驻波。
二、光学谐振腔的模式:
光学谐振腔的几何尺寸远大于光的波长,因此 必须研究光的电磁场在谐振腔内的分布问题, 即所谓谐振腔的模式问题。 激光电磁场空间分布情况(模式)与腔结 构之间的关系,光场稳定的纵向分布称纵模, 横向分布称横模。
所谓模的基本特征,主要指的是: (1)每一个模的电磁场分布,特别是在腔的横 截面内的分布; (2)每一个模在腔内往返一次经受的相对功率 损耗; (3)与每一个模相对应的激光束的发散角。
2π Δ 2nL q 2 λ0
c q q 2nL
0
L q
n q 2 2
q
q =1,2,...
式中的n是谐振腔内介质折射率。
通常把由q值所表示的腔内的纵向场分布称为谐振腔 的纵模,不同的q值相应于不同的纵模。从式中可看 出,q值决定纵模的谐振腔频率。
第三章 光学谐振腔
L R1 L 2 L R1 R2
f2
L R1 L R2 L R1 R2 L 2 L R1 R2 2
L Rห้องสมุดไป่ตู้2 R2 L W1 L R1 L R1 R2 L W2 W0
/ rad 0.564
0.564
共焦腔He Ne激光器,波长 0.6328 m,腔长L 3cm,计算其远场发散角。
/ rad 0.564
f
0.564
2 1.15 10 3 rad L
a.当z 0时,Rz ; 束腰处的等相位面为平 面,曲率中心在无穷远 处;
2 2 远场发散角: 2 0 2 W0 L
准直距离z f处:WS 2W0
3.2 共焦光学谐振腔中基模的分布
一、基模高斯光束的基本性质
r2 r2 A0 z E00 x , y , z e xp 2 e xp ik z i arctan W z f W z 2 R z
与几何光学不同面上的光斑尺寸为入射光束在透镜前焦其中尺寸为透镜后焦面上的光斑其中根据光线可逆性原理与入射光束的形式无关的大小有关的大小只与光束经过透镜变换后入射光束的远场发散角三高斯光束的聚焦0102越小聚焦效果越好越大作用就能实现一定的聚焦只要满足1
第三章 光学谐振腔
3.1 共焦腔中的光束特性 3.2 共焦光学谐振腔中基模的分布
2 2 2 dW z 2z W0 2 2 2 z dz W0
1 2
W z 2W0
例:共焦腔CO2激光器,波长 10.6m,腔长L 1m,计算其远场发散角。
激光原理第三章 华中科技大学课件 光学谐振腔幻灯片课件
• 具有这样特点的腔被称为开放式光学谐振腔。 • 除此以外,还有由两块以上的反射镜构成的折叠腔与环形腔,以及由
开腔内插入光学元件的复合腔; • 对于常用的共轴反射镜腔,当满足前面得到的稳定性条件 0 g1g2 1
时,称为稳定腔;
• 当 g1g 2 0或g1g 2 1 时,称为非稳腔; • 当 g1g 2 0或g1g 2 1 时,称为临界腔;
严格的理论证明,只要满足条件 a2 / L 1 ,则腔 内损耗最低的模式仍可以近似为平面波,而 a2 / L
是光腔的菲涅尔数,它描述了光腔衍射损耗的大小。
3.2.1自由空间中的驻波
沿z方向传播的平面波可以表示为: 沿-z方向传播的平面波为:
e1(z,t) E0 cos 2 (t z / )
发生重叠时的电磁场分布为:
–分别以两个反射镜的曲率半径 为直径,圆心在轴线上,作反 射镜的内切圆,该圆称为σ圆;
–若两个圆有两个交点,则为稳 定腔;
–若没有交点,则为非稳腔; –若只有一个交点或者完全重合,
则为临界腔;
3.2光学谐振腔的模式
• 3.2.1平平腔的驻波
– 均匀平面波近似 一般的开放式光学谐振腔都满足条件:a , L 在满足该条件时,可以将均匀平面波认为是腔内存在 的稳定电磁场的本征态,为平行平面腔内的电磁场提 供一个粗略但是形象的描述;
• 自再现模经一次往返所发生的能量损耗定 义为模的往返损耗,它等于衍射损耗;
• 自再现模经一次往返所产生的相位差定义 为往返相移,往返相移应为2π的整数倍, 这是由腔内模的谐振条件决定的。
3.4.1开腔模式的物理概念
• 孔阑传输线
• 开腔物理模型中衍射的作用
– 腔内会随机的产生各种不同的模,而衍射效应将其中可以实现自 再现的模式选择出来;
开腔内插入光学元件的复合腔; • 对于常用的共轴反射镜腔,当满足前面得到的稳定性条件 0 g1g2 1
时,称为稳定腔;
• 当 g1g 2 0或g1g 2 1 时,称为非稳腔; • 当 g1g 2 0或g1g 2 1 时,称为临界腔;
严格的理论证明,只要满足条件 a2 / L 1 ,则腔 内损耗最低的模式仍可以近似为平面波,而 a2 / L
是光腔的菲涅尔数,它描述了光腔衍射损耗的大小。
3.2.1自由空间中的驻波
沿z方向传播的平面波可以表示为: 沿-z方向传播的平面波为:
e1(z,t) E0 cos 2 (t z / )
发生重叠时的电磁场分布为:
–分别以两个反射镜的曲率半径 为直径,圆心在轴线上,作反 射镜的内切圆,该圆称为σ圆;
–若两个圆有两个交点,则为稳 定腔;
–若没有交点,则为非稳腔; –若只有一个交点或者完全重合,
则为临界腔;
3.2光学谐振腔的模式
• 3.2.1平平腔的驻波
– 均匀平面波近似 一般的开放式光学谐振腔都满足条件:a , L 在满足该条件时,可以将均匀平面波认为是腔内存在 的稳定电磁场的本征态,为平行平面腔内的电磁场提 供一个粗略但是形象的描述;
• 自再现模经一次往返所发生的能量损耗定 义为模的往返损耗,它等于衍射损耗;
• 自再现模经一次往返所产生的相位差定义 为往返相移,往返相移应为2π的整数倍, 这是由腔内模的谐振条件决定的。
3.4.1开腔模式的物理概念
• 孔阑传输线
• 开腔物理模型中衍射的作用
– 腔内会随机的产生各种不同的模,而衍射效应将其中可以实现自 再现的模式选择出来;
《光学谐振腔》课件
挑战与机遇:新型光 学谐振腔在提高性能 、降低成本等方面面 临挑战,同时也带来 了新的机遇
未来展望:新型光学 谐振腔将在光学、光 电子学等领域发挥更 加重要的作用,具有 广阔的应用前景
面临的技术挑战和解决方案
挑战:光学谐振腔的尺寸和 重量
解决方案:采用先进的材料 和工艺,提高光学谐振腔的 稳定性和可靠性
添加标题
添加标题
添加标题
添加标题
光学测量:光学谐振腔可以用于 光学测量,如光谱分析、干涉测 量等
光学成像:光学谐振腔可以用于 光学成像,如显微镜、望远镜等
05
光学谐振腔的发展趋势和挑战
新型光学谐振腔的研究进展
研究背景:光学谐振 腔在光学、光电子学 等领域具有广泛应用
研究进展:新型光学 谐振腔的设计、制造 和测试技术不断取得 突破
在光通信中的应用
光通信:利用光波进行信息传输的技术 光学谐振腔:在光通信中用于提高光信号的传输效率和稳定性 应用领域:光纤通信、光缆传输、光网络等 应用效果:提高光信号的传输距离和传输速率,降低传输损耗和噪声干扰
在其他领域的应用
激光器:光学谐振腔是激光器的 核心部件,用于产生和放大激光
光学通信:光学谐振腔可以用于 光学通信,如光纤通信、自由空 间光通信等
实验结果与分析
实验目的:验 证光学谐振腔 的振腔、探 测器等设备进
行实验
实验结果:观 察到光学谐振 腔的共振现象, 验证了其特性
分析与讨论: 对实验结果进 行深入分析, 探讨光学谐振 腔的应用前景
和局限性
演示视频与教学素材
演示视频:提供 光学谐振腔的实 验演示视频,包 括实验步骤、实 验现象和实验结
优化目标:提高光学谐振腔 的性能和效率
光纤谐振腔ppt课件
2 2 2 2 E E E E 0r 0 2 2 2 2 x y z t
(6)
A E cos t kr r
(7)
1 当光波在介电中传播时,相速度 v r 0 0 其中 0 , r 是真空下的介电常数和介质中的相对介电常数。在一 般介质中,相速度是恒定的 ,但在某些介质中,相速
图1.1 光纤谐振腔的基本结构
图1.2 超高Q值的微环谐振腔 (1)光学微环谐振腔的原理 光学谐振腔主要由较低的功率输入积累而建立较强 的场,光束在谐振腔内不断的反射、聚焦,最终形成谐 振腔的模式。谐振腔的品质因数 Q 是对上述性质的一种 普遍通用的度量,它由如下关系定义为
Q ቤተ መጻሕፍቲ ባይዱ
谐振腔内所存储的场能 。 谐振腔内所耗散的功率
Ai A0 1 k 2 jk A 2 1 k r AL jk
(1)
其中,k 是耦合系数。通过长度为 2πR 反馈路径, 环形 谐振腔的输出与输入场强 Ar、Al 具有以公式 (2) 所 示的关系,其中 a 代表了通过一次谐振腔回路的强度损 耗,Φ代表了一次谐振腔回路的相位变化。将输入与输 出的光强进行相除,我们可以得到光学谐振腔的基本传 输特性如公式 (3) 所示。
f0 0 Q 0 f
(4)
临界耦合的条件是耦合进入谐振腔的光能量即耦 合损耗 Qe 等于腔内的转换为热能的能量即本征损耗 Qi。为了达到临界耦合,环形谐振腔的本征损耗 Qi 和耦合损耗Qe 必须要相等,这时谐振频率处功率为
零,谐振滤波深度可以达到最深。当耦合损耗大于本征 损耗时,是欠耦合状态,相反为过耦合。一般情况下, 在分叉复用器,滤波器,光学延迟线,生物传感检测上 都需要高的品质因数。
(6)
A E cos t kr r
(7)
1 当光波在介电中传播时,相速度 v r 0 0 其中 0 , r 是真空下的介电常数和介质中的相对介电常数。在一 般介质中,相速度是恒定的 ,但在某些介质中,相速
图1.1 光纤谐振腔的基本结构
图1.2 超高Q值的微环谐振腔 (1)光学微环谐振腔的原理 光学谐振腔主要由较低的功率输入积累而建立较强 的场,光束在谐振腔内不断的反射、聚焦,最终形成谐 振腔的模式。谐振腔的品质因数 Q 是对上述性质的一种 普遍通用的度量,它由如下关系定义为
Q ቤተ መጻሕፍቲ ባይዱ
谐振腔内所存储的场能 。 谐振腔内所耗散的功率
Ai A0 1 k 2 jk A 2 1 k r AL jk
(1)
其中,k 是耦合系数。通过长度为 2πR 反馈路径, 环形 谐振腔的输出与输入场强 Ar、Al 具有以公式 (2) 所 示的关系,其中 a 代表了通过一次谐振腔回路的强度损 耗,Φ代表了一次谐振腔回路的相位变化。将输入与输 出的光强进行相除,我们可以得到光学谐振腔的基本传 输特性如公式 (3) 所示。
f0 0 Q 0 f
(4)
临界耦合的条件是耦合进入谐振腔的光能量即耦 合损耗 Qe 等于腔内的转换为热能的能量即本征损耗 Qi。为了达到临界耦合,环形谐振腔的本征损耗 Qi 和耦合损耗Qe 必须要相等,这时谐振频率处功率为
零,谐振滤波深度可以达到最深。当耦合损耗大于本征 损耗时,是欠耦合状态,相反为过耦合。一般情况下, 在分叉复用器,滤波器,光学延迟线,生物传感检测上 都需要高的品质因数。
光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。
光学谐振腔
一次往返后 I1 I0e2
多种因素引起
1 ln I0 2 I1
i1 23
i
2. 光子平均寿命(定义)
往返t 时间后 I(t)I0et/R
腔内光强衰减为初始值的1/e所需时间。
24
光学谐振腔的描述参量
两者关系:
1.一平次均往单返程后损I耗1 因子I0de:2t=0,Im 光强为I0I0e,2mm次I往0e返后L'/tc
(2)选择损耗,随不同模式而异; (1), (3),(4)非选择损耗,对所有模式相同
22
光学谐振腔的描述参量
• 模式 纵模 横模 • 损耗 损耗机制 单程损耗 光子寿命 品质因子 纵模线宽
23
光学谐振腔的描述参量
二、损耗 Beer Law dI
1. 平均单程损耗因子(定义)d: Idz
I I0ez
q=2,
λ2 = 800nm, υ2= 3.75×1014 Hz ;
q=3,
λ3 = 533nm, υ3= 5.625×1014 Hz ;
注意:△υ=c/2ηL; υ32= υ21= 1.875×1014
14
光学谐振腔的描述参量
1、L=10 cm 的气体激光器
qq1q2 cL1.5190Hz
2、L=100 cm 的气体激光器(h=1)
光学谐振腔的描述参量
TEMmnq
m,n表示x方向、y方向(方镜) 或径、角向(圆)节线
基横模 空间相 干性最
好
各模斑上各点的偏振、相位相同
20
光学谐振腔的描述参量
• 模式 纵模 横模 • 损耗 损耗机制 单程损耗 光子寿命 品质因子 纵模线宽
21
光学谐振腔的描述参量
通信光电子基础第三讲光学谐振腔
小结
• 激光器的特性:单色性好,方向性强,相干性好, 强度高。
• 形成激光的三个要素:激光介质,光学谐振腔, 泵浦源。
• 闭腔变为开腔,大大减少谐振模式。 • Q因子描述谐振腔损耗特性。 • 珐布里-珀罗标准具是激光谐振腔的原始形式。 • 光学谐振腔中稳定传输的模式-空间高斯光束。
• 光学谐振腔中存在的电磁场模式可描述成厄密-高斯 (Hermite-Gaussian) 方程的解:
模式控制可进一步通过放大介质的工作频率范围来实现, 即原子介质仅在有限频率范围内能够实现放大辐射,一旦 频率超过该范围,即使具有高Q值,也不能被放大形成振荡。
中心频率位于,在d间隔内的模式数:
例如:V 1cm3, 31014 Hz, d 31010 Hz,
由(4.0 12)式可计算出N ~ 2109个模式。
例如:一维共振腔。
假设一个简单的共振腔,具有两个端面镜,横电磁波TEM传输,场分
布为:
e(z,t) E sint sin kz
(4.0 2)
谐振腔的共振频率取决于在z=0和z=L(端面上)处场为零(驻波场),
即 sin kmL 0,
kmL m , m 1,2,...
令km
m
c
n,
则共振频率为m=
m
c
2nd cos
在光学中Δν称为自由光谱区。
• 半导体激光器一般用 F-P腔作为激光谐振腔,这种器件 称为半导体激光二极管(F-P LD)。 就是正入射 0 时,用 F-P腔作激光谐振腔的纵模间隔。
透 射 率
标准具长度 图4-4 法布里-珀罗标准具的实验透射率与标准具光学长度的
函数关系曲线。R=0.9, A=0.98, 632.8nm
第3章 光学谐振腔与激光模式
光学谐振腔对激光频率的影响
光学谐振腔的频率选择效应 光学谐振腔的频率稳定性 光学谐振腔对激光频率的调制作用 光学谐振腔对激光频率的调谐范围
光学谐振腔对激光线宽的影响
光学谐振腔对激光线 宽的限制:光学谐振 腔的选模作用决定了 激光的输出模式,从 而对激光线宽产生影 响。
光学谐振腔的品质因 数与激光线宽的关系: 品质因数越高,光学 谐振腔的选模作用越 强,激光线宽越窄。
激光模式对光学谐振腔的锁模作用
激光模式与光学 谐振腔的相互作 用
激光模式对光学 谐振腔的锁模作 用原理
锁模激光器在光 学谐振腔中的应 用
锁模激光器对光 学谐振腔的影响 与优势
光学谐振腔与激光模式的优化设计
光学谐振腔的优化设计
提高品质因数:优化光学谐 振腔的结构设计,提高激光 模式的稳定性
减小损耗:提高光学谐振腔 的反射率,降低光能损失
添加标题
添加标题
光学谐振腔对激光模式稳定性的 影响
激光模式对光学谐振腔的影响
激光模式对光学谐振腔的选模作用
激光模式对光学谐振腔的影 响
选模作用原理及实现方法
激光模式与光学谐振腔的关 系
选模作用在光学谐振腔中的 应用
激光模式对光学谐振腔的调Q作用
激光模式与光学谐振腔的关系 调Q技术的基本原理 调Q技术在光学谐振腔中的应用 激光模式对调Q效果的影响
协同设计的实现方法:介绍协同设计的具体实现方法,如通过调整光学谐振腔的结构参数、选 择合适的激光晶体等方式,实现协同设计目标。
协同设计的应用场景:介绍协同设计在激光器设计、光学通信、激光雷达等领域的应用场景, 说明其重要性和实用性。
协同设计的未来展望:探讨协同设计的未来发展趋势和研究方向,如高精度控制、多模式协同 等,为相关领域的研究提供参考。
激光光谱技术及应用 第三章
述光学谐振腔的储能与损耗关系的参数,称为品质因数。
腔的Q值与腔的损耗成反比,损耗越小Q值越高。
Q开关的思想:设法控制光腔在泵浦期间的损耗,使在泵浦前期腔的损耗很大,光 的增益超过不了损耗,达不到激光起振的阈值;在泵浦脉冲作用下粒子数反转数持 续增长,待粒子反转数积累到很大数量,介质的增益足够大时,突然减小损耗,于 是光的增益将大大超过损耗,在瞬间建立起很强的激光。 Q开关技术通常分为主动调Q与被动调Q两大类,其中主动调Q是采用外界控制的调制
由于总的粒子数是一定的,因此三分速率之和为零。引进泵浦率
r p B20 N0 N2 N
Nr 为将粒子从能级0泵浦到能级2的净速率。当粒子数达到平衡时,有下式 成立
N2 A21 B21 N1 A10 B21
(3-10)
N1 A10 N2 A20 rN
如果光束不是基模,则(3-4)式变为
r 2 2 z ik r 2 2 R z i kz E x, y, z E0 0 H m x k L H n y k L e e e z
(3-5)
这里我们略去理论推导,直接给出腔内场的完整表达式
r 2 2 z ik r 2 2 R z i kz E x, y, z E0 0 e e e z
(3-4)
它以高斯函数形式描述光束中的场分布,所以称为高斯光束。
ik eik ES x, y ES x, y ds 1 cos S 4
(3-2)
由于矩形的反射镜对x,y轴是对称的,因此可将 Es(x , y)和 Es′ (x′ , y′)分解为 x,y两
腔的Q值与腔的损耗成反比,损耗越小Q值越高。
Q开关的思想:设法控制光腔在泵浦期间的损耗,使在泵浦前期腔的损耗很大,光 的增益超过不了损耗,达不到激光起振的阈值;在泵浦脉冲作用下粒子数反转数持 续增长,待粒子反转数积累到很大数量,介质的增益足够大时,突然减小损耗,于 是光的增益将大大超过损耗,在瞬间建立起很强的激光。 Q开关技术通常分为主动调Q与被动调Q两大类,其中主动调Q是采用外界控制的调制
由于总的粒子数是一定的,因此三分速率之和为零。引进泵浦率
r p B20 N0 N2 N
Nr 为将粒子从能级0泵浦到能级2的净速率。当粒子数达到平衡时,有下式 成立
N2 A21 B21 N1 A10 B21
(3-10)
N1 A10 N2 A20 rN
如果光束不是基模,则(3-4)式变为
r 2 2 z ik r 2 2 R z i kz E x, y, z E0 0 H m x k L H n y k L e e e z
(3-5)
这里我们略去理论推导,直接给出腔内场的完整表达式
r 2 2 z ik r 2 2 R z i kz E x, y, z E0 0 e e e z
(3-4)
它以高斯函数形式描述光束中的场分布,所以称为高斯光束。
ik eik ES x, y ES x, y ds 1 cos S 4
(3-2)
由于矩形的反射镜对x,y轴是对称的,因此可将 Es(x , y)和 Es′ (x′ , y′)分解为 x,y两
光学谐振腔
隔远小于纵模间隔.例如
Δν m
ν = m+1,n,q
−ν m,n,q
=
cL 8a 2
m + (1/ 2) q
光学开式腔的本征模由纵模指数q和横模指数m,n 表征.激光输出频率主要由纵模指数决 定, 横模指数m,n决定模强度在横向的分布, 横模指数越大(kx,ky越大),光波偏离轴越大,衍射损 耗越大这些模不能在开腔内存在.
∫ σ u(x, y) = i e−ik ρ u(x′, y′)ds′
λL s
(1)
式中常令镜面上的场是规格化的,即令
Max[u(x, y)] = 1
(1) 是个积分方程,它的本征解un是稳定振荡模在镜面上的场分布,σn 是本征值.它与衍射损耗 有关. ⑶ 其它形式的光腔 除开式腔外,激光谐振腔还有介质波导腔,主要利用介质侧面上光的全内反射,使一部分满
(
x2
−
x1
)2
λ L −a
f
(x1 )dx1
σ y f (y2 ) =
∫ i
eb
−
ik 2L
(
y2
−
y1
)2
λ L −b
f
( y1 )dy1
σ = σ xσ y e−ikL
此为无限长平行平面条形镜腔的方程.
⑵ 费涅尔数N
设一平面单色波垂直入射在狭缝上, 缝宽 2a ,在缝后距离为 L 的屏上将产生衍射条纹.
ν m,n,q
≅
cq [1 + L2 2L 8q 2
m2 (
a2
+
n2 )]
b2
这些模中,当 m, n 为零,便得模频
ν 00q
=
cq , 2L
光学谐振腔.ppt
线方向传播时,在腔内往返一周回到原来位置
时,应该与初始出发电磁波同相,相差为2∏的整
数倍。
(3)横模:输出光束在垂直于光束传播方向,即光束横截面内的能 量空间分布。激光的模式一般用符号TEM mnq来标记,其中TEM表示 横向电磁场。q为纵模的序数,即纵向驻波波节数。m,n为横模的序 数,用正整数表示,它们描述镜面上场的节线数。当m=0,n=0时, TEM00q称为基模(或横向单模),模的场集中在反射镜中心,而其他 的横模称为高阶横模。
的限制。
四、光学谐振腔的模式 (1)驻波条件:当光波在腔镜上反射时,入射波和反射波会发生 干涉,为了在腔内形成稳定的振荡,要求光波因干涉而得到加强。 由多光束干涉理论,相长干涉的条件是:光波在腔内沿轴线方向 往复传播一次所产生的相位差为2∏的整数倍。
(2)纵模:输出光束在沿光束传播方向的能量分
布。激光纵模应满足谐振条件即光波在腔内沿轴
光学开腔的损耗大致包含以下几个方面:几何损耗、衍 射损耗、腔镜反射不完全引起的损耗、非激活吸收散射等其
他损耗。
谢谢观赏!
激 光 器
组 成 之
讲解人:
光 学 谐 振 腔
崔晓抡
主要内容
一、相关简介 二、光学谐振腔类型与作用 三、光学谐振腔的模式
四、光学谐振腔的评价指标
相 光学谐振腔是激光器的三个主要组成部分之一,是 关 产生激光的外在条件。它的基本结构是由激活物质两 简 端适当地放置两个反射镜所组成。 介
研究光学谐振腔的目的,就是通过了解谐振腔的 特性来正确设计和使用激光器的谐振腔,使激光器的 输出光束特性达到应用的要求。
平面镜腔、双凹球面镜腔、平面—凹面镜腔、特殊腔
等。
三、光学谐振腔的作用
谐振腔是激光器的重要组成部分之一,对大多数激光工作物质,适当结构
时,应该与初始出发电磁波同相,相差为2∏的整
数倍。
(3)横模:输出光束在垂直于光束传播方向,即光束横截面内的能 量空间分布。激光的模式一般用符号TEM mnq来标记,其中TEM表示 横向电磁场。q为纵模的序数,即纵向驻波波节数。m,n为横模的序 数,用正整数表示,它们描述镜面上场的节线数。当m=0,n=0时, TEM00q称为基模(或横向单模),模的场集中在反射镜中心,而其他 的横模称为高阶横模。
的限制。
四、光学谐振腔的模式 (1)驻波条件:当光波在腔镜上反射时,入射波和反射波会发生 干涉,为了在腔内形成稳定的振荡,要求光波因干涉而得到加强。 由多光束干涉理论,相长干涉的条件是:光波在腔内沿轴线方向 往复传播一次所产生的相位差为2∏的整数倍。
(2)纵模:输出光束在沿光束传播方向的能量分
布。激光纵模应满足谐振条件即光波在腔内沿轴
光学开腔的损耗大致包含以下几个方面:几何损耗、衍 射损耗、腔镜反射不完全引起的损耗、非激活吸收散射等其
他损耗。
谢谢观赏!
激 光 器
组 成 之
讲解人:
光 学 谐 振 腔
崔晓抡
主要内容
一、相关简介 二、光学谐振腔类型与作用 三、光学谐振腔的模式
四、光学谐振腔的评价指标
相 光学谐振腔是激光器的三个主要组成部分之一,是 关 产生激光的外在条件。它的基本结构是由激活物质两 简 端适当地放置两个反射镜所组成。 介
研究光学谐振腔的目的,就是通过了解谐振腔的 特性来正确设计和使用激光器的谐振腔,使激光器的 输出光束特性达到应用的要求。
平面镜腔、双凹球面镜腔、平面—凹面镜腔、特殊腔
等。
三、光学谐振腔的作用
谐振腔是激光器的重要组成部分之一,对大多数激光工作物质,适当结构
3.3 谐振腔的稳定性条件
1 1 {1 2L [ 2L (1 2L )(1 2L )]} 1
2
R2 R1
R1
R2
1 1 2L 2L 2L2 1
R1 R2 R1R2
0 2 2L 2L 2L2 2
R1 R2 R1R2
得:
0 1 L L L2 1 R1 R2 R1R2
rnn
T1T2T...T
n个T
r00
T
n
r00
由薛而凡斯特定理可知
Tn
A C
B
n
D
1
sin
A
sin
n sin(n C sin n
1)
Bsinn Dsinn sin(n
1)
第三节 光学谐振腔的稳定性条件
问题1:什么是稳定腔?
光线在谐振腔内往返任意多次也不会横向逸 出腔外的谐振腔称为稳定谐振腔,简称稳定腔。
问题2:什么是非稳腔?
光线在谐振腔内往返有限次即横向逸出腔外 的谐振腔称为非稳定谐振腔,简称非稳腔。
一、腔内光线往返传播的矩阵表示
1.光线矩阵
一条傍轴光线可以用r、 两个参数表示:
An Cn
Bn Dn
式中 arccos1 ( A D)
2
n次往返后光线的坐标参数为
rn Anr0 Bn0 n Cnr0 Dn0
二、共轴球面腔的稳定性条件
要傍轴光线 不逸出腔外
要求Tn的各元 素取有限实数
要求为实 数
因此,要求
1 1 (A D) 1 2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中一种特解为高斯光束:
E(x,
y, z)
A0 W (z)
exp[
(x2 y2)
x2 y2
W 2(z)
] exp[ ik( 2R(z)
z) i(z)]
沿z轴传播的高斯光束的电矢量为波动方程的解
E代入微分方程可以得到W、R等的关系式
高斯光束的特点
高斯光束的场分布 为z轴旋转对称,中心 处是强度为高斯分布 的平面波,在其他处 为高斯分布的球面波。
波阵面的曲率半径为R(z) 光斑半径为W(z) 光束横截面上的光斑尺寸W(z)随z变化,呈特定的
函数关系
高斯光束在z=0时
E(x,
y,0)
A0 W0
exp[
r2 W02
]
其中
r2 x2 y2
E A0 W0
A0 eW0
lim
z0
R(z)
lim
z0
z
1
L)
1
]4
确定反射镜(腔镜)的大小
对称稳定腔
R1 R2 R
L(R L) z1 2(L R)
z2
L(R L) 2(L R)
L(2R L) f
2
腔内基模光斑尺寸随z的变化为
W (z1) W (z2 ) W (z)
R 2R L 1/4
1
A0 为振幅 波矢 K 2n
球面波表示成:
E(x, y, z) A0 exp(iKR) exp(it)
R
A0 为振幅, R为半径,等R 等振幅,等位相 R
园频率 2
高斯光束的波动方程
把E代入波动方程,可以得到在直角坐标下的波动方程为
2 2
x2 y2 2ik z 0
Emax
r (z)
E Emax e
E Emax
r
光强分布
I
E(x, y, z) 2
A0 W (z)
2
exp
2r 2 W 2(z
)
I max e2
高斯光束在 z z0 0时, 在z=0附件有
E(x,
y, z)
A0 R
exp iK
z
基模远场发散角
2 W0
稳定球面腔的基模远场发散角
对称共焦腔情况下
2 2
L
J1
J1J
J2 2J1J 2 (1 J1J 2
2
2
)
1/
4
2 2 2 L
半共焦情况下 平-凹腔情况下
2 2 L
2 2
[
(
R
1 L
L2
一般稳定球面腔的基横模体积
V00
1 2
L(W1
W2 2
)2
多横模的横模体积
Vmn (2m 1)(2n 1) V00
横模阶数越高,横模的体积越大,即高阶模式激光能产生较大的激光输出
第三节 谐振腔中的高阶振荡模
轴对称高阶横模 TEM mn振幅分布特征
Amn (x,
y,
z)
Am0nH m ( X
其电场可以表示为:
E(x,
y,
z)
A0 W (z)
exp[
(x2 W2
y (z)
2
)
]
exp[
ik
(
x2 2R(
y2 z)
z)
i(z)]
共焦腔的场即为高斯场
沿z轴传播的高斯光束的电矢量
E(x,
y,
z)
A0 W (z)
exp[
(x2 W2
y (z)
2
)
]
exp[
ik
mnq
c 2L
q
实际的平行平面腔
mnq
c 2L
[q
(m
n
1)
1
2L ] R
共焦腔
mnq
c 2L
[q
1
(m
n
1)]
共心腔
mnq
c 2L
q
第四节 高斯光束通过透镜时的变换
对称稳定腔 R1 R2 R, J1 J2 1
给定L,变化R时,共焦腔镜面光斑为极小
W
L
给定R,变化L时,共焦腔 的腰斑光斑为极大 W0
R 2
平凹腔的腰斑中心就在平面镜上,
z1 0 z2 L f L(R L)
当R=2L时,凹镜光斑与等价共 焦腔的反射镜相等
模式太多对形成单一频率的激光不利
开式谐振腔
平行于光场传播方向的四周敞开,仅仅在垂直光 场传播方向(即光轴)两头设有反射腔镜。
按照腔的稳定性
0
1
L R1
1
L R2
1
稳定腔:几何偏折损耗很低,
调整精度要求较低,波形限制能
力比较弱,输出光束反射角较大。
W02 z
2
-W0
W0
可见高斯光束在z=0处的波阵面是平面,但它
的E矢量振幅分布是高斯分布。
W0称为高斯光束的束腰(光斑)半径
高斯光束特性
高斯光束的束斑(光束半径)
场强分布
E(x,
y,0)
A0 W0
exp[
r2 W02
]
r 0
E
A0 W0
第三章 光学谐振腔
谐振腔
q 2
电磁波在一个空腔内被腔壁来回反射,最终在腔内形成一种稳定的驻波, 这种腔体就称为谐振腔
在一个封闭的腔内,有三个方向的驻波形式
kx
2m
L
,
ky
2n
L
,
kz
2q
L
每一个振荡模式所占的波矢空间为
kx ky kz (2 L)3
谐振腔
0~K间波矢量包含的总的模式数为
Nk
K空体积 每模式所占体积
2=
4 8
K3 3/
/3 L3
2
(KL)3 3 2
L3 3 2
( 2
)3
8 3L3 3c3
单位体积、单位频率间隔内的模式数为模密度
( ) 1
V
dN K
d
8 n3
c3
2
对1cm3的空腔,波长为3cm的微波, N=1
对波长为1um的光波,N=8x1012
k 2
f R W0 2
W
(
z)
W0[1
(
z f
)2
]1/
2
R(z) z[1 ( f )2 ] z
1. |z|=f时, W (z) 2W0
R(z) 2 f
2. |z|<f时,|R(z)|>2f, 波面球心[-f,] |z|>f时,波面球心[-f,0]
3. 可以用f和W0来表征高斯光束
共焦稳定腔
a12
W12
a22
W22
Ne
一般稳定球面腔两个反射镜的有效菲涅耳数为
N e1
a12
W12
a12 [ J1
L J2
1
(1 J1J2 )]2
Ne2
a22
W22
a22 [ J 2
L J1
1
(1 J1J2 )]2
横模体积
模式在腔内扩展的空间体积,横模体积大,有可能有较大的输出功率
J2
介稳腔:波形限制能力比较强, 光束方向性 好,光腔调整精度 要求高,几何偏折损耗较大。
非稳腔:波形限制能力比较强, 输出光束发散角小,光束质量良 好,但单程损耗很高。
半共心腔
(0,1)
共焦腔 (0,0)
(-1,-1)
共心腔
(1,1)
平面腔
J1
(1,0) 半共心腔
稳定腔:典型的谐振腔有:平凹腔,双凹腔 等
两光斑之间距离的一半
等价共焦腔
R(z) z[1 (W02 )2 ] z f 2
z
z
第二节 共焦光学谐振腔中基模的分布
一、基模高斯光束的基本性质
E00 (x,
y, z)
A0 W (z
)
exp[
W
r
2
2
(
z)
]
exp[
ik
(
2
r2 R(
z
)
z) acr tan
z f
]
r2 x2 y2
f R W02 2
R(z)
z 1
f
2
z
W (z)
W0
1
z f
2 1/ 2
k 2
共焦腔的腔镜结构确定
原则:腔镜与高斯光束波面匹配
R( z1 )
R1
z1 1
f z1
)
1
]4
衍射损耗
任何实际的激光谐振腔中,腔镜的透射与限制孔阑(包括激 光介质材料端面边缘口径)均会造成光束损耗