初等函数的概念及表示方法
函数的概念与基本初等函数Ⅰ复习
函数的概念与基本初等函数Ⅰ第一节 函数及其表示突破点(一) 函数的定义域1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.求给定解析式的函数的定义域常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R.(6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2) D .[-2,0]∪[1,2] [答案] C求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[答案] [0,1)已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][答案] D1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1] D .[0,2] 解析:选B2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点求函数的解析式求函数解析式的四种方法[典例](1)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(2)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x+1).故当-1≤x ≤0时,f (x )=-12x (x +1).(2) f (x )=1516x -916x +18(x ≠0).1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________. 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式.f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数. (2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( )A.14B.⎝⎛⎭⎫12 21log 5+C.12D.120 [答案] (1)C (2)D求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[答案] (1)A (2)(-∞,8]1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x ,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14 D.12解析:选C2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12 B .-12 C .1 D .-1 解析:选B3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3 解析:选B4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞) 解析:选C5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23] D .[1,2] 解析:选B3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 解析:选B 4.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________.答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10] 解析:选D2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2 解析:选C3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1 D .-1解析:选A4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x 解析:选D6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1) f (-1)=0,f (1.5)=-18.(2) f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1) y =x 2200+x100(x ≥0).(2)-72≤x ≤70.0≤x ≤70.行驶的最大速度是70千米/时.第二节 函数的单调性与最值突破点(一) 函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.判断函数的单调性1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;(3)在公共定义域内,函数y=f(x)(f(x)≠0)与y=-f(x),y=1f(x)单调性相反;(4)在公共定义域内,函数y=f(x)(f(x)≥0)与y=f(x)单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1](1)下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3x C.f(x)=-1x+1D.f(x)=-|x|(2)已知函数f(x)=x2-2x-3,则该函数的单调递增区间为() A.(-∞,1] B.[3,+∞) C.(-∞,-1] D.[1,+∞) [答案](1)C(2)B函数单调性的应用应用(一) [例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c[答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[答案] B用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞) [答案] (1)D (2)D1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞)解析:选A2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a ) 解析:选C3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.突破点(二) 函数的最值1.函数的最值 前提设函数f (x )的定义域为I ,如果存在实数M 满足条件对于任意x ∈I ,都有f (x )≤M ;对于任意x ∈I ,都有f (x )≥M ; 存在x 0∈I ,使得f (x 0)=M存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.求函数的最值(值域)1.(1)判断或证明函数的单调性;(2)计算端点处的函数值;(3)确定最大值和最小值. 2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________.(2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)21.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1 (x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034 解析:选D2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12 解析:选C3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞)C.⎝⎛⎭⎫-13,13D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.答案:161.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12x D .y =x +1x 解析:选A2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2 D .a ≥2 解析:选C3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞ 解析:选B 4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.答案:⎣⎡⎭⎫-1,12 [练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 解析:选B2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3) 解析:选A3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,1 解析:选C5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1] 解析:选D 二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 答案:a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解: g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1. 第三节 函数的奇偶性及周期性突破点(一) 函数的奇偶性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f (x )的定义域内任意一个x都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数都有f (-x )=f (x ),那么函数f (x )就叫做偶函数图象特征关于原点对称关于y 轴对称2.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.函数奇偶性的判断[例1] 判断下列函数的奇偶性: (1)f (x )=x lg(x +x 2+1);(2)f (x )=(1-x )1+x1-x; (3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1 (x >0),x 2+2x -1 (x <0);(4)f (x )=4-x 2|x +3|-3.[解] (1)偶函数.(2)非奇非偶函数.(3)奇函数.(4)函数f (x )是奇函数.函数奇偶性的应用[例2] (1)已知函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2(2)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.[答案] (1)B (2)131.[考点一]下列函数为偶函数的是()A.f(x)=x-1 B.f(x)=x2+x C.f(x)=2x-2-x D.f(x)=x2+cos x 答案:D2.[考点一]下列函数中,既不是奇函数,也不是偶函数的是()A.f(x)=1+x2B.f(x)=x+1x C.f(x)=2x+12x D.f(x)=x+ex解析:选D3.[考点二]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-2)=()A.-12 B.12C.2 D.-2解析:选B4.[考点二]设函数f(x)=(x+1)(x+a)x为奇函数,则a=________.答案:-15.[考点二]已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.答案:x2+x-1突破点(二)函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.利用函数的周期性求值或范围周期函数y(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f (x )关于直线x =a 对称,又关于点(b,0)对称,则函数f (x )的周期是4|b -a |; (8)若函数f (x )是偶函数,其图象关于直线x =a 对称,则其周期为2a ; (9)若函数f (x )是奇函数,其图象关于直线x =a 对称,则其周期为4a .[典例] (1)(2017·郑州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=,那么f 2 016(2)的值为( )A .0B .1C .2D .3(2)设定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 018)=________.[解析] (1)∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,∴f n (2)的值具有周期性,且周期为3,∴f 2 016(2)=f 3×672(2)=f 3(2)=2,故选C.(2) f (0)+f (1)+f (2)+…+f (2 018)=1 009.1.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=( )A .0B .1 C.12D .-1解析:选D2.(2017·沈阳模拟)函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫52的值为( )A.12B.14 C .-14 D .-12解析:选A3.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.4.若对任意x ∈R ,函数f (x )满足f (x +2 017)=-f (x +2 018),且f (2 018)=-2 017,则f (-1)=________.答案:2 0175.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 018)的值.f (1)+f (2)+…+f (2 018)=336+3=339.突破点(三) 函数性质的综合问题1.函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,其中奇偶性多与单调性结合,而周期性多与抽象函数结合,并结合奇偶性求函数值.2.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.因此在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.奇偶性与单调性的综合问题偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.[例1] 已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.实数m 的取值范围是[-1,1).奇偶性与周期性的综合问题[例2] 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1 D .-3+1[答案] D奇偶性、周期性、单调性的综合问题[例3] 则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[答案] D1.[考点一](2017·太原模拟)下列函数中,既是偶函数又在(0,+∞)上是减函数的是( ) A .y =x -1 B .y =ln x 2 C .y =cos xx D .y =-x 2 解析:选D2.[考点二](2017·广州联考)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .2B .-2C .-98D .98 解析:选B3.[考点一]已知定义在R 上的奇函数f (x )在x >0时满足f (x )=x 4,且f (x +t )≤4f (x )在x∈[1,16]时恒成立,则实数t的最大值是()A.2-1 B.16(2-1) C.2+1 D.16(2+1)解析:选A4.[考点三]已知函数f(x)是定义域为R的偶函数,且f(x+1)=1f(x),若f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:选A5.[考点二]已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=2a-3 a+1,则实数a的取值范围为________.答案:(-1,4)[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C2.(2015·新课标全国卷Ⅰ)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案:13.(2014·新课标全国卷Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.答案:34.(2014·新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.答案:(-1,3)5.(2012·新课标全国卷)设函数f(x)=(x+1)2+sin xx2+1的最大值为M,最小值为m,则M+m=________.答案:21.(2016·肇庆三模)在函数y=x cos x,y=e x+x2,y=lg x2-2,y=x sin x中,偶函数的个数是()A.3 B.2 C.1 D.0解析:选B2.下列函数为奇函数的是()A .f (x )=xB .f (x )=e xC .f (x )=cos xD .f (x )=e x -e -x 解析:选D3.(2017·江南十校联考)设f (x )=x +sin x (x ∈R),则下列说法错误的是( ) A .f (x )是奇函数 B .f (x )在R 上单调递增 C .f (x )的值域为R D .f (x )是周期函数 解析:选D4.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.答案:-15.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案:--x -1[练常考题点——检验高考能力]一、选择题1.(2017·石家庄质量检测)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1x B .y =|x |-1 C .y =lg x D .y =⎝⎛⎭⎫12ln |x | 解析:选B2.(2017·泰安模拟)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 解析:选A3.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12 B.32 C .0 D .-12 解析:选A4.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎫-∞,12B.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫32,+∞C.⎝⎛⎭⎫12,32D.⎝⎛⎭⎫32,+∞ 解析:选C5.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .2 解析:选D6.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16 解析:选B 二、填空题7.(2017·揭阳模拟)已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.答案:18.函数f (x )=e x +x (x ∈R)可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是________.解析:答案:(-2,1)10.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案: 2 三、解答题11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1) m =2.(2)实数a 的取值范围是(1,3].12.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1) f (1)=0.(2)f (x )为偶函数. (3) x 的取值范围是(-15,1)∪(1,17). 第四节 二次函数与幂函数突破点(一) 幂函数1.幂函数的定义形如y =x α(α∈R)的函数称为幂函数,其中x 是自变量,α为常数.对于幂函数,只讨论α=1,2,3,12,-1时的情形.2.五种幂函数的图象3.五种幂函数的性质 函数性质y =xy =x 2 y =x 3 y =x 12y =x -1 定义域 RRR[0,+∞)(-∞,0)∪(0,+∞)值域 R [0,+∞)R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性奇偶奇非奇非偶奇单调性 增 x ∈[0,+∞)时,增;x ∈(-∞,0]时,减增增x ∈(0,+∞)时,减;x ∈(-∞,0)时,减幂函数的图象[例1] 幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )[答案] C幂函数的性质(1)幂函数在(0;(3)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(4)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;(5)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.[例2] (1)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. (2)若(a +1)13-<(3-2a )13-,则实数a 的取值范围是________.[答案] (1)a >c >b (2)(-∞,-1)∪⎝⎛⎭⎫23,321.[考点二]已知函数f (x )=(m 2-m -1)x23+-m m 是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( )A .-1 B .2 C .-1或2 D .3解析:选B2.[考点一]图中C 1,C 2,C 3为三个幂函数y =x k 在第一象限内的图象,则解析式中指数k 的值依次可以是( )A .-1,12,3B .-1,3,12 C.12,-1,3 D.12,3,-1解析:选A3.[考点一、二](2017·昆明模拟)已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2解析:选B n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 4.[考点二]若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c解析:选D 5.[考点二]若(a +1)12<(3-2a )12,则实数a 的取值范围是________.答案:⎣⎡⎭⎫-1,23 突破点(二) 二次函数1.二次函数解析式的三种形式(1)一般式:f (x )=ax 2+bx +c (a ≠0),图象的对称轴是x =-b2a,顶点坐标是⎝⎛⎭⎫-b 2a,4ac -b 24a ;(2)顶点式:f (x )=a (x -m )2+n (a ≠0),图象的对称轴是x =m ,顶点坐标是(m ,n );(3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是方程ax 2+bx +c =0的两根,图象的对称轴是x =x 1+x 22. 2.二次函数的图象和性质 f (x )=ax 2+bx +ca >0a <0图象定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a奇偶性b =0时为偶函数,b ≠0时既不是奇函数也不是偶函数单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减,在⎣⎡⎭⎫-b 2a ,+∞上单调递增在⎝⎛⎦⎤-∞,-b2a 上单调递增,在⎣⎡⎭⎫-b 2a ,+∞上单调递减最值 当x =-b2a 时,y min =4ac -b 24a当x =-b2a 时,y max =4ac -b 24a求二次函数的解析式[例1] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.f (x )=-4x 2+4x +7.二次函数的图象确定二次函数的图象,主要有以下三个要点:从这三方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.二次函数的图象与性质的应用考法(一) 二次函数的单调性[例2] 已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (2)当a =1时,求f (|x |)的单调区间.[解] (1)实数a 的取值范围是(-∞,-6]∪[4,+∞). (2) f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].考法(二)二次函数的最值二次函数的最值问题主要有三种类型:“轴定区间定”、“轴动区间定”、“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f(x)=ax2+bx+c(a>0),则二次函数f(x)在闭区间[m,n]上的最大值、最小值有如下的分布情况:对称轴与区间的关系m<n<-b2a,即-b2a∈(n,+∞)m<-b2a<n,即-b2a∈(m,n)-b2a<m<n,即-b2a∈(-∞,m)图象最值f(x)max=f(m),f(x)min=f(n)f(x)max=max{f(n),f(m)},f(x)min=f⎝⎛⎭⎫-b2af(x)max=f(n),f(x)min=f(m)[例3]已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.[a=-1或a=2.考法(三)二次函数中的恒成立问题[例4]已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.实数a的取值范围是[2,3].1.[考点二]已知函数f(x)=ax2+bx+c,若a>b>c且a+b+c=0,则它的图象可能是()解析:选D2.[考点三·考法(一)]函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x ∈(-∞,-2]时,f(x)是减函数,则f(1)的值为()A.-3 B.13 C.7 D.5解析:选B3.[考点一]二次函数的图象过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为________________.答案:f (x )=12x 2-2x +14.[考点三·考法(二)]设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),求g (a ).g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a ≤1,-1,a >1.5.[考点三·考法(三)]已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,求实数a 的取值范围.实数a 的取值范围是⎝⎛⎭⎫-∞,12. 近五年全国卷对本节内容未直接考查1.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,则使f (x )=x α为奇函数,且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4 解析:选A2.设a =⎝⎛⎭⎫2313,b =⎝⎛⎭⎫1323,c =⎝⎛⎭⎫1313,则a ,b ,c 的大小关系为( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a解析:选A3.已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为( )解析:选D4.二次函数的图象与x 轴只有一个交点,对称轴为x =3,与y 轴交于点(0,3).则它的解析式为________.答案:y =13x 2-2x +35.若关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则m 的取值范围为________. 答案:(-∞,-3][练常考题点——检验高考能力]一、选择题1.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =1解析:选B2.若函数f (x )=(1-x 2)(x 2+ax -5)的图象关于直线x =0对称,则f (x )的最大值是( ) A .-4 B .4 C .4或-4 D .不存在解析:选B 3.已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则下列成立的是( )A .f (m )<f (0)B .f (m )=f (0)C .f (m )>f (0)D .f (m )与f (0)大小不确定解析:选A4.已知函数f (x )=x 2+2|x |,若f (-a )+f (a )≤2f (2),则实数a 的取值范围是( ) A .[-2,2]B .(-2,2]C .[-4,2]D .[-4,4]解析:选A 5.设函数f (x )=x 2-23x +60,g (x )=f (x )+|f (x )|,则g (1)+g (2)+…+g (20)=( )A .56B .112C .0D .38 解析:选B6.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞) 解析:选C 二、填空题7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案:(3,5)8.已知点P 1(x 1,2 018)和P 2(x 2,2 018)在二次函数f (x )=ax 2+bx +9的图象上,则f (x 1+x 2)的值为________.答案:99.方程x 2+ax -2=0在区间[1,5]上有根,则实数a 的取值范围为________. 答案:⎣⎡⎦⎤-235,1 10.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.答案:⎝⎛⎦⎤-94,-2 三、解答题11.(2017·杭州模拟)已知函数h (x )=(m 2-5m +1)x m+1为幂函数,且为奇函数.(1)求m 的值;(2)求函数g (x )=h (x )+1-2h (x ),x ∈⎣⎡⎦⎤0,12的值域. 解:(1) m =0.(2)值域为⎣⎡⎦⎤12,1. 12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2,∴-2≤b ≤0.故b 的取值范围是[-2,0].第五节 指数与指数函数突破点(一) 指数幂的运算1.根式(1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的表示x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n >1时),x =±n a (当n 为偶数且n >1时).2.有理数指数幂。
初等函数、简单函数、复合函数、初等函数的概念及关系
初等函数、简单函数、复合函数、初等函数的概念及
关系
1.初等函数:
初等函数是由基本初等函数经过有限次四则运算(加、减、乘、除)与有限次复合形成的函数。
基本初等函数包括以下几种类型:-常数函数:如f(x)=C,C是常数。
-幂函数:如f(x)=x^n,n为实数。
-指数函数:如f(x)=a^x,a>0且a≠1.
-对数函数:如f(x)=log_a(x),a>0且a≠1.
-三角函数:sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)及其逆函数(反三角函数)。
2.简单函数:
简单函数通常是指构成复杂函数的基本单元,它们相对独立且形式较为简单。
在解决具体问题时,简单函数可能指的就是上述基本初等函数,或者是通过基本初等函数进行一次或几次基本运算(如加法、乘法等)得到的函数。
3.复合函数:
复合函数是两个或多个函数通过变量的代换相互结合而成的新
函数。
如果存在两个函数f和g,那么可以定义一个复合函数h(x)=f(g(x)),其中g的值域需包含在f的定义域内。
例如,`h(x)
=sin(2x)`就是一个复合函数,其中`g(x)=2x`作为外层函数的“内层”被嵌套到`f(u)=sin(u)`中。
关系上:
-所有的基本初等函数都是简单函数。
-简单函数经过组合(包括复合和四则运算)可以形成更复杂的初等函数。
-复合函数是构造初等函数过程中的一种重要手段,它可以将几个简单函数联接起来构建新的、具有更丰富特性的函数表达式。
(整理)基本初等函数.
函数的概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。
记作:y =f (x ),x ∈A 。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。
注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。
2.构成函数的三要素:定义域、对应关系和值域 3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
5.映射一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
记作“f :A →B ”。
映射和函数的区别:映射是两个集合之间的对应关系,集合A 所有元素在B 中有元素对应,集合B 中的元素在A 中不一定有对应的元素。
但是函数,自变量x 所有的值在因变量y 里面都有对应,而因变量y 的所有元素在自变量x 中也有对应; 6.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 7.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
专题二:函数与基本初等函数(知识点梳理)
f x f x,那么就称函数 f (x) 为奇函数.奇函数图象关于原点对称.
(3) 奇、偶函数的性质: ① 奇、偶函数的定义域一定关于原点对称. ② 如果 f (x) 为奇函数,且在原点有定义,则 f (0) 0. ③ 如果 f (x) 为偶函数,则 f (x) f (x) f ( x ). ④奇函数的图像关于原点对称,图像关于原点对称的函数是奇函数;偶函数
步骤:取值—作差—变形—定号—判断
格式:解:设 x1, x2 a,b 且 x1 x2 ,则: f x1 f x2 =…
2、奇偶性
(1)奇函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为偶函数.偶函数图象关于 y 轴对称.
高考数学必记知识点归纳总结 第三章 函数
一、函数的概念: 1、函数的定义:在某一个变化过程中有两个变量 x 和 y,设变量 x 的取值 范围为数集 D,如果对于 D 内的每一个 x 值,按照某个对应法则 f,y 都有 唯一确定的值与之对应,那么,把 x 叫做自变量,把 y 叫做 x 的函数.记为:
y f(x)
的图像关于 y 轴对称,图像关于 y 轴对称的函数是偶函数.
⑤奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的 区间上的单调性相反. ⑥在公共定义域内:两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和与积都是偶函数;一个奇函数与一个偶函数的积是奇函数.
注意:判断函数的奇偶性时,首先判断定义域是否关于原点对称,若定义域
⑴当 a 1时,
f (x) 0 loga f (x) loga g(x) g(x) 0
基本初等函数初等函数
基本初等函数初等函数初等函数是指可以用基本初等函数表示和运算的函数。
基本初等函数是指常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
常数函数是指函数的值恒为一些常数的函数,例如f(x)=3幂函数是以x为底数的幂指数函数,可以表示为f(x)=x^n,其中n是一个常数。
指数函数是指以指数形式表示的函数,例如f(x)=a^x,其中a是一个常数。
对数函数是指以对数形式表示的函数,例如 f(x) = log_a(x),其中a 是一个常数。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
它们都是周期函数,周期为2π。
反三角函数是三角函数的反函数,例如正弦函数的反函数是反正弦函数(arcsin),余弦函数的反函数是反余弦函数(arccos),正切函数的反函数是反正切函数(arctan)。
例如,用加法和乘法运算可以生成多项式函数,多项式函数是指以多项式形式表示的函数,例如f(x)=3x^2+5x+2用加法、乘法和除法运算可以生成有理函数,有理函数是指以多项式分式形式表示的函数,例如f(x)=(3x^2+5x+2)/(2x+1)。
用加法、乘法、除法和根号运算可以生成代数函数,代数函数是指通过代数运算得到的函数,例如f(x)=√(3x^2+5x+2)。
例如,两个初等函数的和、差、积和商仍然是初等函数。
两个初等函数的复合函数也是初等函数。
例如,f(x) = sin(x^2) 是正弦函数和幂函数的复合函数。
需要注意的是,初等函数是一个相对的概念。
一些函数在特定的领域内可以表示为初等函数,但在其他领域内则可能无法表示为初等函数。
例如,f(x)=e^x在实数域上是一个指数函数,但在复数域上则无法用基本初等函数表示。
初等函数在数学和科学领域中有着广泛的应用。
它们可以描述和研究自然界中的各种现象和规律,为科学家和工程师提供了强大的工具。
此外,初等函数还在数学分析、微积分、概率论、统计学等许多数学学科中发挥着重要的作用。
初中数学知识点初等函数的概念与性质
初中数学知识点初等函数的概念与性质初中数学知识点初等函数的概念与性质初等函数是初中数学学习中的一个重要概念,它在数学的各个分支中均有广泛应用。
掌握初等函数的概念及其性质,对于学习数学和解决实际问题具有重要意义。
本文将从初等函数的定义、常见类型以及性质等方面进行论述。
一、初等函数的定义初等函数是指由有限次的常数函数、幂函数、指数函数、对数函数、三角函数及其反函数,以及这些函数的有限次四则运算、函数复合而成的函数。
初等函数是数学中最基本的函数之一,是许多复杂函数的基础。
二、常见类型的初等函数1. 常数函数:常数函数是指函数在定义域上的函数值全都相等的函数,例如f(x) = 2。
2. 幂函数:幂函数是指以自变量为底数,自变量的指数为指数的函数,例如f(x) = x²。
3. 指数函数:指数函数是以常数e(自然对数的底数)为底数,自变量为指数的函数,例如f(x) = eˣ。
4. 对数函数:对数函数是指以常数e为底数,函数值为自变量的指数的函数的自变量,例如f(x) = logₑx。
5. 三角函数:三角函数是指以单位圆上的点坐标值作为函数值的函数,常见的有正弦函数、余弦函数和正切函数等。
三、初等函数的性质初等函数具有以下一些重要的性质:1. 定义域和值域:初等函数的定义域可以是整个实数集R,也可以是实数集上的一个区间,值域则取决于具体函数的性质。
2. 奇偶性:根据函数的定义和性质,初等函数可以具有奇函数和偶函数的特点。
3. 单调性:初等函数具有单调递增和单调递减的性质,这取决于其导数的正负性。
4. 极值点:初等函数在定义域上可能存在极值点,可以通过求导数和分析函数的增减性来确定。
5. 对称轴:初等函数可能存在对称轴,可以通过观察函数的图像或者函数表达式来确定。
6. 渐近线:初等函数的图像可能趋近于某些直线,可以是水平渐近线、垂直渐近线或斜渐近线。
7. 周期性:三角函数具有周期性,周期可以通过观察函数的图像或者函数表达式来确定。
基本初等函数
g(x)的定义域为{x|x≥1 或 x≤-1}.
∴两函数的定义域不同.故选 A.
1 1 2 跟踪训练 2 (1)已知 f(x+x)=x + 2,求 f(x)的解析式. x
1 1 12 2 解 (1)∵f(x+x )=x +x2=(x+x ) -2, 1 1 且 x+x ≥2 或 x+x≤-2,
图象 描述 自左向右看图象是
上升的
自左向右看图象是
下降的
2.单调性与单调区间 如 果一 个函 数在某 个区 间 M 上是 增函数 或 是 减函数 ,就说这个函数在这个区间 M 上具有 单调性,区间 M 称为
单调区间 .
1.函数 f(x)中,满足“对任意 x1,x2∈(0,+∞),当 x1<x2 时, 都有 f(x1)>f(x2)”的是 1 A.f(x)=x B.f(x)=(x-1)2 C.f(x)=ex
a(x-m)2+n(a≠0) a(x-x1)(x-x2) (a≠0) k≠0
).
. . .
2.一次函数与二次函数的定义及性质
函数名称 解析式
一次函数 y=kx+b (k≠0) k>0 k<0
二次函数 y=ax2+bx+c (a≠0) a>0 ab>0 b<0,c>0 R b > 0, c < 0
1 3 所以函数 g(x)的定义域是[2,2].
x+1>0 (2)由 2 -x -3x+4>0
,得-1<x<1.
函数的单调性
1.函数单调性的定义 增函数 减函数 设函数 f(x)的定义域为 A:区间 M⊆A,如果取区间 M 中任意两个值 x1,x2,改变量 Δx=x2-x1>0,则当 定义 Δy=f(x2)-f(x1)>0 Δy=f(x2)-f(x1)<0 时, 就称函数 时,就称函数 y=f(x) y=f(x)在区间 M 上是减函数 在区间 M 上是增函数
基本初等函数
基本初等函数在数学中,基本初等函数是指一组常见且重要的函数,它们在解决实际问题和数学建模中起着关键作用。
这些函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
本文将介绍这些基本初等函数的定义、性质和应用。
1. 常数函数常数函数是最简单的函数之一,它的定义域中的每个数对应着同一个数值。
常数函数可以用以下形式表示:f(x) = c其中c为常数。
常数函数在数学建模中常用于表示恒定的数值,例如表示物体的质量、温度等。
2. 幂函数幂函数是形如f(x) = x^n的函数,其中n为整数或有理数。
当n为正整数时,幂函数表示将x连乘n次。
当n为负整数时,幂函数表示将x连除|n|次。
幂函数还可以表示开方运算,当n为1/2时表示平方根,n 为1/3时表示立方根等。
幂函数在物理学和工程学中广泛应用,如描述电路的功率特性、物体的速度随时间的变化等。
3. 指数函数指数函数是形如f(x) = a^x的函数,其中a为常数且a>0且a≠1。
指数函数的图像通常呈现出曲线的形状,随着自变量x的增大或减小,函数值急剧增加或减少。
指数函数在财务学、生物学、经济学等领域中有广泛的应用,如描述投资的复利增长、细菌的繁殖规律等。
4. 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为常数且a>0且a≠1。
对数函数是指数函数的反函数,它描述了一个数以某个底数为底的幂的指数是多少。
对数函数在计算复杂度、音乐领域、数据压缩领域等有广泛的应用。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们是单位圆上的点对应的y坐标、x坐标和y/x之间的关系函数。
三角函数在物理学、工程学、地理学等领域中广泛应用,如描述波动的特性、建筑物的结构设计等。
6. 反三角函数反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数等。
它们可以用来解决三角方程,求解角度或与角度有关的问题。
反三角函数在几何学、物理学、导航系统等领域有广泛的应用。
初等函数名词解释
初等函数名词解释函数是数学中的一个重要概念,它是一种把一个或多个自变量映射到一个结果的关系。
在函数的定义中,有三种不同的函数类型:初等函数,幂函数和反函数。
本文将详细介绍初等函数。
什么是初等函数?初等函数是指基本的数学函数,也称为基本函数。
这些函数可以用简单的数学符号表示,其中每个变量都有一个唯一的结果值。
它们的关系可以使用数学公式表达出来,如 y = x^2 y = 1/x。
初等函数包括指数函数,对数函数,根号函数,三角函数,双曲线等。
指数函数指数函数是一种特殊的函数,它的函数形式为 y = a^x,其中a 是参数,x是自变量,y是因变量。
指数函数可以用来表示一个增长或下降的趋势,这可以用来模拟各种现实生活中的问题。
对数函数对数函数也称为对数函数,是通过对数据进行求对数,从而将数据的范围进行转换的一种函数。
它的函数形式为 y = loga(x),其中a是参数,x是自变量,y是因变量。
它可以用来模拟数据的变化情况,以及用来分析数据变化规律所形成的图表。
根号函数根号函数是一种特殊的幂函数。
它的函数形式为 y =x,其中x是自变量,y是因变量。
它用来描述一个数字不断翻倍所形成的函数图像,可用来模拟实际生活中因某种因素而引起的极端数据变化趋势。
三角函数三角函数是一类特殊的函数,其函数形式为y = f(x),其中x是自变量,y是因变量。
它可以用来描述图表上的曲线变化,也可以用来模拟实际生活中的不同数据变化情况。
双曲函数双曲函数是一类特殊的函数,它的函数形式为y = asin(x)或y = acos(x),其中a是参数,x是自变量,y是因变量。
双曲函数可以用来描述曲线变化,也可以用来模拟实际生活中数据变化的情况。
总结以上就是关于初等函数的详细介绍,初等函数是指基本的数学函数,一共有指数函数,对数函数,根号函数,三角函数,双曲线等。
它们可以用来描述图表上的曲线变化,也可以用来模拟实际生活中的不同数据变化情况。
函数概念与基本初等函数高中数学知识点总结
函数概念与基本初等函数高中数学知识点总结函数是数学中一种重要的概念,它描述了一种特定的关系,将一个集合的元素映射到另一个集合的元素。
函数在高中数学中占据了重要的地位,是数学学习的基础。
在这篇文章中,我们将总结函数的概念以及一些基本的初等函数的知识点。
一、函数的概念函数是一种特定的关系,它将一个集合的元素映射到另一个集合的元素。
通常用字母f表示函数,例如f(x)。
其中x是函数的自变量,f(x)是函数的值或因变量。
函数的定义域是自变量可能取值的集合,值域是函数可能取值的集合。
函数可以用图像、表格或公式来表示。
函数有一些重要的特点:1.单值性:对于定义域中的每个自变量值,函数只能有一个对应的值。
2.定义域:函数的自变量可能取值的集合。
3.值域:函数的值可能取值的集合。
4.对称性:函数可能具有一些对称性质,例如奇函数和偶函数。
5.增减性:函数可能随着自变量的增大或减小而增加或减少。
初等函数是一类经过常见运算(加法、减法、乘法、除法、乘方、开方等)和函数复合(如求和、求积、复合函数等)得到的函数。
下面是一些常见的初等函数及其特点和知识点:1.幂函数:幂函数的表达式是y=x^m,其中m是实数。
幂函数的图像可能是一条直线、二次曲线、指数曲线等。
幂函数的正负性、单调性和奇偶性与指数m的关系密切。
2.指数函数:指数函数的表达式是y=a^x,其中a是大于0且不等于1的实数。
指数函数的图像是一个递增的曲线。
指数函数的性质包括连续性、正负性、单调性和极限等。
3.对数函数:对数函数的表达式是 y = log_a(x),其中 a 是大于 0 且不等于 1 的实数。
对数函数是指数函数的反函数,其图像是对数曲线。
对数函数的性质包括连续性、正负性、单调性和极限等。
4.三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
它们的图像是周期性的波浪曲线。
三角函数的性质包括周期性、奇偶性、单调性和求导等。
5.反三角函数:反三角函数是指正弦函数、余弦函数、正切函数的反函数,用sin^(-1)(x)、cos^(-1)(x)、tan^(-1)(x) 表示。
《高等数学》初等函数
初等函数一、基本内容1. 基本初等函数(1) 幂函数:幂函数αx y =(α是任意实数)。
(2)指数函数:x a y =(a 为常数,且0>a ,1≠a )。
(3)对数函数:x y a log =(a 为常数,且0>a ,1≠a )。
(4)三角函数:正弦函数x y sin = 余弦函数x y cos =正切函数x y tan = 余切函数x y cot =正割函数x y sec = 余割函数x y csc =(5)反三角函数:反正弦函数x y arcsin =,是正弦函数在区间]2,2[ππ-上的反函数。
反余弦函数x y arccos =,是余弦函数在区间],0[π上的反函数。
反正切函数x y arctan =,是正切函数在区间)2,2(ππ-上的反函数。
反余切函数x arc y cot =,是余切函数在区间),0(π上的反函数。
2. 复合函数:(1)定义:设函数)(u f y =的定义域为f D ,函数)(x u ϕ=的值域为ϕR ,若φϕ≠=M R D f ,则在M 内通过变量u 确定了一个y 是x 的函数,记作)]([x f y ϕ=,该函数称为x 的复合函数。
其中x 称为自变量,y 称为因变量,u 称为中间变量。
(2)复合函数的分解原则:把一个复合函数分解成基本初等函数或基本初等函数的四则运算。
3. 初等函数:常数和基本初等函数经过有限次的四则运算与复合所构成的,并可用一个式子表示的函数。
*4. 双曲函数:双曲正弦函数 2xx e e shx y --==, ),(+∞-∞∈x 双曲余弦函数 2xx e e chx y -+==, ),(+∞-∞∈x 双曲正切函数 x x xx ee e e thx y --+-==, ),(+∞-∞∈x 双曲余切函数 x x xx ee e e x y ---+==coth ,),0()0,(+∞⋃-∞∈x 二、学习要求1. 掌握基本初等函数解析式、图像及常用公式;2. 理解复合函数的概念,掌握复合函数的分解;3. 理解初等函数的概念。
基本初等函数知识点
基本初等函数知识点一、函数的概念:函数是自变量与因变量之间的一种对应关系。
其中,自变量是函数的输入,因变量是函数的输出。
函数可以用来描述不同变量之间的关系或者用来描述一些变量随着另一个变量的变化而发生的变化。
二、函数的表示法:函数可以用不同的表示法来表示。
最常见的表示法有解析式表示法、图像表示法和表格表示法。
例如,一元一次函数y=ax+b就是一个常见的初等函数。
三、函数的性质:1.定义域和值域:函数的定义域是自变量的取值范围,值域是函数的因变量的可能取值范围。
2.奇偶性:对于函数f(x),如果对于任意x,有f(-x)=f(x)成立,则函数具有偶性;如果对于任意x,有f(-x)=-f(x)成立,则函数具有奇性。
3.单调性:如果对于任意x1>x2,有f(x1)>f(x2)成立,则函数为递增函数;如果对于任意x1>x2,有f(x1)<f(x2)成立,则函数为递减函数。
4.周期性:如果对于任意x,有f(x+T)=f(x)成立,则函数具有周期T。
四、常见初等函数的性质和图像:1.常数函数:f(x)=c(c为常数),图像为平行于x轴的一条直线。
2. 一次函数:f(x) = ax + b(a和b为常数),图像为一条直线,斜率a决定了直线的倾斜程度,b为与y轴交点的纵坐标。
3.幂函数:f(x)=x^n(n为常数),图像的形状与n的奇偶性以及正负有关,例如,当n为正奇数时,图像的右上和左下部分都在x轴上方。
4.指数函数:f(x)=a^x(a为常数且大于0且不等于1),图像呈现出一种快速增长的趋势。
5. 对数函数:f(x) = loga(x)(a为常数且大于0且不等于1),图像为一条光滑的上升曲线,a决定了函数增长的速度。
五、初等函数的运算:1.四则运算:对于两个初等函数f(x)和g(x),可以进行加减乘除运算,得到新的初等函数。
2.复合运算:对于两个初等函数f(x)和g(x),可以将g(x)的值代入f(x)进行运算,得到新的初等函数。
初等函数(高等数学课件
正切函数 定义 性质
余切函数 定义 性质
函数的单调性及其判定方法
什么是单调函数?
如何判定单调性?
单调函数是保持增减关系的函数。
可以通过导数或一阶导数的符号 来判定函数的单调性。
单调递减函数
函数值随自变量递减的函数。
函数的周期性及其判定方法
1
周期性定义
函数在某个区间内与其在该区间外的部分完全相同。
性质
它们具有整数次幂、可加性和可乘性的特点。
指数函数和对数函数的定义
1
指数函数
指数函数是以自然常数e为底的幂函数。
对数函数
2
对数函数是指数函数的逆运算。
3
性质
它们具有特定的增长和衰减规律,应用 广泛。
三角函数的定义和性质
正弦函数 定义 性质
余弦函数 定义 性质
三角函数是描述角度和周期性现象的重要工具。
初等函数在实际问题中的应用
1 数学模型
利用初等函数构建数学模型,解决实际问题,如物体的抛体运动等。
2 经济学
初等函数在经济学中广泛应用,如收益函数、成本函数、供需曲线等。
3 物理学
初等函数用于描述物理现象,如波动、震动、电路等。
2
周期性的判定方法
可以通过函数的表达式或图像来判断函数是否具有周期性。
3
周期性的应用Biblioteka 周期函数常用于描述震动、波动和周期性运动等现象。
函数的图像和变换
平移
保持函数形状不变,改变函数 在坐标系中的位置。
伸缩
改变函数在坐标系中的纵坐标 或横坐标的范围。
翻折
改变函数的对称中心,使函数 关于坐标轴或直线对称。
初等函数(高等数学课件)
解析函数理论中的初等函数概念
解析函数理论中的初等函数概念函数理论是数学中的一个分支,它研究的是函数的性质、特征,以及与其他对象的关系。
作为函数理论中的一个基本概念,初等函数一直是数学研究的重要课题之一。
本文将从初等函数的定义、性质、分类、以及一些常见的初等函数类型进行深入的解析。
一、初等函数的定义初等函数是一种我们日常生活中常见的一类函数。
所谓初等函数,指的是可以用四则运算和函数的有限次复合得到的函数。
其中,四则运算包括加、减、乘、除,而函数的有限次复合指的是对一个函数进行有限次嵌套。
通俗点说,初等函数就是可以通过基本数学操作和有限次函数嵌套来描述的函数。
一般来说,初等函数可以分为代数函数和三角函数两大类。
所谓代数函数,指的是关于变量的多项式函数,如幂函数、指数函数、对数函数以及各种三角函数。
而三角函数则是由正弦、余弦、正切等组成的一类函数。
二、初等函数的性质初等函数具有一些重要的性质,这些性质往往被广泛地应用在对初等函数的研究和分析中。
其中,一个最为基本的性质就是初等函数是可微函数。
这意味着,初等函数的导函数仍然是一个初等函数。
此外,初等函数还具有递归性质。
也就是说,初等函数可以通过有限次基本操作以及有限次函数嵌套,描述出一类新的初等函数。
这样,不断地递归下去,我们就可以描述出各种更加复杂的函数。
最后,初等函数还满足以下性质:初等函数的函数值可以用代数数、指数函数、三角函数以及它们的有限次嵌套,表示成有理数、无理数和常数的有限个代数运算。
三、初等函数的分类初等函数包括多种类型,常用的有以下几类:1. 幂函数幂函数是最简单的初等函数。
其表达式为 y=x^n,其中n是一个正整数。
幂函数分为偶次幂和奇次幂两种类型。
当n为偶数时,幂函数的图形具有对称性;而当n为奇数时,幂函数则呈现出一种非对称的形态。
2. 指数函数指数函数是初等函数中的另一种重要类型。
它的表达式为y=a^x,其中a为正实数且不等于1。
指数函数的图形具有一些特殊的性质,比如在x轴上方的函数值不断增加,而在x轴下方则不断减小。
函数的概念与基本初等函数-函数及其表示
函数的概念与基本初等函数第一节 函数及其表示1.函数的有关概念函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.常见求函数定义域类型:①偶次根式:偶次根式根号内的式字大于等于零,如若y=)(x f ,则0)(≥x f . ②分式:分式分母不为零,即若)()(x g x f y =,则0)(≠x g . ③对数式:对数式真数大于零,即若)(log x f y a =,其中a>0且a≠1,则0)(>x f ④对于)(tan x f y =,则有Z k k x f ∈+≠,2)(ππ抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.2.函数的三要素:定义域、值域和对应关系.3.函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.4.相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.5.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.6.求函数解析式的4种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).。
基本初等函数知识点归纳
函数及其基本初等函数〖1.1〗函数及其表示 【1.1.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.(所以进行已知对应关系()f x 的函数,一定先求出函数的定义域)③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).而且无论闭区间或者开区间,,a b 均称为端点。
(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.例1 已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A 00,()0x R f x ∃∈=B 函数()y f x =的图像是中心对称图形C 若0x 是()f x 的极小值点,则()f x 在区间(-∞,0x )上单调递减D 若0x 是()f x 的极值点,则'()0f x =例2 已知偶函数()f x 在[0,)+∞上单调递减,(2)f =0,若(1)0f x ->,则x 的取值范围是( )例 3 设函数()xf x mπ=,若存在()f x 的极值点0x 满足22200[(()]x f x m +<,则m 的取值范围是( )A (-∞,-6)∪(6,+∞)B (-∞,-4)∪(4,+∞)C (-∞,-2)∪(2,+∞)D (-∞,-1)∪(1,+∞) 例4 下列函数与y=x 有相同图像的一个函数是( )A y =B 2x y x=C log (01)xy aa a =>≠且 D log xa a y =【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数(判定方法2). (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. 【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈ 【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义 函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖2.2〗对数函数【2.2.1】对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质 (5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域(即原函数的值域).(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =f(p) f (q) ()2b f a-f (p)f(q)()2bf a-f (p)f (q)()2b f a-f(p) f (q)()2b f a-0x f(p) f(q)()2b f a-0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用〖3.1〗方程的根与函数的零点 一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
第一节 函数的概念及表示 【高考文数专题--函数的概念与基本初等函数】
5.已知函数f(x)=ax3-2x的图象过点(-1,4),则f(2)=________. 解析:∵函数f(x)=ax3-2x的图象过点(-1,4), ∴4=-a+2,∴a=-2,即f(x)=-2x3-2x, ∴f(2)=-2×23-2×2=-20. 答案:-20
三、“基本思想”很重要 1.(整体代换)已知f(2x+1)=4x2+3x+2,则f(x)=________.
[过关训练] 1.已知f( x+1)=x-2 x,则f(x)=________.
解析:法一:换元法 令t= x+1,则t≥1,x=(t-1)2, 代入原式有f(t)=(t-1)2-2(t-1)=t2-4t+3, 所以f(x)=x2-4x+3(x≥1). 法二:配凑法 f( x+1)=x+2 x+1-4 x-4+3 =( x+1)2-4( x+1)+3, 因为 x+1≥1,所以f(x)=x2-4x+3(x≥1). 答案:x2-4x+3(x≥1)
=f(2-3)=f(-1)=(-1)2-2-1
=12.
[答案] D
[解题方略] 求分段函数的函数值的方法
先确定要求值的自变量的取值属于哪一段区间,然后代入该段的解析式 求值.当出现f(f(a))的形式时,应从内到外依次求值.
题点(二) 与方程结合求参数
[例 2] 已知函数 f(x)=2xx2+ +1a, x,x<x≥1,1, 若 f(f(0))=4a,则实数 a= (
答案:A
()
3.(好题分享——新人教A版必修第一册P72T1改编) 函数f(x)=x3+x4+ 16-x2的定义域是________. 答案:(-4,4]
4.已知函数f(x)=2x-3,x∈{x∈N |1≤x≤5},则函数f(x)的值域为______. 解析:∵x=1,2,3,4,5,∴f(x)=2x-3=-1,1,3,5,7. ∴f(x)的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}
一元函数微分学1.3 初等函数(初等函数的概念)
常用字母u, v 等表示)替代,若所得函数是基本初等函数或常数与基本初等函数和、差、积、商形成的函数,则解成立. 例 1 分解下列复合函数
(1) y 2x x2 .
解 令2x x2 u ,得 y u ,
因此 y 2x x2 可分解成 y u,u 2x x2.
因为u 2x 1的值域是(,) 没有包含在 y u 的定义域为 [0, ) 中.
但当 x 1 时, y u 与u 2x 1可以复合为 y 2x 1. 2
研究复合函数时,常常需要知道一个复合是由哪些函数复合而成,这就 是复合函数的分解.
数学中,我们通常是将复合函数分解成基本初等函数或常数与基本初等 函数和、差、积、商形成的函数.
x 0, x0
(5) y x x2 x3 .
微积分主要是研究初等函数.
注意:只有u (x)的值域包含在 y f (u)的定义域内,函数 y f (u)与u (x)才能复合成复合函数.
例如, 函数 y sin u与u 2x 1可以复合成函数 y sin(2x 1). 因 为 函 数 u 2x 1 值 域 (,) 包 含 在 函 数 y sin u 的 定 义 域 (,)中. 函数 y u 与u 2x 1是不能复合的.
二. 初等函数 1. 复合函数
实 例 某 企 业 的 利 润 随 收 入 的 变 化 规 律 为 L 100 e 2 R ,而 收 入 随销量的变化规律为R 2x,试找出其利润随销量的变化规律.
利润随销量的变化规律应为 L 100 e4x.
定义 设 y f (u)是u 的函数,u (x)是 x的函数.如果u (x) 的值域包含在 y f (u)的定义域内,则称函数 y f ( (x))叫由函数 y f (u)与u (x)复合而成的复合函数,简称复合函数.其中,x是 自变量,u 称作中间变量.
初等函数的概念
初等函数的概念
初等函数是计算机科学中经常被用到的概念,它可以表达由输入变量到输出结果间的映射关系,也可以看作是变量间的函数形式的表示。
正常情况下,一个函数的输入和输出变量之间的关系是一对一的,也就是说一次输入将产生一次输出结果。
初等函数指的是只有一个输入变量,一个输出结果的函数,而复合函数便是同时有多个输入变量,以及输出结果的函数。
另外,初等函数也可以按照具体的统计学概念分类,比如,线性函数,指的是在x轴上有一个恒定的斜率;抛物线函数则是指在x轴上有一个二次方的顶点;指数函数和对数函数则分别指以y=e的幂次方的图像和以y=log的图像。
除了上面提到的这些常见的函数以外,还有其他更为复杂的函数,比如无穷多种三角函数和椭球函数。
总结一下,初等函数指的是在计算机科学中常用的一种函数,也就是只有一个输入变量,一个输出结果的函数,它可以指数函数、抛物线函数、以及三角函数等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数及其表示
函数的概念
(1)函数的概念
①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做
[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.
(3)求函数的定义域时,一般遵循以下原则:
①
()f x 是整式时,定义域是全体实数.
②()f x 是分式函数时,定义域是使分母不为零的一切实数.
③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤tan y x =中,()2x k k Z π
π≠+∈. ⑥零(负)指数幂的底数不能为零.
⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各
基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知
()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值
范围确定函数的值域或最值.
③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程
2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有
2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示
两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设A 、B 是两个集合,如果按照某种对应法则
f ,对于集合A 中任何一个元素,在
集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.
②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.。