小学六年级奥数★棋盘的覆盖
小学奥数染色问题和覆盖问题的讲解
小学奥数染色问题和覆盖问题的讲解日字形覆盖:用于覆盖的标准单元是由2个并排的正方形格子组成。
目字形覆盖:用于覆盖的标准单元是由3个并排的正方形格子组成。
3-L形覆盖:用于覆盖的标准单元是由3个组成L形状的格子组成。
4-L形覆盖:用于覆盖的标准单元是由4个组成L形状的四个格子组成,一边长一边短。
凸字形覆盖:用于覆盖的标准单元是由4个组成汉字“凸”字形状的四个格子组成。
田字形覆盖:用于覆盖的标准单元是由4个组成汉字“田”字形状的四个格子组成。
完全覆盖的定义:用规定形状的标准单元去铺盖指定的方格棋盘,无重复无遗漏,则称该棋盘被所用的标准单元完全覆盖。
一系列的小题目,从易到难,慢慢培养解题水平。
更复杂的染色覆盖问题,往往需要涉及到用多种颜色实行染色,下面的题目仅有一个需要这种技巧。
题1:M×N的棋盘存有日形覆盖,当且仅当M,N中至少有一个为偶数。
题2:一个5×7的棋盘,去掉第二行第四列上的小方格之后,剩下部分有日形覆盖。
题3:如果m*n不能被3整除,则m*n的棋盘不可能有3-L覆盖。
题4:若M,N都是奇数,则去掉任何一个方格,剩余的部分不存有日字形覆盖。
题5:证明,一个8*8的棋盘不可能用15个凸形块和一个田字形块覆盖。
题6:证明,一个8*8的棋盘去掉左上角和右下角的两个方格后,剩下的62个方格不可能实现日形覆盖。
题7:一个3*7的棋盘,用红、蓝两种颜色染色,证明,总有四个同色的方格位于一个长方形的四个角上。
题8:一个3*7的棋盘不存有3-L覆盖。
提示:本题目需要用多种颜色染色。
题9:若m*n的棋盘能够实现4-L覆盖,证明m*n能够被8整除。
题10:7*9的棋盘中,挖去位于第四行,第六列的小方格,证明剩下的部分能够实现日形覆盖。
题11:在6*6的正方形棋盘上的各个小方格上,分别写上从1到36的36个数,要求相邻成“凸”字形的四个方格内的数字之和都为偶数,存有这种可能吗?题12:假定8*8的棋盘是用64个正方形马赛克组成,每个马赛克能够翻动,而且每个马赛克正反两面一个为白色,一个为黑色。
棋盘覆盖问题程序说明
棋盘覆盖问题
对一M*N棋盘,假设有外形完全一样的骨排.每一骨排可覆盖棋盘上两相邻的方格.若用一些骨排覆盖棋盘,使棋盘上所有格被盖,且不交叉,称完全覆盖,.8*8棋盘是否可以完全覆盖?
编程思想:将棋盘设为一个M*N数组,对数组中每个元素分别赋值0和1,并使每个元素与其周围元素的值不相等。
再将数组中对角元素赋给0,1以外的值。
统计数组中0元素与1元素的个数。
若相等,证明可以完全覆盖,不相等则不能完全覆盖。
本程序特点:棋盘的行数和列数可以是任意的。
只需输入行数和列数便可得到结论。
缺点:棋盘只能是缺少对角的,不能是缺少任意的几格。
2021年小学奥数组合问题专题 - 染色与覆盖
2021年小学奥数组合问题专题 - 染色与覆盖2021年小学奥数组合问题专题――染色与覆盖一、解答题1.六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫做它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【答案】不能。
见解析【解析】划一个5×7的方格表,其中每一个方格表示一个座位.将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座.因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格.而实际图中有17个黑格18个白格,个数不等,故不能办到. 2.右图是某一湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点是在岸上还是在水中?(2)某人过此湖泊,他下水时脱鞋,上岸时穿鞋.如果他从A点出发走到某点B,他穿鞋与脱鞋的总次数是奇数,那么B点是在岸上还是在水中?为什么?【答案】(1)在水中(2)在岸上。
见解析【解析】(1)已知P点在陆地上,如果在图上用阴影表示陆地,就可以看出A点在水中. (2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数的和为2,由于A点在水中,所以不管怎么走,走在水中时,脱鞋、穿鞋的次数的和总是偶数.既然题中说“脱鞋的次数与穿鞋的次数的和是个奇数”,那么B点必定在岸上.3.某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右)上去,问这能否办到?【答案】不能【解析】将5×9长方形自然染色,发现黑格的邻座都是白格,白格的邻座都是黑格,因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格.而实际图中有23个黑格22个白格,个数不等,故不能办到.4.右图是某一套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?【答案】不能【解析】如图所示,将房间黑白相间染色,发现只有5个白格,7个黑格.因为每次只能由黑到白或由白到黑,路线必然黑白相问,显然应该从多的白格开始.但路线上1白1黑1白1黑……直到5白5黑后还余2黑,不可能从黑格到黑格,故无法实现不重复走遍. 5.有一次车展共6×6=36个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?【答案】不能【解析】如右下图,对每个展室黑白相间染色,同样每次只能黑格到白格或白格到黑格.入口和出口处都是白格,故路线黑白相间,首尾都是白格,于是应该白格比黑格多1个,而实际上白格、黑格都是18个,故不可能做到不重复走遍每个展室.6.在一个正方形的果园里,种有63棵果树,加上右下角的一间小屋,整齐地排列成八行八列,如图(1).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?如果有80棵果树,如图(2),连小屋排成九行九列呢?【答案】图1中可以回到小屋,图2中无法直接回到小木屋。
棋盘覆盖问题的求解
棋盘覆盖问题的求解棋盘覆盖问题是一个经典的数学问题,它引发了人们对于数学中的逻辑思维和问题解决能力的思考。
在这篇文章中,我将为大家详细介绍棋盘覆盖问题的求解方法,并希望能够帮助中学生和他们的父母更好地理解和应用这一问题。
棋盘覆盖问题是指如何用特殊形状的骨牌将一个2^n × 2^n的棋盘完全覆盖的问题。
其中,骨牌的形状分为4种,分别为L型、反L型、凸型和凹型。
在求解这个问题时,我们需要遵循以下几个步骤。
首先,我们需要将给定的棋盘划分为四个相等的小棋盘。
这样,我们就可以将问题分解为四个子问题,分别是将四个小棋盘覆盖完整。
接下来,我们就可以通过递归的方式来解决每个子问题。
在解决子问题时,我们需要根据骨牌的形状来选择放置的位置。
以L型骨牌为例,我们可以将其放置在左上角、左下角或者右上角。
通过不同的放置位置,我们可以将子问题进一步分解为更小的子问题。
同样地,我们可以使用相同的方法来解决反L型、凸型和凹型骨牌。
在每个子问题中,我们需要注意两个关键点。
首先,我们需要保证每个小棋盘上的骨牌能够完全覆盖。
这就要求我们在放置骨牌时,需要选择合适的位置和方向。
其次,我们需要保证四个小棋盘的边缘能够对齐。
这样,才能保证最终的结果是一个完整的棋盘。
通过不断地递归求解子问题,我们最终可以将整个棋盘完全覆盖。
这个过程中,我们需要注意边界条件的处理,以及递归函数的设计。
同时,我们还可以通过剪枝等优化方法来提高算法的效率。
棋盘覆盖问题的求解方法不仅仅是一个数学问题,更是一个思维训练的过程。
通过解决这个问题,我们可以培养自己的逻辑思维能力、问题解决能力和创新思维。
同时,这个问题也具有一定的实用性,可以用于解决一些实际问题,如图像处理、计算机视觉等领域。
总结一下,棋盘覆盖问题是一个经典的数学问题,通过将棋盘划分为四个小棋盘,我们可以通过递归的方式来解决每个子问题。
在解决子问题时,我们需要选择合适的骨牌形状和放置位置,同时保证边缘对齐和完全覆盖。
2020小学六年级奥数知识点:第十一讲 棋盘中的数学—棋盘覆盖的问题
解:图形(1)和(2)中各有11个方格,11不是3的倍数,因此不能用这两种图形拼成.
图形来拼.
只有图形(4)可以用这两种三个方格的图形来拼,具体拼法有多种,下图仅举出一种为例.
说明:排除图(1)与(2)的方法是很重要的.因为一个图形可以用这是“必要条件排除法”.但要注意,一个图形小方格数是3的倍数,也不表明的就是这种情况.
证明:用6种“方块”构成4×7棋盘已如上图所示.
下面我们证明不能用七种“方块”各一块构成4×7的长方形棋盘.
将长方形的28个小方格如右图黑、白相间进行染色,则黑、白格各为个白格1个黑格,而其余六种方块图形皆占据黑格、白格各2个.因此,7种方块图形占据的黑白格数必都是奇数,不会等于14.
这类问题,容易更加一般化,即用2×1的方格骨牌去覆盖一个m×n的方格棋盘的问题.
定理1: m×n棋盘能被2×1骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数.
证明:①充分性:即已知m,n中至少有一个偶数,求证:m×n棋盘可被2×1骨牌覆盖.不失一般性,设m=2k,则m×n=2k×n=k×
棋盘可被kn个2×1骨牌覆盖.
②必要性:即已知m×n棋盘可以被2×1骨牌覆盖.求证:m,n中至少有一个偶数.若m×n棋盘可被2×1骨牌覆盖,则必覆盖偶数个方格,即mn是个偶数,因此m、n中至少有一个是偶数.
例2 下图中的8×8棋盘被剪去左上角与右下角的两个小方格,问能否用31个2×1的骨牌将这个剪残了的棋盘盖住?
第二步:不用1×1而只用2×2与3×3的正方形是拼不成的.将23×23的大正方形的1,4,7,10,13,16,19,22各行染红色,其余各行染蓝色如下图.任意2×2或3×3正方形都将包含偶数个蓝色小格,但蓝格总数是23×15,是个奇数,矛盾.所以不用1×1的小正方形是拼不成23×23棋盘的.
六年级奥数染色和覆盖
六年级奥数染色和覆盖1、一个8×8国际象棋盘去掉对角上两格后,是否可以用31个2×1的“骨牌”,把象棋盘上的62个小格完全盖住?2、至少需要几种颜色,才能使右图中所有具有公共端点的线段涂上不同的颜色。
3、现有1,1,2,2,3,3,……,10,10共20个数。
问能否将这些数排一行并满足两个1之间有一个数,两个2之间有两个数,两个3之间有三个数,……,两个10之间有十个数?请说明理由。
4、下图是由14个方格组成的图形,试证明,不论怎么裁剪,总不能把它剪成7个由相邻两个方格组成的长方形。
[全讲综合训练]1、六(1)班同学毕业前,互相交换照片留念,那么全班用来交换的照片的总张数是奇数还是偶数?2、正方形的展览厅如下图,共分16个展室,每个展室之间相通,你能不能设计出一条线路使参观的人不重复地走完全部展室?3、将上题的入口改在A处,如下图,这条线路可能吗?4、把下图中的圆图任意涂上红色或蓝色。
有没有可能使每一条直线上的红圈数都是奇数?请说明理由?5、由14个1×1的正方形组成下图,用7个1×2的长方形能不能把这个图形都盖住?为什么?6、在黑板上写出三个自然数,然后擦去一个数,换成其它两数的和减1,这样一直进行下去,最后黑板上是17、1993、1997,问原来的三个数能否是8?7、一串数排成一行,它们的规律是前两个数都是1,从第三个数起,每个数都是前两个数的和,如下所示:1,1,2,3,5,8,13,21,34,55,…这串数的前100个数(包括第100个数)中,有多少个偶数?8、象棋有棋盘上有一只马(马走“日”),跳了若干次,正次跳回到原来的位置,问马跳的步数是奇数还是偶数?9、有一批商品,每件都是长方体形状,它的尺寸是1×2×4。
现在有一批现成木箱,尺寸是6×6×6。
试问:能不能用这样的商品将木箱填满?10、能不能用8张1×3的长方形纸片完全盖住下面的图。
棋盘覆盖问题算法思路
棋盘覆盖问题算法思路
棋盘覆盖问题是一道经典的分治算法问题,通常用于介绍分治算法的思想。
其基本思路是将棋盘分成若干个小块,然后在其中一个小块上放置一块特殊的骨牌,然后将剩下的小块按照同样的方式继续分成更小的块,并在其中一个小块上放置另一块骨牌,以此类推,直到整个棋盘被覆盖。
具体的实现过程可以采用递归的方式,将棋盘不断地分成四个部分,然后在其中一个部分上放置一块骨牌,再递归求解另外三个部分。
在实现过程中,需要注意处理边界条件和特殊情况,例如棋盘大小为1x1或者存在特殊方块无法覆盖等情况。
该算法的时间复杂度为O(2^n),其中n为棋盘大小的指数。
虽然时间复杂度较高,但是由于该问题特殊的递归性质使得其能够被高效地并行化,因此在实际应用中仍有广泛的应用。
棋盘的完美覆盖
棋盘的完美覆盖考虑一张普通的棋盘,它被分成8行8列共64个方格。
假设有一些形状相同的多米诺骨牌,每张牌正好可以覆盖棋盘上两个相邻的方格。
是否能够把32张多米诺骨牌摆放在棋盘上,使得没有两张牌重叠,且在每张牌覆盖两个方格的条件下覆盖棋盘上的所有方格呢?我们把这样的摆放称为棋盘的多米诺骨牌完美覆盖或者盖瓦。
这是一个很简单的摆放问题,我们可以很快构造出很多不同的完美覆盖。
计数出不同完美覆盖的数量虽说比较困难,但也不是没有可能。
1961年 Fischer1发现了这个数,它是12988816=24×172×532。
我们可以用更一般的棋盘代替这常用的棋盘,这个更一般的棋盘拥有m行n列,被分成mn个方格。
此时,它的完美覆盖不一定存在。
事实上,对于3×3的棋盘来说,它就不存在完美覆盖。
那么对于什么样的m×n棋盘存在完美覆盖呢?不难看出,对于m×n 棋盘,它有完美覆盖当且仅当m和n中至少有一个是偶数,或者等价地说成:当且仅当这个棋盘的方格总数是偶数。
Fischer得出了计算m×n棋盘的不同完美覆盖数的一般公式,这个公式中含有三角函数。
这个问题等价于分子物理学中一个非常著名的问题,即所谓的二聚物问题。
这一问题始于对表面上的双原子(二聚物)吸收的研究。
棋盘方格对应于分子,而多米诺骨牌对应于二聚物。
再来考虑8×8棋盘,并用一把剪刀剪掉一条对角线上两个对角上的两个方格,于是剩余方格总数是62个。
那么是否有可能用31张多米诺骨牌得到这个“被剪过的”棋盘的完美覆盖呢?尽管这个被剪过的棋盘与8×8棋盘非常接近,尽管原来的棋盘有1200多万个完美覆盖,但是这个被剪过的棋盘却没有完美覆盖。
这一结论的证明本身就是一个简单但又巧妙的组合推理的实例。
在标准的8×8棋盘上,通常把方格交替地着上黑色和白色,于是有32个白色方格和32个黑色方格。
如果我们剪掉一条对角线上的两个对角上的方格,那么就剪掉了相同颜色的两个方格,比如说是两个白色方格。
棋盘覆盖问题算法思路
棋盘覆盖问题算法思路棋盘覆盖问题是一个经典的递归问题,其原始问题定义如下:给定一个2^n*2^n的棋盘,其中一个方格被标记,将该棋盘分割成4个2^(n-1)*2^(n-1)的小棋盘,同时以递归的方式,将标记方格分割到4个小棋盘之一,并覆盖其他方格。
重复此过程,直到达到基本情况,即当棋盘大小为2*2,无需分割。
我们可以使用分治法来解决这个问题,即将一个大问题分解为多个小问题,并最终将它们的解组合起来得到原问题的解。
下面是一个算法思路:1.定义一个棋盘的类,表示一个棋盘对象。
其中包括棋盘的大小、标记方格的位置坐标等信息。
2. 定义一个递归函数cover(board, size, tr, tc, dr, dc),其中board表示当前的棋盘对象,size表示当前棋盘的大小,(tr, tc)表示当前棋盘左上角方格的坐标,(dr, dc)表示标记方格的坐标。
3.首先检查当前棋盘大小是否为2*2,如果是,则直接将标记方格的位置填充到其他3个方格,并返回。
4. 否则,将当前棋盘的大小减半,计算出当前棋盘分割后4个小棋盘的左上角方格坐标和标记方格的位置坐标(nt, nl, nr, nc)。
5. 然后分别递归调用cover函数对4个小棋盘进行覆盖,需要注意传递的参数:a. 对于第一个小棋盘,其大小为size / 2,左上角坐标为(tr, tc),标记方格的坐标为(nt, nl)。
b. 对于第二个小棋盘,其大小为size / 2,左上角坐标为(tr, tc + size / 2),标记方格的坐标为(nr, nc)。
c. 对于第三个小棋盘,其大小为size / 2,左上角坐标为(tr + size / 2, tc),标记方格的坐标为(nr, nc)。
d. 对于第四个小棋盘,其大小为size / 2,左上角坐标为(tr + size / 2, tc + size / 2),标记方格的坐标为(nt, nl)。
6.最后,将4个小棋盘的覆盖结果组合起来得到原问题的解,并将该结果填充到当前棋盘。
六年级奥数——第十讲棋盘中的数学(一)(附习题及解答)
第十讲 棋盘中的数学(一)——什么是棋盘中的数学所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.作为开篇我们先解几道竞赛中的棋盘问题.例1 这是一个中国象棋盘,(下图中小方格都是相等的正方形,“界河”的宽等于小正方形边长).黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置.问:这三个棋子(一个黑“象”和两个红“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?解:我们设每个小方格的边长为1单位.则小方格正方形面积为1平方单位.由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半.所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪.直观可见,只须比较(3,10,12)或(2,10,12)与(3,10,13)或(2,12,14)这两类三角形面积就可以了.顶点为(3,10,13)或(2,12,14)的三角形面积等于:所以顶点在(2,10,12)或(3,10,12)时三角形面积最大.答:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形(2,10,12)或(3,10,12)的面积最大,如下图所示.说明:本题是以棋盘格点为基础组成图形计算面积.其实,这类问题所在多有,我们把m×n的方格阵称为广义棋盘,则可以设计出许多这类的问题.例2 下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满.问:这堆棋子原有多少枚?解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分(如下图所示),共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和.恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子.这堆棋子总数是102+12=112枚.答:这堆棋子原有112枚.说明:本题也可以列方程求解.设原正方阵每边m枚棋子,由题意得:(m+1)2-9=m2+12.即2m+1=21,解得 m=10.所以棋子总数为102+12=112枚.本题与围棋盘并无本质联系,问题可改述为“一堆棋子若摆成一个实心方阵,剩余12粒棋子,若改摆每边各加一枚的方阵,则差9枚棋子,问这堆棋子原有多少枚?”应用围棋盘显得更加直观、具体.例3 如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.解:这种爬行路线是存在的.具体的设计一条,如右图所示.例4 在8×8的方格棋盘中,如下图所示,填上了一些数字1,2,3,4.试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字.分析 注意这个正方形的面积是8×8=64个平方单位,因此切分后的每一块的面积为16个平方单位,即由16个小方格组成.解:①将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90°,180°和270°,得到另外三段划分线,如下图(1)所示.②仿照上述方法,画出所有这样的划分线,如上图(2)所示.③从最里层开始,沿着画出的划分线作设想分块,如上图(3),这个分块中要含1,2,3,4各一个,且恰为16块小方格.④将上面的阴影部分绕中心旋转180°,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图(4)所示.例5 国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线所示.如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉.请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘?解:本题是构造性的题目.用五个子管住六十四格,如上右图所示就是一种放置皇后的方案.例6 如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下(要符合象棋规则,“相”走田字,只能放在“相”所能到的位置,同样“兵”也只能放在“兵”所能到的位置.马走“日”字,“车”走直线,“炮”隔子控制等).解:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示.本节我们初步看到了一些棋盘问题,它们的特点是:①以棋盘为背景提出各种问题,无论围棋盘、中国象棋盘或是国际象棋盘.更为一般的提法是m×n方格上的数学问题.②这些问题有面积计算,图形分割,棋子计数,棋子布局等各种类型,这些问题一般属于智巧类的问题或更深一步的组合数学问题.习题十1.在4×4的棋盘中每一格分别填入字母A、B、C、D.要求每行、每列、两条斜线的四个格都恰有A、B、C、D各一个.2.把A、B、C、D四个棋子放在4×4的棋盘的方格里,使每行每列只能出现一个棋子.问共有多少种不同的放法?3.下页第一图是16×16棋盘,每个小正方格面积都是1,求图中这只狗所占的图形的面积.4.中国象棋规定马走“日”字.定义:在中国象棋盘上从点A到B马走的最少步数称为A与B的马步距离,记作|AB|m.如下图在3×3的棋盘格中,标出了 A、B、C、D、E五个点,则在|AB|m,|AC|m,|AD|m,|AE|m中最大者是多少?最小者是多少?5.在6×6的棋盘中至少要放入多少个棋子,(每个小方格内至多放一个),才能使得随意划掉3行3列上的棋子后,在剩下的方格中至少要留有一枚棋子?习题十解答1.如下图填入即可.答案可能不唯一.2.不妨先考虑棋子A的情况,共有16种不同的放法,不妨设A就放在左上角.然后考虑棋子B的放法,由于A所在的行及所在列不能再放棋子,所以棋子B只能有9种不同放法,不妨设棋子B在右图中位置.类似地C只有4种不同放法,D只有一种放法,总计共有16×9×4×1=576种不同放法.3.面积是71.5(平方单位).4.观察下面4个图.知最大的是|AE|m=4,最小的是|AC|m=2.5.至少放十枚棋子.十枚棋子如下图放置,划去任意三行、三列后,剩下的格子中至少还有一枚棋子.如果放入9枚棋子,则总能划去某三行、某三列,把这9枚棋子都划去(想一想,为什么?).。
小学六年级奥数★棋盘的覆盖
棋盘的覆盖同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。
例1要不重叠地刚好覆盖住一个正方形,最少要用多少个下图所示的图形?例2 能否用17个形如的卡片将下图刚好覆盖?例3 下图的七种图形都是由4个相同的小方格组成的。
现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?例5用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?例6有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。
用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)课后练习1.在4×4的正方形中,至少要放多少个形如所示的卡片,才能使得在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)2.下列各图中哪几个能用若干个或拼成?3.能否用9个形如的卡片覆盖住6×6的棋盘?4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。
他留下的四张票可以有多少种不同情况?5.有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)6.用6个形如的卡片覆盖下图,共有多少种不同的覆盖方法?7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?答案与提示练习151.3个。
提示:左下图是一种放法。
2.图(2)。
提示:图(1)的小方格数不是3的倍数;图(3)的小方格数是3的倍数但拼不成;图(2)的拼法见右上图。
华罗庚六年级上册奥数第九讲
棋盘中的数学(一)——什么是棋盘中的数学所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.作为开篇我们先解几道竞赛中的棋盘问题.例1 这是一个中国象棋盘,(下图中小方格都是相等的正方形,“界河”的宽等于小正方形边长).黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置.问:这三个棋子(一个黑“象”和两个红“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?解:我们设每个小方格的边长为1单位.则小方格正方形面积为1平方单位.由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半.所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪.直观可见,只须比较(3,10,12)或(2,10,12)与(3,10,13)或(2,12,14)这两类三角形面积就可以了.顶点为(3,10,13)或(2,12,14)的三角形面积等于:所以顶点在(2,10,12)或(3,10,12)时三角形面积最大.答:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形(2,10,12)或(3,10,12)的面积最大,如下图所示.说明:本题是以棋盘格点为基础组成图形计算面积.其实,这类问题所在多有,我们把m×n的方格阵称为广义棋盘,则可以设计出许多这类的问题.例2 下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满.问:这堆棋子原有多少枚?解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分(如下图所示),共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和.恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子.这堆棋子总数是102+12=112枚.答:这堆棋子原有112枚.说明:本题也可以列方程求解.设原正方阵每边m枚棋子,由题意得:(m+1)2-9=m2+12.即2m+1=21,解得 m=10.所以棋子总数为102+12=112枚.本题与围棋盘并无本质联系,问题可改述为“一堆棋子若摆成一个实心方阵,剩余12粒棋子,若改摆每边各加一枚的方阵,则差9枚棋子,问这堆棋子原有多少枚?”应用围棋盘显得更加直观、具体.例3 如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.解:这种爬行路线是存在的.具体的设计一条,如右图所示.例4 在8×8的方格棋盘中,如下图所示,填上了一些数字1,2,3,4.试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字.分析注意这个正方形的面积是8×8=64个平方单位,因此切分后的每一块的面积为16个平方单位,即由16个小方格组成.解:①将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90°,180°和270°,得到另外三段划分线,如下图(1)所示.②仿照上述方法,画出所有这样的划分线,如上图(2)所示.③从最里层开始,沿着画出的划分线作设想分块,如上图(3),这个分块中要含1,2,3,4各一个,且恰为16块小方格.④将上面的阴影部分绕中心旋转180°,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图(4)所示.例5 国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线所示.如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉.请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘?解:本题是构造性的题目.用五个子管住六十四格,如上右图所示就是一种放置皇后的方案.例6 如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下(要符合象棋规则,“相”走田字,只能放在“相”所能到的位置,同样“兵”也只能放在“兵”所能到的位置.马走“日”字,“车”走直线,“炮”隔子控制等).解:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示.本节我们初步看到了一些棋盘问题,它们的特点是:①以棋盘为背景提出各种问题,无论围棋盘、中国象棋盘或是国际象棋盘.更为一般的提法是m×n方格上的数学问题.②这些问题有面积计算,图形分割,棋子计数,棋子布局等各种类型,这些问题一般属于智巧类的问题或更深一步的组合数学问题.棋盘中的数学(二)——棋盘覆盖的问题有这样一道竞赛题:例1一种骨牌是由形如的一黑一白两个正方形组成,则下图中哪个棋盘不能用这种骨牌不重复地完全覆盖?(A)3×4 (B)3×5 (C)4×4(D)4×5 (E)6×3解:通过试验,很容易看到,应选择答案(B).这类问题,容易更加一般化,即用2×1的方格骨牌去覆盖一个m×n的方格棋盘的问题.定理1:m×n棋盘能被2×1骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数.证明:①充分性:即已知m,n中至少有一个偶数,求证:m×n棋盘可被2×1骨牌覆盖.不失一般性,设m=2k,则m×n=2k×n=k×棋盘可被kn个2×1骨牌覆盖.②必要性:即已知m×n棋盘可以被2×1骨牌覆盖.求证:m,n中至少有一个偶数.若m×n棋盘可被2×1骨牌覆盖,则必覆盖偶数个方格,即mn是个偶数,因此m、n中至少有一个是偶数.例2下图中的8×8棋盘被剪去左上角与右下角的两个小方格,问能否用31个2×1的骨牌将这个剪残了的棋盘盖住?分析刚一想,31个2×1骨牌恰有62个小方格,棋盘去掉两个角后也是62个格,好像很有可能盖住.但只要简单一试,便发现不可能.仔细分析,发现如果把棋盘格黑、白相间染色后,2×1骨牌一次只能盖住一个黑格与一个白格.只要发现这个基本事实立即可以找到解答.解:我们将残角棋盘黑、白相间染色(如图),62个格中有黑格 32个,白格 30个.另外,如果用2×1骨牌 31张恰能盖住这个残角棋盘,我们发现,每个骨牌必定盖住一个黑格,一个白格,31个骨牌将盖住31个黑格及31个白格.这与32个黑格数,30个白格数的事实相矛盾.所以,无论如何用这31张2×1的骨牌盖不住这个残角棋盘.例3在下图(1)、(2)、(3)、(4)四个图形中:解:图形(1)和(2)中各有11个方格,11不是3的倍数,因此不能用这两种图形拼成.图形来拼.只有图形(4)可以用这两种三个方格的图形来拼,具体拼法有多种,下图仅举出一种为例.说明:排除图(1)与(2)的方法是很重要的.因为一个图形可以用这是“必要条件排除法”.但要注意,一个图形小方格数是3的倍数,也不表明的就是这种情况.是3|n.当3|n时,设n=3k,则2×n=2×3k=k(2×3)2×n=3×x则3|2n,但(2,3)=1,∴3|n.思考方法.比如,若3|n且2|m时,m×n棋盘可分成若干个2×n棋例5一种游戏机的“方块”游戏中共有如下页图所示的七种图形,每种图形都由4个面积为1的小方格组成.现用7个这样的图形拼成一个7×4的长方形(可以重复使用某些图形).那么,最多可以用上面七种图形中的几种?分析用七个图形,共4×7=28个方格,要是能拼成4×7的棋盘,这时采用了小“方块”中的两种.这样试下去,我们会发现,由七种方块中的6种可以拼成4×7棋盘格,如下图所示.但要将七种“方块”每个都只用一次,要拼成4×7棋盘,试几次会发现拼不出来.因此我们会想到,是不是不可能呢?下面我们证明这一点.证明:用6种“方块”构成4×7棋盘已如上图所示.下面我们证明不能用七种“方块”各一块构成4×7的长方形棋盘.将长方形的28个小方格如右图黑、白相间进行染色,则黑、白格各为个白格1个黑格,而其余六种方块图形皆占据黑格、白格各2个.因此,7种方块图形占据的黑白格数必都是奇数,不会等于14.综上所述,要拼成4×7的方格,最多能用上七种“方块”中的6种图形.例6由1×1、2×2、3×3的小正方形拼成一个23×23的大正方形,在所有可能的拼法中,利用1×1的正方形最少个数是多少?试证明你的结论.解:用1×1的正方形至少一个.第一步:中心放一个1×1的正方形,剩下的4个11×12的矩形,是可以用6个2×2正方形和12个3×3正方形拼成的,如下图所示.第二步:不用1×1而只用2×2与3×3的正方形是拼不成的.将23×23的大正方形的1,4,7,10,13,16,19,22各行染红色,其余各行染蓝色如下图.任意2×2或3×3正方形都将包含偶数个蓝色小格,但蓝格总数是23×15,是个奇数,矛盾.所以不用1×1的小正方形是拼不成23×23棋盘的.综上所述,要拼成23×23棋盘,至少要用一个1×1的小正方形.解:如右图用黑白二色相间涂染8×8棋盘,总计有 32个黑格及32个白格.当我们把“田”放入棋盘时,一定盖住两个小黑格及两个小白格.盖住奇数个(3个,或1个)白格.骨牌共盖住:奇数+2=奇数个白格.这与8×8棋盘上共有32个白格的总数相矛盾.关于棋盘的覆盖问题我们简单介绍到这里,并且只是个别的例题,作为入门的先导罢了!棋盘中的数学(三)——棋盘对弈的数学问题我们看这样一个比输赢的问题.例1 在8×8的棋盘格中的某个格子里已放入一枚棋子“王”(如右图),甲、乙两人轮流移动“王”子,每次只能横向或竖向移动一格.凡“王”子已经占据过的格都不得再进入.谁先遇到无法移动“王”子时,谁就算输方.试证明,先走者存在必胜的策略.分析“王”子已占一个格,还剩下8×8-1=63个格,比如甲先走一个格,还剩下62个格.若能将62个格分成31对,每对都是相邻的两小格,这时该乙走,乙领先进入一格,甲就随之进入与其配对的格,这样就造成了甲必取胜的态势.因此,将64个格两两配对成为32个1×2的小矩形是解决本题的关键.证明:设甲为先走的一方,在甲的心目中如上图将64个方格两两配对分成32个1×2的小矩形,“王”子必在某个1×2的小矩形的一个格子中.甲先走,将“王”子走入这个1×2的小矩形的另一个格子中.这时还有31个1×2的小矩形,每个小矩形中都有两个小方格.这时该乙走,乙总是领先进入某个1×2小矩形的第一个格,甲就可以随之进入这个小矩形的第二个格.由于不能重复进入“王”已经进过的格子,所以乙总处于领先进入新的小矩形的第一格的地位,甲就总可随之进入这个小矩形的第二个格.最后必然乙先无法移动“王”子,乙输.甲必取胜.例2 下图是一盘未下完的中国象棋残局,各子走法必须按中国象棋的规则办事,将对方憋死或无法走子时算取得胜利.如果轮到乙方走,问乙怎样走法才能取胜?分析在上图中,双方的将(帅)均无法移动,双方的士(仕)也无法移动,底炮也不能在横线上移动(否则对方可将炮沉底打闷将).底线兵(卒)只能横向移动.谁先移动底线兵(卒)打将,会造成对方将(帅)移出,从而出现移兵(卒)方自己必输的态势.因而只有底炮、中炮和边卒(兵)可以在纵线上移动,兵(卒)只能前移1步,中炮只能前移4步,底炮只能前移8步.现在的问题是:乙先走,轮流走完这三对子的13步,问乙怎样走才能取胜?解:我们把乙的获胜策略及甲的各种走法列表于下(其中,“甲1,乙1”分别表示,“甲第一步走棋”与“乙第二步走棋”,其余类同;“中炮2,相炮3,卒1”分别表示“中路炮进2步”,“相位炮进3步”和“卒进1步”.其余类同;“结果”栏表明乙1,甲1,乙1之后的态势,其中的“距”以步为单位):其中,情形⑦~⑩显然为乙胜.情形①,②中,如甲2进炮几步,则乙3就将另一路炮进同样步数,…,这样,终将乙胜.情形③,④与⑤,⑥是类似的.以③为例,甲的各种走法及乙的策略见下表:显然,各种情形中也是乙胜.注意,若甲某次退炮几步,则乙接着将同一路炮进相同步数(这样,这两只炮之间的间隔没有改变).说明:本题的深刻道理和规律在于自然数的二进制表示,将1步,4步,8步分别用二进制表示为1,100,1000.当乙从8步中走了3步后,变为还有5步即1,100,101.我们把这三个数写成竖式11 0 01 0 1容易看出每一个数位上的数字之和都是偶数.(这里均勿进位).无论甲怎样走,所走的那一行的步数(用二进制表示)至少有一个数位上的数字发生了变化,从而破坏了上面的规律,即不是每一个数位上的数字之和都是偶数了,比如说,甲在中路炮进一步,三路的步数变为:11 11 0 1这时三个数位上的数字之和1+1+1,1+0,1都不是偶数.乙再接着走,他的办法是恢复上面的规律.这是能办到的.首先,他看一下数字和不是偶数的最高数位,三路步数二进制表示中至少有一路在这数位上的数字是1,然后,他就在这一路上走若干步,使得上述数位上的数字和为0,而较低数位上的数字为1或0以保证这些数位上的数字之和为偶数,其它数位上的数字不变.比如,对于上面的情形,乙应当在“相”位炮所在的路线上走3步,将三路步数变为:11 11 0这样继续下去,步数逐渐减少,必有结束的时候,由于甲走后,不是每个数位上的数字之和都是偶数,所以甲不可能走到最后一步.走最后一步的是乙,所以乙必然取胜.例3 如下图是一个9×9棋盘,它有81个小正方形的格子,在右上角顶的格子里标有“▲”的符号代表山顶.A、B两人这样来游戏:由A把一位“皇后”(以一枚棋子代表)放在棋盘的最下面一行或最左边一列的某个格子里(即放在右图中阴影区域的一个格子里),然后由B开始,两人对奕:“皇后”只能向上,向右或向右上方斜着走,每次走的格数不限,但不得倒退,也不得停步不前;谁把“皇后”走进标有“▲”的那格就得胜.显然,双方对弈下去决不会出现“和棋”,在有限个回合后,必有一胜一负,试分析B 必取胜的策略.这个游戏我们不妨称之为“皇后登山”问题.分析我们采用倒推分析的方法.如果A把皇后走进下图中带阴影的格子,则B就可一步把皇后走到山顶而获胜.因此任何一方都应该避免把皇后走进右图中的阴影地区,而都应该迫使对方不得不把皇后走至带阴影的格子里去,这是取胜的总的指导思想.那么B应把皇后走到哪些格子中才能迫使对方不得不把皇后走进上图中带阴影的格子里去呢?从上图中可看出,这样的格子只有两个:有标号①和②的格子.由此可知,如果谁抢占了①或②,只要走法不再失误,就必会得胜.因此,我们形象地称①、②两格为“制高点”.那么为占①或②,如下图,如果A把皇后走进有★的方格里,则B就能占领①或②,从而获胜,而B又怎样迫使A不得不把皇后走进有★的或有阴影的方格呢?同样的分析可知,只要B能占领第二对制高点③或④即可.继续运用上述分析方法,还可以得到下一组制高点⑤和⑥.这时,不论A开始把皇后放在最左一列与最下面一行的哪个格子中,B第一步都可以抢到一个制高点,或者第一步就直接达到▲,只要走法得当,必能稳操胜券的.说明:1.如果我们给出的是8×8的国际象棋盘,玩“皇后登山”游戏,A开始把皇后放在最左列或最下行的哪个格时,A必胜?这时我们看到,对8×8棋盘,制高点⑤在最左列上,制高点⑥在最下列上,所以A开始把皇后放于⑤或⑥,则A必胜,放在其它格时,B可抢到制高点,则B必胜.2.如果在普通的围棋盘上,(共有18×18=324个格)玩“皇后登山”游戏.B取胜的制高点都是哪些?请读者自己找出来.可以告诉大家,一共有六对,计12个制高点.例4 在8×8的国际象棋盘中(如下页图)有三枚棋子,两个人轮流移动棋子,每一次可将一枚棋子移动任意多格(允许两枚或三枚棋子在同一格),但只能按箭头所表示的方向移动.在所有棋子都移到A点时,游戏结束,并且走最后一步的算赢,问哪一个人能够获胜?解:由三枚棋子到A的格数分别要走59步,50步和30步,这样就与例2在三条路线上走步本质上一样的,我们不妨把59,50,30这三个数写成2进制.59=(111011)2,50=(110010)2,30=(11110)2排在一起:1 1 1 0 1 11 1 0 0 1 01 1 1 1 0第一个人应当将第一行的111011改为101100,也就是减少11ll,这样就使各个数位上的数字和为偶数.这时无论第二个人如何走都将破坏这个特性,第一个人接着可以采取使各个数位上的数字和为偶数的方法,稳步地走向胜利.这就是说,第一个人应当将最外面的棋子移动15步(即(1111)2=1×23+1×22+1×2+1=15),即可按例2的规则稳步取胜.棋盘中的数学(四)——棋盘格的计数问题与棋盘有关的另一大类数学问题是计数问题.我们只能就一些简单的例题进行解说,并随之介绍解题的思想方法.例1如下左图,在中国象棋盘上,乙方一只边卒已经过河,它可以向前移一步到B,也可以横行一步到A,要使这个小卒沿最短路线走到对方帅所在的位置(假定前进路上没任何阻难),问有多少种不同的走法?解:为了解这个问题,可以从简单的情形开始,逐步进行.上右图中,小卒沿最短路线走到A、B、C、D、E、F、G、H的走法都只有一种,走到K,则有两种:先走到A再走到K,或者先走到B,再走到K.走到M,则有1+2=3种:先走到C再到M有一种,先走到K再到M有2种(因为走到K有2种走法).把走法的种数标在各点上,每个数等于它前面的两个数(下图中左方一个,下方一个)的和.走到帅的位置有70种不走法.说明:利用标数法可以很快求出从一个点到棋盘上另一点最短的不同路线数,这是一种很直观有用的计数方法.例2围棋盘上横竖各有19条线(如下图),在棋盘上组成许多大小不同的正方形,问其中有多少个和图中右侧小正方形大小一样的正方形(小正解法1:我们把小正方形放在大正方形的左上角,则小正方形的右边线与大正方形的第10条竖线重合.将小正方形向右平行移动一格(如下图)则又可出现一个小正方形,顺次向右移动9次后,小正方形的右边线与大正方形的右边线重合.这样前后共得到10个小正方形.同样,将左上角小正方形再每次向下移动一格,也可得到10个小正方形.所以共有10×10=100个小正方形.解法2:将大正方形左上角的小正方形沿大正方形的对角线AC移动,第1次移动(如下图)可视为是右移一格和下移一格的合成,也可视为是下移一格和右移一格的合成.再加上初始位置的小正方形,这时就有1+3个小正方形.继续将小正方形沿对角线移动,共移动9次,小正方形就移动到大正方形的右下角.这时共包含小正方形(1+3+5…+19)个,我们可解法3:我们先在下右图小正方形中找一个代表点,例如右下角的代表点E,然后将小正方形按题意放在围棋盘上,仔细观察点E应在什么地方,通过观察,不难发现:①点E只能在棋盘右下角的正方形ABCD(包括边界)的格子点上.②反过来,右下角正方形ABCD中的每一个格子点都可以作为小正方形的点E,也只能作为一个小正方形的点E.这样一来,就将“小正方形的个数”化为“正方形ABCD中的格子点个数”了,很容易看出正方形ABCD中的格子点为10×10=100个.说明:以上三种解法都有一定代表性.其中解法3既巧妙又迅速,它利用了“一一对应就一样多”的配对原理.配对原理在计数中是非常重要的.例3从8×8的方格棋盘(下图)中取出一个由三个小方格组成的“L”形(可旋转),问有多少种不同的取法?分析如果从2×2的方格中取“L”形,则有4种不同的取法,因此,我们只要知道从8×8的方格棋盘上总共可以取出多少个“田”字形就可以了,又由于每个“田”字形的中心点是棋盘内横线与竖线的交叉点(但不包括边界上的点),反过来每一个这样的交叉点都有一个以它为中心的“田”字形,于是问题就转化为求横线与竖线一共有多少个不在边界上的交叉点.解:设S是从棋盘上所能取出的所有“田”字形组成的集合,S′是棋盘内所有横线和竖线的交叉点(不包括边界上的点)组成的集合.由于每个“田”字形的中心点是棋盘内横线与竖线的一个交叉点且不在边界上,反过来,位于棋盘内横线与竖线交叉点四周的四个小方格恰好组成一个“田”字形,因此集合S 与S′的元素能一一配对.由配对原理,这两个集合的元素一样多.而棋盘内横线与竖线的交叉点有:(9-2)×(9-2)=49(个).所以棋盘上可以取出“田”字形的个数为49个.又由于从一个“田”字形中可以取出4个“L”形,并且,从不同的“田”字形中取出的“L”形是不同的,所以可知,从棋盘上共可以取出49×4=196个“L”形,即题中“L”形的不同取法共196种.例4如下图在5×5棋盘格中,共有多少个正方形?解:在5×5的棋盘格中包含1×1的正方形共25个;包含2×2的正方形共16个;包含3×3的正方形共9个;包含4×4的正方形共4个;包含5×5的正方形共1个;总计包含各种正方形共有:25+16+9+4+1=55个.说明:本题解法是先将正方形分成五类:1×1,2×2,3×3,4×4,5×5,对每一类都仿例3中第3种解法去解是非常迅速的.例5下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的三个点为顶点,可以构成三角形,在这些三角形中,与阴影三角形有同样大小面积的有多少个?分析解决这个问题,主要是运用两个结论:①同底等高的两个三角形的面积相等.②平行的两条直线间的距离处处相等.解:设原正方形的边长是3,则小正方形的边长是1,阴影三角形的面积是:所求的三角形可分两种情形:①三角形的一边长为2,这边上的高是3.这时,长为2的边只能在原正方形的边上.这样的三角形有:2×4×4=32(个).②三角形的一边长为3,这边上的高是2.这时,长为3的边是原正方形的一边或平行于一边的分割线(其中,与①重复的三角形不再算入).这样的三角形有:8×2=16(个).答:所求的三角形共48个(包括上页图中给出的三角形).说明:解本题,容易出现两种错误,一是“少”,如忽略了底是3,高是2的三角形,这样就少算了16个;二是“多”:在计算底是3,高是2的三角形时,没有考虑其中有16个在情形①中已经计算过了,于是会得出错误结果64个.棋盘格计数问题,本质上是一种数数问题.其一要注意会把对象分类.其二,在每类数数时要做到不重,不漏.这样才能得到正确的结果.。
六年级奥数:棋盘的覆盖
六年级奥数:棋盘的覆盖棋盘的覆盖用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。
实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。
棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。
例1 要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?分析与解:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。
经试验,不可能拼成边长为3的正方形。
所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形36÷3= 12(个)。
分析与解:在五年级学习“奇偶性”时已经讲过类似问题。
左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。
我们将左上图黑白相间染色,得到右上图。
细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,不可能盖住左上图。
例3 下图的七种图形都是由4个相同的小方格组成的。
现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?分析与解:先从简单的情形开始考虑。
显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。
经试验,用6种图形也可以拼成4×7的长方形(见下图)。
能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。
但事实上却拼不成。
为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个。
在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个。
方格棋盘的饱和覆盖问题
方格棋盘的饱和覆盖问题【注】为方便复制编辑,特提供纯文本如下:方格棋盘的饱和覆盖问题冯跃峰在[1]中,我们给出了棋盘饱和覆盖的定义:给定一种图形(称为覆盖形),它由若干方格组成,且每个方格都至少与其中一个方格有公共边。
在m×n的方格棋盘上放置若干个同样规格的图形,每个图形的每个格都恰好完整覆盖棋盘的一个格,且任何两个图形没有覆盖公共的格。
如果棋盘上的任何位置都不能再放进一个该规格的图形,则称上述覆盖为m×n方格棋盘的该图形的饱和覆盖。
最常见的覆盖形有:1×2骨牌,k-L形,4-T形,十字形等。
对于m×n方格棋盘的饱和覆盖P,其覆盖形的个数记为|P|,研究|P|的最小值是一个相当困难的问题。
即使是最简单的覆盖形:1×2骨牌,m×n方格棋盘的饱和覆盖P中|P|的最小值也没有解决,我们仅仅得到如下的结论[1]:定理1:设P是m×n方格棋盘相对于1×2骨牌的饱和覆盖,其中3|mn,则|P|min=mn/3。
本文给出如下的猜想:设P是m×n方格棋盘相对于1×2骨牌的饱和覆盖,其中m、n≥2,则|P|min= 。
我们的初步结果是:定理2:设P是m×n方格棋盘相对于1×2骨牌的饱和覆盖,其中m、n≥2,则|P|≥ 。
下面介绍我们的研究思路。
【题感】从目标看,研究骨牌数的下界,等价于研究覆盖格的个数的下界。
由此想到将棋盘分为若干块,期望每个小块中覆盖的格数“最优”(至少覆盖格数与总格数之比最大),由此得到下界估计。
如何分块才使小块中覆盖的格数“最优”?可先研究特例。
我们固定列数为n,对行数m=1,2,3,…进行研究。
【研究特例】对于1×n的块,相邻2格有一个格被覆盖即可,此时很“不优”(仅占1/2)。
其中注意骨牌并不限定在块内,只需骨牌在原棋盘内。
对于2×n子棋盘,按如下方式覆盖是饱和的,此时也只覆盖了子棋盘中1/2的格,很“不优”。
棋盘覆盖问题
ChessBoard(tr, tc+s, tr+s-1, tc+s, s); } // 覆盖左下角子棋盘 if (dr >= tr + s && dc < tc + s) // 特殊方格在左下角子棋盘中
ChessBoard(tr+s, tc, dr, dc, s); //递归处理子棋盘 else { // 用 t 号L型骨牌覆盖右上角,再递归处理子棋盘
棋盘覆盖问题要求用如图(b)所示的L型骨 牌覆盖给定棋盘上除特殊方格以外的所有方格, 且骨牌之间不得有重叠。
(a) k=2时的一种棋盘
(b) 4种不同形状的L型骨牌
棋盘覆盖问题
残缺棋盘是一个有2k×2k (k≥1)个方格的棋盘,其中恰有 一个方格残缺。图4-7给出k=1时各种可能的残缺棋盘,其 中残缺的方格用阴影表示。
board[tr + s][tc + s] = t;
ChessBoard(tr+s, tc+s, tr+s, tc+s, s); }
}
#include <stdio.h>
#define N 16
int a[100][100];
int t=1;
void Tromino(int (*a)[N],int dr,int dc,int tr,int tc,int size)
图 一个4*4的残缺棋盘
从以上例子还可以发现,当残缺方格在第1个子棋盘,用① 号三格板覆盖其余三个子棋盘的交界方格,可以使另外三 个子棋盘转化为独立子问题;同样地(如下图所示),当 残缺方格在第2个子棋盘时,则首先用②号三格板进行棋盘 覆盖,当残缺方格在第3个子棋盘时,则首先用③号三格板 进行棋盘覆盖,当残缺方格在第4个子棋盘时,则首先用④ 号三格板进行棋盘覆盖,这样就使另外三个子棋盘转化为 独立子问题。如下图:
小学六年级奥数知识点 第十三讲 棋盘中的数学(四)
——棋盘格的计数问题
与棋盘有关的另一大类数学问题是计数问题.我们只能就一些简单的例题进行解说,并随之介绍解题的思想方法.
例1 如下左图,在中国象棋盘上,乙方一只边卒已经过河,它可以向前移一步到B,也可以横行一步到A,要使这个小卒沿最短路线走到对方帅所在的位置(假定前进路上没任何阻难),问有多少种不同的走法?
说明:本题解法是先将正方形分成五类:1×1,2×2,3×3,4×4,5×5,对每一类都仿例3中第3种解法去解是非常迅速的.
例5 下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的三个点为顶点,可以构成三角形,在这些三角形中,与阴影三角形有同样大小面积的有多少个?
说明:利用标数法可以很快求出从一个点到棋盘上另一点最短的不同路线数,这是一种很直观有用的计数方法.
例2 围棋盘上横竖各有19条线(如下图),在棋盘上组成许多大小不同的正方形,问其中有多少个和图中右侧小正方形大小一样的正方形(小正
解法1:我们把小正方形放在大正方形的左上角,则小正方形的右边线与大正方形的第10条竖线重合.将小正方形向右平行移动一格(如下图)则又可出现一个小正方形,顺次向右移动9次后,小正方形的右边线与大正方形的右边线重合.这样前后共得到10个小正方形.同样,将左上角小正方形再每次向下移动一格,也可得到10个小正方形.所以共有10×10=100个小正方形.
2×4×4=32(个).
②三角形的一边长为3,这边上的高是2.这时,长为3的边是原正方形的一边或平行于一边的分割线(其中,与①重复的三角形不再算入).这样的三角形有:
8×2=16(个).
答:所求的三角形共48个(包括上页图中给出的三角形).
棋盘覆盖问题
棋盘覆盖问题
有一个经典问题:8*8的棋盘,去掉了左下角和右上角2个格子,请问能否用31块1*2的骨牌覆盖整个棋盘。
这个问题的答案应该人人都知道吧,染色之后一目了然。
那么,有人要问了:如果去掉的是1红1白的格子各一个,结果是怎样的呢?比如下面的这个图:
你可以自己画几个图试一试。
你能证明一定可以覆盖?还是可以给出反例呢?
据说,这个问题刚出来的时候,通过复杂的理论,终于得到了证明。
也就是只要在这个图中去掉一红一白两格,肯定可以被覆盖。
这里,我们将看到一个复杂的问题怎么通过一个简单的方法来证明。
我们接下来不但要证明可以覆盖,而且要给出覆盖的方法。
看到这里你可能会想到了:构造——对了,只要构造了一组解,原问题便解决了。
我们把原来的棋盘按照下图所示的方法剪开:(沿着绿线):
我们就把这个棋盘变成了一个环。
注意到整个环都是红白相间的。
假设我们从图中去掉一个红色格子,再去掉一个白色格子。
我们就得到两条链:每一条链都是红色->白色->红色...->白色。
这样我们只要沿着链每次的两个格子放即可(注意到相连的两个格子不存在和骨牌形状不同的情况:1*2,你能找出第二种形状吗?)。
把两条链放完,这个棋盘就被覆盖满了,我们的问题也就解决了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棋盘的覆盖
同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。
例1要不重叠地刚好覆盖住一个正方形,最少要用多少个下图所示的图形?
例2 能否用17个形如的卡片将下图刚好覆盖?
例3 下图的七种图形都是由4个相同的小方格组成的。
现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?
例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?
例5用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?
例6有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。
用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)
课后练习
1.在4×4的正方形中,至少要放多少个形如所示的卡片,才能使得在不重
叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)
2.下列各图中哪几个能用若干个或拼成?
3.能否用9个形如的卡片覆盖住6×6的棋盘?
4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。
他留下的四张票可以有多少种不同情况?
5.有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)
6.用6个形如的卡片覆盖下图,共有多少种不同的覆盖方法?
7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?
答案与提示练习15
1.3个。
提示:左下图是一种放法。
2.图(2)。
提示:图(1)的小方格数不是3的倍数;图(3)的小方格数是3的倍数但拼不成;图(2)的拼法见右上图。
3.不能。
提示:右图中黑、白格各18个,每张卡片盖住的黑格数是奇数,9张卡片盖住的黑格数之和仍是奇数,不可能盖住18个黑格。
4.25种。
提示:形如图(A)(B)(C)(D)的依次有3,10,6,6种。
5.6种。
解:用小正方形拼成边长为4的大正方形有6种情形:
(1)1个3×3,7个1×1;(2)1个2×2,12个1×1;
(3)2个2×2,8个1×1;(4)3个2×2,4个1×1;
(5)4个2×2;(6)16个1×1。
6.5种。
提示:盖住A有下图所示的5种方法,其中左下图所示的3种都无法覆盖;下中图中,①放好后,左下方和右上方各有2种放法,共有4种覆盖方法;右下图只有1种覆盖方法。
7.不能。
提示:用1,2,3,4对6×6棋盘中的小方格编号(见右图)。
一个1×4的矩形一次只能覆盖1,2,3,4号各一个,而1,2,3,4号数目不等,分别有9,10,9,8个。