ANSYS中简化模型和划分网格的方法

合集下载

ansys基本用法

ansys基本用法

第一例实体建模实例如图所示一薄板零件,尺寸单位为mm,板厚5mm,试按照ANSYS建模方法,建立相应实体模型。

1.创建矩形[Main Menu]Preprocessor|Create|Rectangle|By Dimensions弹出的对话框如图所示X1,X2为矩形相对于坐标原点左右两个边的X坐标,Y1,Y2为矩形相对于坐标原点下上两个边的Y坐标。

输入如下数值X1=0,X2=60;Y1=-10,Y2=10,单击Apply,输入第二个矩形的坐标数值:X1=40,X2=60;Y1=-10,Y2=-30,单击OK。

2. 改变画法,重画该图形[Utility Menu]PlotCtrls|Numbering弹出如下对话框将AREA Area Numbers选中,将[/REPLOT]Replot upon OK/Apply项设置为Replot,这样ANSYS就会自动以不同的颜色区分不同的面积图形。

3. 将工作平面转换到极坐标形式,创建两个外圆(1) [Utility Menu]WorkPlane|Display Working Plane(toggle on)需要指出的是,单击该条命令后,并不会弹出什么窗口,你所看到的只是该条命令前面有一个被选中的符号,且在图形区域显示工作平面坐标系。

(2) [Utility Menu]WorkPlane|WP Settings在Cartesian(笛卡尔坐标)和Polar(极坐标)中间选择POLAR,显而易见,这样做只是为了方便地创建圆孔。

同样在Grid only、Grid and Triad和Triad only之中选择Grid and Triad。

Grid(删格):展示删格,Triad是用来展示工作平面的坐标原点和坐标轴方向。

(3)[Main Menu]Preprocessor|Create|Circle|Solid Circle创建圆心为(0,0),半径为10的圆。

ansys 创建节点单元模型与网格划分技术

ansys 创建节点单元模型与网格划分技术


下面分别对这部分的工具和选项进行介绍。
1. Global(缺省)
可通过设置每个单元的边长或者模型中每条边线的单元分划数来控制总体单元尺寸。 单击 按钮会弹出 Global Element Sizes(总体单元尺寸)设置对话框,如下图
所 示 , 可 以 设 置 缺 省 的 Element edge length ( 单 元 边 长 ) 或 者 缺 省 No. of
ANSYS9.0经典产品教程与实例详解
M2-22
(3)局部网格尺寸控制
ANSYS 用缺省单元尺寸生成的网格并不一定总能满足需要比如在模型的曲率较大的 区域需要相对密的网格,在这时可以利用网格工具提供局部网格尺寸控制工具(图中 (3)的区域)设置模型中局部的单元尺寸以满足特定的需要。ANSYS可以分别对线、面 以及选定关键点附近区域进行网格尺寸的控制,还可以设置缺省的单元尺寸。
• 对Global和Lines 的单元尺寸控制是针对实体模型的边界上的单元尺寸的定义。 本项的设定可以在面的内部没有可以引导网格划分的尺寸线的区域控制单元尺寸,
推荐在自由分网时对此项进行设定,往往可以在整个模型上得到较好的网格。单击
按钮会弹出一个选择对话框,要求选择欲设置的面,选择欲设置的面然后单击 选择对话框上的 按钮或者 按钮确认,在弹出的设置对话框可以设定单 按钮将会清除设置。 元边长,输入合适的值即可。单击
ANSYS9.0经典产品教程与实例详解
M2-21
3
4 5 6 7
8
(2) 智能网格划分控制
图中标识为(2)的区域提供了 Smart Sizing(智能单元尺寸)控制。Smart Sizing 控制在生成映射(Mapped)网格时无效。自由划分网格时建议使用 Smart

ANSYS新手入门指导

ANSYS新手入门指导

ANSYS新手入门01工作平面和坐标系工作平面是由原点、二维坐标系、捕捉增量和显示栅格组成的无限平面。

在同一时刻只能定义一个工组平面,在定义新工作平面的同时将删除旧的工作平面。

工作平面与坐标系是独立的,例如工作平面和激活的坐标系可以有不同的原点和旋转方向。

进入工作平面和坐标系工作平面是由原点、二维坐标系、捕捉增量和显示栅格组成的无限平面。

在同一时刻只能定义一个工组平面,在定义新工作平面的同时将删除旧的工作平面。

工作平面与坐标系是独立的,例如工作平面和激活的坐标系可以有不同的原点和旋转方向。

进入ANSYS后,系统会产生一个默认的工作平面,即总体笛卡儿的X-Y平面,它的X、Y轴分别取为总体笛卡儿坐标系的X和Y轴。

工作平面的默认位置与总体坐标原点重合。

自上而下建立模型是在当前激活的坐标系内定义的。

工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。

它们位于模型的总体原点。

三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系局部坐标系是用户定义的坐标系。

局部坐标系可以通过菜单路径Workplane%26gt;Local CS%26gt;Create LC来创建。

激活的坐标系是分析中特定时间的参考系。

缺省为总体笛卡尔坐标系。

当创建了一个新的坐标系时,新坐标系变为激活坐标系。

这表明后面的激活坐标系的命令。

菜单中激活坐标系的路径Workplane%26gt;Change active CS to%26gt;。

节点坐标系每一个节点都有一个附着的坐标系。

节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。

节点力和节点边界条件(约束)指的是节点坐标系的方向。

ansys功能及其简介

ansys功能及其简介

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE 工具之一。

CAE的技术种类CAE的技术种类有很多,其中包括有限元法(FEM,即Finite Element Method),边界元法(BEM,即Boundary Element Method),有限差法(FDM,即Finite Difference Element Method)等。

每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。

该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

Ansys划分网格

Ansys划分网格

Ansys划分网格第二章划分网格学习要点分配单元属性网格划分的控制有限元网格模型生成编号控制本章小结2.1 有限元网格概论生成节点和单元的网格划分过程包括以下3个步骤:①定义单元属性②定义网格生成控制(非必须),ANSYS程序提供了大量的网格生成控制,用户可按需要选择。

③生成网格。

2.2设定单元属性在生成节点和单元网格之前,必须定义合适的单元属性,包括如下几项:①单元类型(例如。

BEAM3,SHELL61等)。

②实常数(例如厚度和横截面积)。

③材料性质(例如杨氏弹性模量、热传导系数等)。

④单元坐标系。

⑤截面号(只对BEAM44,BEAM188,BEAM189单元有效)。

注意:对于梁结构网格的划分,用户有时候需要指定方向关键点。

2.2.1生成单元属性表为了定义单元属性,首先必须建立一些单元属性表。

典型的包括单元类型、实常数、材料性质。

利用LACAL、CLOCAL等命令可以创建坐标系表。

这个表用来给单元分配单元坐标系。

注意:并非所有的单元类型都可用这种方式来分配单元坐标系。

对于用BEAM44、BEAM188、BEAM189单元划分的梁网格,可利用命令SECTYPE和SECDATA 创建截面号表格。

注意:方向关键点是线的属性而不是单元属性,用户不能创建方向关键点表格。

用户可以用命令ETLIST来显示单元类型,用命令RLIST来显示实常数,用命令MPLIST来显示材料属性。

另外,用户还可以用命令CSLIST来显示坐标系,用命令SLIST来显示截面号。

2.2.2在划分网格之前分配单元属性一旦建立了单元属性表,用过指向表中合适的条目即可对模型的不同部分分配单元属性。

指针就是参考号码集,包括材料号(MAT)、实常数号(TEAL)、单元类型号(TYPE)、坐标系号(ESYS),以及使用BEAM188和BEAM189单元时的截面号(SECNUM)。

可以直接给所选的实体模型图元分配单元属性,或者定义默认的属性在生成单元的网格划分中使用。

ANSYS结构分析教程篇

ANSYS结构分析教程篇

ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析静态,模态,动态...2)模型是零件还是装配件零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触3)单元类型选择线单元,面单元还是实体单元4)是否可以简化模型如镜像对称,轴对称2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果位移,应力,应变,支反力2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统;这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便;2、根据结构的特点,选择不同类型的单元;对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题;3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次;4、根据工程需要,确定分析类型和计算工况;要考虑参数区间及确定最危险工况等问题;5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷;二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式;位移插值函数需要满足相容协调条件,采用多项式形式的位移插值函数,这一条件始终可以满足;但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件;2、位移插值函数的收敛性完备性要求:1 位移插值函数必须包含常应变状态;2位移插值函数必须包含刚体位移;3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的;因此在实际应用中更多的情况下是利用形函数的性质来构造形函数;形函数的性质:1相关节点处的值为 1,不相关节点处的值为 0;2形函数之和恒等于 1;这里我们称为的相关节点, 为的相关节点,其它点均为不相关节点;三、单元分析目的:计算单元弹性应变能和外力虚功;使用最小势能原理,需要计算结构势能,由弹性应变能和外力虚功两部分构成;结构已经被离散,弹性应变能可以由单元弹性应变能叠加得到,外力虚功中的体力、面力都是分布在单元上的,也可以采用叠加计算;2、计算单元外力功从前面推导可以看出:单元弹性应变能可计算的部分只有单元刚度矩阵,单元外力虚功可计算的部分只有单元等效体力载荷向量和等效面力载荷向量;在实际分析时并不需要进行上述推导,只需要将假定的位移插值函数代入本节推导得出的单元刚度矩阵、等效体力载荷向量和等效面力载荷向量的计算公式即可;所以我们说有限元分析的第三步是计算单元刚度矩阵、等效体力载荷向量和等效面力载荷向量;几点说明:1单元刚度矩阵具有正定性、奇异性和对称性三各重要特性;所谓正定性指所有对角线元素都是正数,其物理意义是位移方向与载荷方向一致;奇异性是说单元刚度矩阵不满秩是奇异矩阵,其物理意义是单元含有刚体位移;对称性是说单元刚度矩阵是对称矩阵,程序设计时可以充分利用;2按照本节公式计算的单元等效体力载荷向量和等效面力载荷向量称为一致载荷向量;实际分析时有时也采用静力学原理计算单元等效体力载荷向量和等效面力载荷向量,实际应用表明在大多数情况下,这样做可以简化计算,同时又基本上不影响分析结果;二、预处理总述1、实体分析可是3D或2D,3D分析采用的高阶单元SOLID186或SOLID187划分的四面体TET 或六面体HEX单元,2D分析采用的高阶单元的三角形TRI或四边形QUA单元,2D分析时需要在创建项目时在GEOMETRY的分析类型项选择2D,实体分析得每个节点结构上只有3个自由度,如下图所示2、面体分析几何上是2D但离散元是3D,通常面体厚度给予赋值;面体网格划分采用壳单元,具有6个自由度;3、线体几何上是1D,离散元是3D,截面形状可通过line body进行设置,线体网格划分采用梁单元,具有6个自由度;4、同个part下的所有body共享相交边界,网格划分时共用交界上的节点,不需要设置接触;5、NameSelection的使用技巧,在model模块下,可点击右键insert NameSelection,一般Nameselection的选择方法可用几何选取,直接在模型上鼠标点选;另一种实用的选取方法为Worksheet,可以添加多种条件进行筛选,模型划分网格后,可以精确到对每个单元的选取;三、网格划分1、relevance选项控制网格的精度,值在-100到100间,越小越粗糙,越大越精密;relevance center 控制relevance中间点的精度,element size控制整个模型的最大单元尺寸;2、网格的高级尺寸控制a)接近度和曲度结合控制b)曲度c)邻近度d)固定尺寸曲度对于一些含曲线特征的几何体,可以控制其划分网格的精密度邻近度可以控制某个区域两个邻近的几何特征间的网格划分密度2、网格的高级选项形状检测:标准力学-线性分析、模态和热分析进阶力学-大变形分析、材料的非线性分析3、局部网格划分控制Method 选择Automatic 首先若能SWEEP则选用sweep划分HEX网格,否则选用patchconforming划分TET网格;四面体TET网格划分有两种方法:patchconforming和patch independent;对于不能通过sweep得到六面体的几何体可以选用Hex dominant或者Multizone划分方法4、尺寸控制Sizing可以通过element size单元最大尺寸、Number of divisions每个边的单元数量、Sphere of influence控制影响区,可设置影响半径来调节网格划分尺寸;Contact sizing可设置接触面的尺寸;5、其他设置element refinement可设置选择几何体的网格密度加密倍数;mapped face meshing 可设置映射面生成结构化网格;可通过side、corner、end点的定义来设置映射策略;inflation control设置膨胀层,主要用于流体分析的边界层划分;pinch 可以移出一些不必要的小的几何特征,划分网格时可以去掉一些小的凸起部分;划分网格前有个小圆台采用pinch划分网格后没有凸台Master选择蓝色线,Slave选择红色线,tolerance的值要比凸台的高度大;6、虚拟拓扑的应用虚拟拓扑有助于优化几何模型,可以合并面,分割面或边来提高网格划分质量;虚拟拓扑可以自动控制虚拟拓扑合并面虚拟拓扑分割边虚拟拓扑设置:behavior可以设置拓扑搜寻深度;7、子模型的应用当原几何模型较大,网格数量有限,为了对模型局部进行更精确的计算分析,可以采用子模型;子模型的一般创建方法:先对整体模型项目A进行分析计算,然后copy原项目得到项目B,对项目B中几何进行切割细化网格,将项目A的solution栏拖到Setup栏,最好在B项目求解设置下的submodeling 插入边界条件,子模型的切割边界应远离高应力区;四、静力学分析线弹性静力分析假设:a)各向同性线弹性材料b)小变形理论c)无时间、无阻尼效应1、point mass,质量点可以通过坐标或选择几何面、线、点加载在几何体上,质量点只受Acceleration,Standard earth gravity,Rotational velocity影响;2、求解设置可设置求解步数,定义每步的终止时间,静力分析中的time只是一个跟踪量求解器选择:自动,直接求解Direct,迭代求解Iterative弱弹簧的使用:为了满足静止约束,程序可自动添加弱弹簧,可以在结果中查看弱弹簧的反力,应该是一个很小的值,并不影响结构的应力分析;惯性释放:当物体受力不平衡产生加速度时,利用惯性释放可以产生一个惯性力进行静力分析,惯性释放只能用于线性结构分析;惯性释放下的应力:静力平衡下的应力3、施加载荷加速度、角速度、压力、力,静水压力模拟水压轴承力Bearing Load,施加在整个圆柱面上;remote force定义力的作用点螺栓预紧力Bolt Pretension施加在圆柱面上,可以定义预紧力或伸长量;Thermal condition,计算热应力,需要设置reference temperature4、施加约束Fix support 约束点、线、面的所有自由度;Displacement 位移约束Elastic Support 无摩擦的弹性支持面Frictionless Support,约束面的法向运动,作用在平面上等同于对称边界条件作用在圆柱面上约束径向运动cylindrical support 只作用在圆柱面上,可以设轴向,径向,切向三个自由度compression only support 基于罚函数方法对目标面建立一个刚性接触面simply supported 作用于点或边,面体或线体,约束所有平动除了转动自由度Fixed rotation 约束转动,放开平动nodal load and support 必须通过name selection 来选取nodetools-Solve process settings可以设置求解用的计算机CPU数五、接触基本设置接触是一种高度非线性特征,接触一般通过接触对描述,包括接触面contact和目标面target,程序一共有5种接触方式,其主要特征如下:Bonded 和 no separation 都是线性接触,bonded使两个接触面固定在一起,无间隙不能相对滑动而no separation 允许有较小的滑动,其他接触都是非线性;contact 接触行为behavior分为对称和非对称两种行为;接触面的处理interface treatment:adjust to touch程序自动取消两个接触面的间隙; add offset 可以设置偏移量,正值使两个接触面靠近可以模拟过盈配合,负值使两个接触面远离;Pinball region 可以设置判断接触区域的大小,当两个面都进入pinball region时程序则判定为发生接触;mesh connections建立网格连接connection worksheet表格查看连接信息joint 定义约束副,共有九种约束形式来约束body-body 或者body-ground;定义joint时需要定义reference和mobile regions,几何窗口左边显示的自由度,其中灰色的是被约束的,彩色的是自由的joint configure可以定义约束的初始状态Set定义初设状态,revert恢复原始状态;对于旋转面或圆柱面的约束类型,可以定义扭转刚度和扭转阻尼;大多数joints都可以通过stops来定义他的运动区域spring and beam:spring可以通过弹簧来连接body,可以定义初始值和弹簧刚度,beam可以定义材料和圆形截面半径;六、remote边界条件1、Remote boundary conditions provide a means to apply a condition whose center of action is not located where the condition is scoped , “remotely”.Remote 边界条件包括 point mass,springs,joints,remote displacement,remote force and moment loads;所有的remote边界条件都是采用MPC约束方程进行计算,几何行为可以设置为rigid,deformable and coupled,remote计算更耗时;设置remote边界一般先定义remote point,可以直接选择几何特征或给定坐标定义,也可以在定义remote边界条件时通过右键“promote remote point”定义;2、behavior controlrigid,deformable and coupled3、pinball control 可以通过pinball大小来定义约束方程的数量4、constraint equations 可以多个remote point间的相互约束关系;七、MultiStep的设置应用1、对于多步分析中的每一步,软件都作为一个独立的分析过程,载荷约束都可以单独设置;对于某些载荷或约束可以通过右键激活或抑制该步当查看计算结果选择两个载荷步之间的时间节点时,如0与1步的,则程序通过线性插值的方式得到的计算结果;2、Solution Combination结果组合Solution Combination可以通过不同的计算环境共享几何网格进行组合Solution Combination也可以通过同一计算环境的不同载荷步进行组合八、模态分析自由振动其中K-刚度矩阵和M-质量矩阵是常量,忽略阻尼C和外力F,应用线弹性材料和小变形理论,结构可以是约束的或非约束的,φ为模态坐标是个相对量;1.结构载荷和热载荷步,非线性接触不适用于模态分析,但可以施加约束或预应力;2.可以定义求解阶数和频率范围;3.由于并没有外部激励,模态变形只是一个相对量,并且是一个质量归一化的量;4.拉伸预应力将会增大自然频率,而压缩预应力将会降低自然频率;九、稳态热分析1.不考虑瞬态影响,K和Q可以是常量也可以是温度的函数,可以施加固定温度的边界条件;壳单元不考虑厚度方向的温度变化,线单元不考虑截面上的温度变化;接触中热传递:如果接触是bonded或no separation,热传递将会发生在pinball区域内的表面热接触通过以下公式进行传热:TCC默认被设为一个较大的数值用来模拟完美传热,同样可以人为设置较低的数值来模拟热阻;2.边界条件heat flow 热流量j/s,可应用于点、线、面heat flux 热通量j/m2/s,只能应用于面2D时可用于线internal heat generation 热源j/m3/s 只能用于实体perfectly insulated 绝热,默认应用于所有未设置边界条件的地方temperature 恒定温度,应用于点、线、面、实体convection 对流只能应用于面,其中h-对流传热系数,Tam-环境温度,用户可以自己设置;radiation 热辐射其中σ-玻尔兹曼常数,程序自动给定;ε-发射率,用户输入;F-form factor角系数,当correlation设为To ambient-F=1,即所有的辐射能都与周围环境进行交换当correlation设为 surface to surface ,辐射能只参与面面之间的交换,这时你可以设置Enclosure每个辐射面应该设置相同的enclosure number和Enclosure type可设为open 或perfect,如果计算报错可将其设为open;十、结果处理1.编辑legendPlane可以通过鼠标左键拖曳生产剖切面,也可以通过局部坐标系的XY平面生产剖切面 Tool 可以通过Geometry selection查看选择几何特征的计算结果,也可以先定义一个局部坐标系,再通过coordinate system查看具体某点局部坐标系的原点的计算结果;chart and Table可以对多个计算结果进行图表分析,Alert可以设置报警值,如强度极限;Geometry可以添加path和surface,path可以通过局部坐标系,边,点来定义,surface可以通过局部坐标系定义;查看edge的结果可以通过鼠标右键Convert to path result转换成基于path的计算结果,把X轴设为S即可绘制关于位置的图表;另外利用path结果可以得到应力线性化用于应力评判;error可以通过高的能量差异区来鉴别几何网格的合理性;可以通过Convergence来判断网格是否足够8.应力奇点,结构分析时由于几何模型、载荷施加等因素常常会导致应力奇点,影响计算结果的准确性,我们通过审查收敛结果来避免应力奇点;如果应力奇异区并不是我们感兴趣的区域,我们可以只对感兴趣区域的计算结果定义收敛控制,如下图所示;ANSYS结构动态分析篇一、简介动态分析包括以下模块:模态分析,谐响应分析,随机振动分析,响应谱分析及瞬态分析;动态分析中结构的惯性、阻尼都扮演着重要角色;自由振动:结构的自然频率和振型激励振动:曲柄轴和其他的旋转机械地震冲击载荷:地震工况,爆炸随机振动:火箭发射,道路交通时间载荷:汽车碰撞,汽锤、水锤等以上每种情况都可以选择相应的动态模块进行分析;1、模态分析模态分析是用来确定结构的振动特性,如自然频率和振型,通常也是进行其他动态分析的先决条件;如汽车的固有频率应发动机频率,叶片在预应力下的振动特性;2、谐响应分析谐响应分析常用来分析结构在持续的简谐载荷下的响应,如转动机械的响应;3、响应谱分析响应谱分析通常用来分析建筑结构在地震工况下的响应;4、随机振动分析宇宙空间站、航天飞机等一般都要进行随机振动分析,以便能承受一段时间内不同频率下的随机载荷;5、瞬态分析动态分析各模块的特点如下:基本方程如下:其中只有瞬态分析允许非线性,包括几何非线性、接触非线性、材料非线性;二、阻尼概述阻尼定义:阻尼是导致振动不断减弱甚至停止的一种能量耗散机制;阻尼一般与材料性质,运动速度,振动频率有关;阻尼分为以下类型:粘性阻尼-缓冲器、减震器材料/固体/滞后阻尼-内摩擦库伦或干摩擦阻尼-滑动摩擦数值阻尼-人工阻尼1、瞬态分析和阻尼模态分析中结构阻尼矩阵C的完整表达式如下:α和β阻尼用来确定瑞利阻尼对于大多数结构来说,α阻尼可以忽略,这时因此对于给定的β,低频率阻尼小,高频率阻尼大;而对于给定的α,低频率阻尼大,高频率阻尼小;α和β阻尼可以通过定义材料时输入:也可以通过全局阻尼输入:2、在谐响应分析中的材料/固体/滞后阻尼全函数的谐响应分析和模态叠加法分析中的结构阻尼矩阵C的完整表达式为:同样,α,β,g可以通过定义材料输入也可以通过求解设置输入:3、模态叠加法分析模态叠加法中的阻尼控制在谐响应分析、瞬态分析、响应谱分析及随机振动分析中都支持以下表达式:4、数值阻尼数值阻尼并不是真实的阻尼,是人工抑制由高频结构产生的数值噪声;默认值为用来过滤掉虚假的高频模态;使用较小的值来过滤掉对最终结果影响较小的非物理响应;注意:数值阻尼只适用于瞬态分析;三、模态分析应用模态分析用来分析结构的振动特性自然频率和振型,是大多数动态分析得基础;假设和限制:结构是线性的M和K是常量.线性无阻尼的自由振动方程:假设{u}为简谐运动,则有因此求解行列式的特征值和特征向量;注意,{φ}为振型反应结构振幅的比例关系,可对质量矩阵进行正则化2、参与因子与有效质量参与因子:,其中{D}是笛卡尔坐标系中各个坐标轴单位位移响应;测量各个模态在各个方向运动的总质量,较大的值意味着该模态在该方向容易被激励;有效质量:理论上,各个方向的有效质量的总和应该等于结构的总质量,但取决于模态展开的数量;3、模态展开方法接触:由于模态分析时线性分析,只允许Bonded和No separation,其他接触程序视为无接触;4、阻尼模态分析特征值是复杂的,特征值的虚数部分表示自然频率,而实数部分衡量系统的稳定性,正值不稳定,负值稳定;模态展开方法:四、谐响应分析应用输入条件:简谐变化的载荷力,压力和位移,多个载荷应具有同样得频率,力和位移可以是同相或异相;假设和限制:结构具有固定的或与频率相关的刚度,阻尼,质量,不允许非线性;所有的载荷位移按相同频率做简谐变化;当施加的载荷的频率接近结构的自然频率时,发生共振;增加阻尼降低响应的振幅;阻尼较小的变化都会导致共振区响应的大幅变化;谐响应的运动方程如下:求解方法有两种:1、全函数法,直接求解矩阵方程;该方法求解准确,但速度慢于MSUP且耗资源,支持几乎所有的载荷和边界条件,其中加速度、轴承载荷、力矩相角只能为0;2、模态叠加法MUSP,对方程进行坐标变换{u}={φ}{y},将{M}和{K}变换成对角矩阵进行解耦,再求解n个解耦的方程{y},其中{C}必须是是对称矩阵,此方法需先进行模态分析;模态叠加法是一种近似求解,准确度取决了模态的展开阶数,一般比FULL法快;基本设置:cluster results-include residual vector-在模态叠加分析中,当施加的载荷激励高阶模态时,动态响应将会很粗糙;因此采用residual vector方法,除了采用模态的特征向量,还利用附件的模态转换向量来计算高阶频率;五、响应谱分析响应谱分析主要用来替代时程分析来确定结构对时间变化载荷的响应:如地震载荷,风载,海浪载荷,活塞载荷,火箭发动机振动等;对于多自由度长时程的分析往往通过响应谱分析来近似快速的求解最大响应;1、响应谱响应谱一般是单自由度系统在给定时程内的最大响应,该响应可以是位移,速度和加速度;多个不同频率相同阻尼的单自由度振荡器K,C,M就可以绘制响应谱,其中阻尼已经包含在响应谱中,也可以给定其他的阻尼绘制相应的响应谱;位移,速度,加速度响应谱之间是可以相互转换的,转换公式如下:2、分析类型响应谱分析分为单点响应谱SPRS分析和多点响应谱分析MPRS.SPRS-已知激励方向和频率的响应谱作用在所有的支撑点上,通常用来分析建筑结构的地震载荷;参与因子γ是对给定自然频率结构响应的量度,表征每个模态对特定方向的响应贡献多少;对于每个特征频率ω,谱值S都可以通过对数插值从响应谱中得到,但超过响应谱频率不会进行插值,而是取最近点的谱值;模态系数A,定义为放大系数来乘以特征向量来给出每个模态的实际位移,计算公式如下;响应R,计算公式如下如果系统有多个模态,那么应该对各个模态下的响应R进行叠加组合响应谱分析计算最大的位移和应力响应,它不能准确计算实际响应,因此有以下3种叠加方法SRSS,CQC和ROSE;SRSS:以下情况,SRSS法不再适用:1)考虑近间距自然频率的模态2)考虑部分或全刚度响应的模态3)包含未展开的高阶频率4、如果各阶模态频率有足够的间距,可以使用SRSS法叠加;评判各阶模态是否是近距频率,对于不同的阻尼比有不同的评判准则;对于阻尼比ζ≤2%,如果fi<fj,且fj≤,则是近距频率;对于阻尼比ζ>2%,如果fi<fj,且fj≤1+5ζfi,则是近距频率;对于近距频率模态,可选用CQC或ROSE进行叠加,其中纠正系数0≤ε≤1,ε=0,不纠正;ε=1,全纠正;0<ε<1,部分纠正;CQC和ROSE计算公式中ε是基于模态的频率和阻尼计算得到;CQC计算公式如下ROSE计算公式如下5、响应谱中有两个特征频率fsp峰值频率和fzpa0周期加速度区域低频区<fsp,不考虑模态纠正除非有近距频率,可用SRSS,CQC或ROSE;中频区在fsp和fzpa之间,由周期区向刚性区转变,模态包含周期部分和刚性部分,通常用系数α将响应分为周期部分和刚性部分;α=0,周期;α=1,刚性;0<α<1,部分周期部分刚性;高频区>fzpa,刚性区,模态需要完全纠正;计算α有两种方法:Lindley-Yow和Gupta;Lindley-Yow法:α=αSa, α=ZPA/Sa,ZPA-0周期的加速度,Sa第i阶频率的加速度;当Sa<ZPA,α=0;Sa=ZPA, α=1;Sa>ZPA,随着Sa的减小α增大;Gupta法:α=αf,Lindley-Yow法中刚性响应影响所有的模态其对应的频率响应Sa>ZPA,但不应该用于其模态频率f<fsp;Gupta法中刚性响应影响所有的模态只有其频率f>f1=fsp,因此Gupta法适用大部分情况,应优先选用;6、刚性响应计算首先如前面描述的单独进行各个模态的响应计算,当打开刚性响应影响Rigid Response Effect时,这些模态响应R就不再是进行直接组合,而是分为周期Rp和刚性部分Rr;刚性响应系数α可选择Gupta或Lindley-Yow法计算;周期部分和刚性部分响应计算如下:然后分别进行组合叠加,对于周期部分响应Rp可用SRSS,CQC或ROSE方法进行叠加,如果含有近距频率模态时需要纠正不能使用SRSS法;刚性部分响应Rr进行代数和叠加即可最后将周期部分响应和刚性部分响应进行组合得到总的响应Rt7、缺省质量响应进行模态分析时,我们不可能展开所有模态来考虑结构100%的质量,因此我们关心的模态中所有质量占总质量的百分比即为有效质量比率,但展开的最高模态频率因远大于响应谱的fzpa,才能得到较为准确的分析结果;有时需要展开的模态阶数太多,我们可以通过模态分析计算缺省的质量将其进行额外的响应分析Missing Mass Response,这样就不必展开的模态频率要远大于fzpa;当f>fzpa,加速度响应是刚性的,因此可以进行静态的加速度分析;1)首先可以计算频率大于fzpa总的惯性力FT2)计算各个模态的惯性力3)计算各模态惯性力的合力。

ANSYS ICEM-CFD网格划分学习

ANSYS ICEM-CFD网格划分学习

关键:统一索引
y/ j
索引
空间
索引 空间
x/i
结构网格的索引与合并
ICEM中 块的合并
Autodyn中 网格的合并
结构网格的索引与合并
索引空间
结构网格的索引与合并
详细步骤
1.准备几何模型(.X_T,.dwg等),建立工 作文件夹(路径及文件名全英文)。
2.启动软件,定位工作路径(File-Change )。 Working Directory
ANSYS ICEM CFD
网格划分 for Autodyn
1.简介 2.非结构网格 3.结构网格
简介
丰富的几何接口;Solidworks, AutoCAD, ProE, UG……
能输出网格到100多个求解器;
功能强大,能输出结构和非结构网格;
主窗口
修非构 网
改结造 格
几构块 修
何网
只适用于几何相关 Pactch depen层数
非结构体网格
设定线面网格参数值;
定义体区域(Geomerty-Creat Body-Material Point,选体上
两点,使其中心在体中);
生成网格,检查质量,修补网格;
Tetra/MixedRobust (Octree)
实体 Geometry
(主要操作对象)
|(辅助操作对象)
自上而下:块的雕刻
构造方法 自下而上:块的累加 综合运用
块:劈分/合并;删除;拉伸| 旋转;对称;平移
实体:简化
O grid;C grid; L grid
点:劈分/合并;移动;关联| 增加辅助点
线:造型;关联 面:劈分/合并;
Compute Mesh-Surface Mesh Only(可更

ANSYS APDL命令流详解-10网格划分高级技术

ANSYS APDL命令流详解-10网格划分高级技术

!创建面、定义单元尺寸和划分类型
lccat,1,2
!将线1和2连接,生成连接线7
lcomb,4,5
!将线4和5合并,生成合并线,其线号为4
amesh,all
!网格划分
3.3网格划分高级技术-面映射网格划分
3. 线网格划分设置的传递 映射网格划分的条件⑵要求面的对边必须划分为相同数目的单
元。不必对所有线设置划分控制,网格划分器会自动将线的划 分 设置传递到对边上;特别地,对于由三条边组成的面,只需 定义 一条边的单元划分数目即可。
3.3网格划分高级技术-面映射网格划分
!EX3.8B 过渡四边形映射网格 finish$/clear$/prep7 et,1,plane42$k,1$k,2,10,-1$k,3,8,6$k,4,1,3$a,1,2,3,4 lesize,1,,,11 !设置线1的划分数为11 lesize,3,,,3 !设置线3的划分数为3,该对边划分数之差为8(偶数) lesize,4,,,2 !设置线4的划分数为2 lesize,2,,,2 !设置线2的划分数为2,这对边划分数之差为0 mshape,0,2d$mshkey,1$amesh,all
3.3网格划分高级技术
在3 . 2中介绍了基本的网格划分技术,对于自由 网格划分一般不必刻意设置便可对几何模型划分网格。 但对于映射网格划分和体扫掠网格划分则必须满足一 定的条件,甚至刻意设置才能得到满意的网格。
自由网格划分时,对面可全部采用四边形单元、 全部用三角形单元、或者是二者的混合单元;对体一 般为四面体单元,金字塔单元作为过渡也可使用。但 是,映射网格划分则只能全部用四边形单元、或全部 用三角形面单元、或全部用六面体单元。
同时要注意下面几个问题:
⑴ 必须设置映射网格划分(MSHKEY,1)。根据MSHAPE的设置,划分 结果全是四边形或全是三角形单元的映射网格。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解

结构动态特性的改善方法
增加结构阻尼
通过增加结构阻尼,可以有效地吸收和消耗振动能量,减小结构 的振动幅值和响应时间。
优化结构布局
通过合理地布置结构的质量、刚度和阻尼分布,可以改善结构的动 态特性,提高结构的稳定性和安全性。
加强关键部位
对于关键部位,应加强其刚度和稳定性,以减小其对整体结构的振 动影响。
ansys模态分析教程及实例讲解
目 录
• 引言 • ANSYS模态分析基础 • ANSYS模态分析实例 • 模态分析结果解读 • 模态分析的优化设计 • 总结与展望
01 引言
ห้องสมุดไป่ตู้
目的和背景
01
了解模态分析在工程领域的应用 价值,如预测结构的振动特性、 优化设计等。
02
掌握ANSYS软件进行模态分析的 基本原理和方法。
挑战
未来模态分析面临的挑战主要包括处理大规模复杂结构 、模拟真实环境下的动力学行为以及提高分析的实时性 。随着结构尺寸和复杂性的增加,如何高效地处理大规 模有限元模型和计算海量数据成为亟待解决的问题。同 时,为了更准确地模拟实际工况下的结构动力学行为, 需要发展更加逼真的边界条件和载荷条件设置方法。此 外,提高模态分析的实时性对于一些实时监测和反馈控 制的应用场景也具有重要的意义。
模态分析基于振动理论,将复杂结构系统分解为若干个独立的模态,每个模态具有 特定的固有频率和振型。
模态分析可以帮助工程师了解结构的动态行为,预测结构的振动响应,优化结构设 计。
模态分析的步骤
建立模型
施加约束
求解
结果分析
根据实际结构建立有限 元模型,包括几何形状、 材料属性、连接方式等。
根据实际工况,对模型 施加约束条件,如固定

ANSYS-Workbench-网格划分

ANSYS-Workbench-网格划分
a) Off:在此项时先从边开始划分网格,再在曲率较大处细化边网格,接 下来再产生面网格,最后才产生体网格。
b) Curvature:是由曲率法确定、细化边和曲面处的网格大小
c) Proximity:是控制模型邻近区网格生成,主适用于窄、薄处网格的 生成。
确定全局网格的设置
d. Proximity and curvature:具有proximity和curvature二者的特点, 但所消耗的时间也多。
• 设置合适的全局网格参数可以减小后面具体网格参数的设置工作量, 对于结构场,其详细栏见上个PPT的mechanical,下面以结构分析为 例对其展开描述。Mechanical中的尺寸函数(sizing)下参数项是高 级尺寸函数(advanced sizing function,简称ASF),这主要是控制 曲线、面在曲率较大的地方的网格。具体选项有:
Hex-Dominant网格
多域扫掠型
• 多域扫掠型(Multizone Sweep Meshing)主要用来划分六面体网格。 其特点就是具有几何体自动分解的功能,从而产生六面体网格。如下 图所示左边的几何体,若以常规的方式想划分成全六面体网格,则需 要先将几何体切分成四个规则体后,再扫掠成六面体网格。然而在 workbench中,只要直接使用多域扫掠法,程序就能自动处理划分成 六面体网格。
认识网格划分平台
网格文件具体地说主要有两类:有限元分析网格和计算流体力学 的网格。
认识网格划分平台
• 对于三维几何体,ANSYS共有下面六种不同的划分网格法
认识网格划分平台
• 对于二维几何体ANSYS有以下几种不同的划分网格法。
典型网格划分法
• 主要内容
四面体网格
• 在三维网格中,相对而言四面体网格划分是最简单的。在workbench 中,四面体网格的生成主要基于两种方法:RGRID算法和ICEM CFD tetra算法,具体如下:

ANSYS建模与划分网格指南

ANSYS建模与划分网格指南
按需选择。见§7.3 和§§7.4 对网格控制的论述)。 ·生成网格(在§7.5 中论述)。
第二步定义网格生成控制不是必须的,因为缺省的网格生成控制对多数模型生成都是合 适的。如果没有指定网格生成控制,程序会在 DESIZE 命令使用缺省设置生成自由网格。 可用 Smartsize 项替代产生质量更好的自由网格(见本章中的§7.3.5)
利用下列命令和 GUI 途径可直接给实体模型图元分配属性。
·给关键点分配属性:
命令:KATT GUI : Main Menu>Preprocessor>-Attributes-Define>All Keypoints
Main Menu>Preprocessor>-Attributes-Define>Picked KPs ·给线分配属性:
THICK(NODE) = 0 *ENDIF *ENDDO
NODE = $ MXNODE =
最后,用 RTHICK 函数分配数组的厚度给单元。 RTHICK,THICK(1),1,2,3,4 /ESHAPE,1.0 $ /USER,1 $ /DIST,1,7 /VIEW,1,-0.75,-0.28,0.6 $ /ANG,1,-1 /FOC,1,5.3,5.3,0.27 $ EPLO
7.3.2 单元形状
如果打算划分网格的单元类型可以采用不止一种形状,那么应当设置单元形状为最小的 那一种。例如,在同一个划分网格的区域的多个面单元可以是三角形或四边形的。 单元可 是六面体(块)或四面体形状,但建议在同一个模型中不要混用这两种形状的单元。(例外 是使用过渡的金字塔形单元,本手册生成§7.3.9 中有论述。)
为定义单元属性,首先必须建立一些单元属性表。典型地包括单元类型(ET 命令或菜 单途径 Main Menu>Preprocessor>Element Type>Add/Edit/Delete)、实常数组(R 命 令或菜单途径 Main Menu>Preprocessor>Real Constants)、材料特性(MP 和 TB 命令, 菜单途径 Main Menu> Preprocessor>Material Props>material option)。

Ansys建模与网格划分指南

Ansys建模与网格划分指南
Байду номын сангаас
第二章 规划分析方案 2.1 规划的重要性 当开始建模时,用户将(有意地或无意地)作许多决定以确定如何来对物理系统进行数值模 拟;分析的目标是什么?模型是全部或仅是物理系统的部分?模型将包含多少细节?选用什 么样的单元?有限元网格用多大的密度?总之,你将对要回答的问题的计算费用(CPU 时 间等)及结果的精度进行平衡考虑。你在规划阶段作出的这些决定将大体上控制你分析的成 功与否。 2.2 确定分析目标 确定分析目标的工作与 ANSYS 程序的功能无关,完全取决于用户的知识、经验及职业技能, 只有用户才能确定自己的分析目标,开始时建立的目标将影响用户生成模型时的其它选择。 2.3 选择模型类型(二维、三维等) 有限元模型可分为二维和三维两种。可以由点单元、线单元、面单元或实体单元组成,当然, 也可以将不同类型的单元混合使用(注意要保证自由度的相容性)。例如,带筋的薄壳结构 可用三维壳单元离散蒙皮,用三维梁单元来离散蒙皮下的筋。对模型的尺寸和单元类型的选 择也就决定生成模型的方法。 线模型代表二维和三维梁或管结构,及三维轴对称壳结构的二维模型。实体建模通常不便于 生成线模型,而通常由直接生成方法创建。 二维实体模型在薄平板结构(平面应力),等截面的“无限长”结构(平面应变)或轴对称实 体结构。尽管许多二维分析模型用直接生成方法并不困难,但通常用实体建模更容易。 三维壳模型用于描述三维空间中的薄壁结构,尽管某些三维壳模型用直接生成方法创建并不 困难,但用实体建模方法通常会更容易。 三维实体分析模型用于描述三维空间中截面积不等,也不是轴对称的厚结构。用直接生成的 方法建立三维实体模型较复杂,实体建模会使其变得容易些。 2.4 线性和高次单元的选择 ANSYS 程序的单元库包括两种基本类型的面和体单元:线性单元(有或无特殊形状的)和 二次单元。这些基本单元类型如图 2-1 所示,下面来探讨这两种基本类型单元的选择。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解
– 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下 的振动称为强迫振动。
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
• 静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
有与各个固有频率对应的振动模态。
频率分析的相关知识
• 共振(以荡秋千为例) –荡得好的人荡几下马上就能荡得很高
–这是因为与秋千摆动的节拍和时间配合起来的原因。 –换句话说,与秋千的固有频率(固有周期)相配合,这
– 小变形 – 弹性范围内的应变和应力 – 没有诸如两物体接触或分离时的刚度突变。
应力
弹性模量 (EX)
应变
准备工作
A. 哪种分析类型?
• 如果加载引起结构刚度的显著变化,必须进行 非线性分析。引起结构刚度显著变化的典型因 素有: – 应变超过弹性范围(塑性) – 大变形,例如承载的鱼竿 – 两体之间的接触
• 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
• 固有振动模态(以弦的振动为例)
– 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各
第三讲模态分析
• 在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
• 标题如下:

ANSYS拓扑优化原理讲解以及实例操作

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化就是指形状优化,有时也称为外型优化。

拓扑优化得目标就是寻找承受单载荷或多载荷得物体得最佳材料分配方案。

这种方案在拓扑优化中表现为“最大刚度”设计。

与传统得优化设计不同得就是,拓扑优化不需要给出参数与优化变量得定义。

目标函数、状态变量与设计变量(参见“优化设计”一章)都就是预定义好得。

用户只需要给出结构得参数(材料特性、模型、载荷等)与要省去得材料百分比。

给每个有限元得单元赋予内部伪密度来实现。

这些伪密度用PLNSOL ,TOPO 命令来绘出。

拓扑优化得目标——目标函数——就是在满足结构得约束(V )情况下减少结构得变形能。

减小结构得变形能相当于提高结构得刚度。

这个技术通过使用设计变量。

结构拓扑优化得基本思想就是将寻求结构得最优拓扑问题转化为在给定得设计区域内寻求最优材料分布得问题。

通过拓扑优化分析,设计人员可以全面了解产品得结构与功能特征,可以有针对性地对总体结构与具体结构进行设计。

特别在产品设计初期,仅凭经验与想象进行零部件得设计就是不够得。

只有在适当得约束条件下,充分利用拓扑优化技术进行分析,并结合丰富得设计经验,才能设计出满足最佳技术条件与工艺条件得产品。

连续体结构拓扑优化得最大优点就是能在不知道结构拓扑形状得前提下,根据已知边界条件与载荷条件确定出较合理得结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。

拓扑优化技术可以为设计人员提供全新得设计与最优得材料分布方案。

拓扑优化基于概念设计得思想,作为结果得设计空间需要被反馈给设计人员并做出适当得修改。

最优得设计往往比概念设计得方案结构更轻,而性能更佳。

经过设计人员修改过得设计方案可以再经过形状与尺寸优化得到更好得方案。

5、1、2优化拓扑得数学模型优化拓扑得数学解释可以转换为寻求最优解得过程,对于她得描述就是:给定系统描述与目标函数,选取一组设计变量及其范围,求设计变量得值,使得目标函数最小(或者最大)。

一种典型得数学表达式为:()()()12,,0,,0min ,g x x v g x xv f x v ⎧=⎪⎪≤⎨⎪⎪⎩&& 式中,x -系统得状态变量;12g g 、-一等式与不等式得结束方程;(),f x v -目标函数;v -设计变量。

有限元计算与强度分析-(二)几何建模及网格划分

有限元计算与强度分析-(二)几何建模及网格划分

1.2 ANSYS Workbench建模技术
1.2.10 激活新平面
• New Sketch :在激活平面上新建草图。 • 新草图放在树形目录中,且在相关平面的下方。 • 通过树形目录或下拉列表操作草图(激活)。 • 注意:下拉列表仅显示以当前激活平面为参照的草图(示例如下)。
激活XY平面
下拉列表中仅显示XY平面内 的草图
关注于一个点
“Sphere of Influence” (红色 显示) 已经定义。球体内所关 注实体的单元大小是给定的平 均单元大小。
关注于两个面
1.4 划分网格
1.4.2.2 局部网格控制
刷新单元)。 • 需要更新:数据一改变单元的输出也要相应的更新。 • 最新的。 • 发生输入变动: 单元是局部时新的,但上行数据发生变
化也可能导致其发生改变。
1.2 ANSYS Workbench建模技术
1.2.1 DesignModeler概述 – DesignModeler (DM) 是ANSYS Workbench的一个组成, 类似CAD的建模器,具有参数建模能力:
1.1.1启动Workbench
• 两种方式启动Workbench:
– 从windows开始菜单启动:
– 从其支持的CAD系统中启动
1.1 ANSYS Workbench概述
1.1.2Workbench的图形用户界面
• Workbench 的图形用户界面主要分成工具箱和项目概图 两部分:
工具箱
项目概图
1.4 划分网格
1.4.2.1 网格划分方法
• Sweep(扫掠划分):
– 扫掠划分单元(六面体,也可能是楔形体),否则就是四面体。 – 在mesh上点击鼠标右键选择Show Sweepable Bodies。 – Type :扫掠方向上的划分数目或单元大小。 – Sweep Bias Type: 扫掠方向上的间隔比例 – Src/Trg Selection:

有限元及其分析ANSYS基本操作课件

有限元及其分析ANSYS基本操作课件
载荷步文件
图形文件
单元矩阵
文件名称
Jobname.log
Jobname.err
Jobname.out
Jobname.db
Jobname.xxx Jobname.rst Jobname.rth Jobname.rmg Jobname.rfl
文件格式 文本 文本 文本
二进制 二进制
Jobname.sn
文本
对于实体建模,需要描述模型的几何边界,以便生成有限元模型 前建立对单元大小和形状的控制,然后让ANSYS自动生成所有的 节点和单元。与之对比,直接生成方法必须直接确定每个节点的 位置,以及每个单元的大小、形状和连接关系。采用命令流方式 往往更便于实现有限元模型的直接生成。
有限元及其分析 ANSYS基本操作
BEAM189
2D
PLANE2,PLANE25,PLANE42,PLANE82,
PLANE83,PLANE145,PLANE146,PLANE182,
PLANE183
3D
SOLID45,SOLID64,SOLID65,SOLID92,
SOLID95,SOLID147,SOLID148,SOLID185,
有限元及其分析 ANSYS基本操作
2.坐标系
1)整体与局部坐标系 2)坐标系的激活 3)节点和单元坐标系
整体和局部坐标系用于几何体的定位,而节点坐标系则用于定义 节点自由度的方向。每个节点都有自己的节点坐标系,节点输入 数据(如约束自由度、载荷、主自由度、从自由度和约束方程) 和时间历程后处理(POST26)中节点结果数据(如自由度解、节 点载荷和反作用载荷)均是以节点坐标系方向表达。缺省情况下, 它总是平行于总体笛卡儿坐标系(节点坐标系与定义节点的激活 坐标系无关)。但在很多情况下需要改变节点坐标系,比如当需 要施加径向或者周向约束时,就需要将节点坐标系转到柱坐标系 下完成。

ANSYS-meshing简明培训教程

ANSYS-meshing简明培训教程
2021/2/4
1 2
3
10
Patch Conforming 四面体
12. 右击 Mesh 插入一个网格划分方法. 选择模 型的中心圆锥体,并选择Patch Conforming四面体法
2021/2/4
11
初始网格 (无膨胀)
13. 展开网格设置中Inflation项并将 Use Automatic tet Inflation 选项设置为None, 因为将手动在两种不同方法中应用膨胀。
ANSYS-meshing简明培训教程
课程目标
• 第1章: Workbench简介 • 第2章: 网格应用概述 • 第3章: 3D 几何网格划分方法 • 第4章: 一般网格应用控制 • 第5章: 四面体网格划分 • 第6章: 扫掠网格划分 • 第7章: Multizone 网格划分 • 第8章: 2D几何网格划分
– Patch Independent: 生成体网格并映射到表面产生表面网格。如没有载荷,边界 条件或其它作用,面和它们的边界 (边和顶点) 不必要考虑。这个方法更加容许质 量差的 CAD几何。 Patch Independent算法基于ICEM CFD Tetra。
• 两种四面体算法都可以用于CFD的边界层识别.
• 边, 角, 和端面可由高级选项定义
2021/2/4
21
映射面划分控制
• 支持边/角控制来定义子映射策略
2021/2/4
22
表面划分和膨胀
• 对表面划分方法可以定义膨胀 • 对扫掠网格,它对边定义,作用于

2021/2/4
23
2-D 膨胀
2-D 膨胀控制
– 2-D 平面模型 (Qmorph) – 2-D 扫掠的膨胀
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州有道资料网
ANSYS中简化模型和划分网格的方法
本文介绍了ANSYS中简化模型和划分网格的相关方法。

使在建立仿真模型时,经验是非常有助于用户决定哪些部件应该考虑因而必须建立在模型中,哪些部件不应该考虑因而不需建立到模型中,这就是所谓的模型简化。

此外,网格划分也是影响分析精度的另外一个因素。

本文将集中讨论如何简化模型以获得有效的仿真模型以及网格划分需要注意的一些问题。

理想情况下,用户都希望建立尽可能详细的仿真模型,而让仿真软件自己来决定哪些是主要的物理现象。

然而,由于有限的计算机资源或算法限制,用户应该简化电磁仿真的模型。

模型简化
模型简化主要取决于结果参数及结构的电尺寸。

例如,如果用户希望分析安装在某电大尺寸载体上的天线的远场方向图,那么模型上距离源区超过一个波长的一些小特征和孔径(最大尺度小于/50)就可以不考虑。

另一方面,如果用户希望分析从源到用带有小孔的屏蔽面屏蔽的导线之间的耦合,那么必须对小孔、靠近源的屏蔽面以及导线进行精确建模。

另外一个常用的简化是用无限薄的面来模拟有限厚度的导体面。

一般而言,厚度小于/100的金属面都可以近似为无限薄的金属面。

有限导电性和有限厚度的影响可以在SK卡中设置。

对于比较厚的导体面,如果这种影响是次要的,那么用户仍然可以采取这种近似。

例如,当建立大反射面天线的馈源喇叭模型时,喇叭壁的有限厚度对于反射面天线主波束的影响就是次要的。

然而,如果喇叭天线用于校准标准时,那么喇叭壁的有限厚度就不能忽略。

网格划分
一般而言,网格划分的密度设置为最短波长的十分之一。

然而,在电流或电荷梯度变化剧烈的区域,如源所在区域、曲面上的缝隙和曲面的棱边等,必须划分得更密。

一个实用的指导原则是网格大小应该与结构间的间隔距离(d)相比拟(%26lt;=2d)。

同样地,如果需要计算近场分布,那么网格大小应该同场点到源点间距离(d)相比拟。

总之,用户建立的几何模型应该抓住主要的物理现象,而网格划分则需要权衡输出结果相对于网格大小的收敛性。

广州有道资料网。

相关文档
最新文档